Properties

Label 816.4.a.l
Level $816$
Weight $4$
Character orbit 816.a
Self dual yes
Analytic conductor $48.146$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,4,Mod(1,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 816.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.1455585647\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{15}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{15}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + (\beta + 6) q^{5} + (\beta - 8) q^{7} + 9 q^{9} + (2 \beta + 12) q^{11} + (2 \beta + 38) q^{13} + ( - 3 \beta - 18) q^{15} + 17 q^{17} + (2 \beta - 116) q^{19} + ( - 3 \beta + 24) q^{21}+ \cdots + (18 \beta + 108) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 12 q^{5} - 16 q^{7} + 18 q^{9} + 24 q^{11} + 76 q^{13} - 36 q^{15} + 34 q^{17} - 232 q^{19} + 48 q^{21} + 302 q^{25} - 54 q^{27} + 60 q^{29} - 160 q^{31} - 72 q^{33} + 384 q^{35} - 356 q^{37}+ \cdots + 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.87298
3.87298
0 −3.00000 0 −9.49193 0 −23.4919 0 9.00000 0
1.2 0 −3.00000 0 21.4919 0 7.49193 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 816.4.a.l 2
3.b odd 2 1 2448.4.a.t 2
4.b odd 2 1 102.4.a.e 2
12.b even 2 1 306.4.a.k 2
68.d odd 2 1 1734.4.a.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.4.a.e 2 4.b odd 2 1
306.4.a.k 2 12.b even 2 1
816.4.a.l 2 1.a even 1 1 trivial
1734.4.a.h 2 68.d odd 2 1
2448.4.a.t 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(816))\):

\( T_{5}^{2} - 12T_{5} - 204 \) Copy content Toggle raw display
\( T_{7}^{2} + 16T_{7} - 176 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 12T - 204 \) Copy content Toggle raw display
$7$ \( T^{2} + 16T - 176 \) Copy content Toggle raw display
$11$ \( T^{2} - 24T - 816 \) Copy content Toggle raw display
$13$ \( T^{2} - 76T + 484 \) Copy content Toggle raw display
$17$ \( (T - 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 232T + 12496 \) Copy content Toggle raw display
$23$ \( T^{2} - 29040 \) Copy content Toggle raw display
$29$ \( T^{2} - 60T - 5100 \) Copy content Toggle raw display
$31$ \( T^{2} + 160T + 4240 \) Copy content Toggle raw display
$37$ \( T^{2} + 356T + 2644 \) Copy content Toggle raw display
$41$ \( T^{2} + 588T + 51876 \) Copy content Toggle raw display
$43$ \( T^{2} - 200T - 24560 \) Copy content Toggle raw display
$47$ \( T^{2} - 192T - 153024 \) Copy content Toggle raw display
$53$ \( T^{2} + 84T - 160476 \) Copy content Toggle raw display
$59$ \( T^{2} - 360T - 14640 \) Copy content Toggle raw display
$61$ \( T^{2} + 212T - 219404 \) Copy content Toggle raw display
$67$ \( T^{2} + 136T - 111536 \) Copy content Toggle raw display
$71$ \( T^{2} - 768T - 113904 \) Copy content Toggle raw display
$73$ \( T^{2} - 52T - 552284 \) Copy content Toggle raw display
$79$ \( T^{2} - 224T - 473456 \) Copy content Toggle raw display
$83$ \( T^{2} + 360T - 245040 \) Copy content Toggle raw display
$89$ \( T^{2} + 588T - 9564 \) Copy content Toggle raw display
$97$ \( T^{2} - 388T - 769724 \) Copy content Toggle raw display
show more
show less