Properties

Label 1740.1.v.a.1043.1
Level $1740$
Weight $1$
Character 1740.1043
Analytic conductor $0.868$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -116
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1740,1,Mod(347,1740)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1740, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 1, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1740.347");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1740 = 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1740.v (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.868373121981\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.3784500.2

Embedding invariants

Embedding label 1043.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1740.1043
Dual form 1740.1.v.a.347.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +(0.707107 + 0.707107i) q^{3} +1.00000i q^{4} -1.00000 q^{5} -1.00000i q^{6} +(0.707107 - 0.707107i) q^{8} +1.00000i q^{9} +(0.707107 + 0.707107i) q^{10} +1.41421i q^{11} +(-0.707107 + 0.707107i) q^{12} +(-1.00000 - 1.00000i) q^{13} +(-0.707107 - 0.707107i) q^{15} -1.00000 q^{16} +(0.707107 - 0.707107i) q^{18} +1.41421i q^{19} -1.00000i q^{20} +(1.00000 - 1.00000i) q^{22} +1.00000 q^{24} +1.00000 q^{25} +1.41421i q^{26} +(-0.707107 + 0.707107i) q^{27} -1.00000 q^{29} +1.00000i q^{30} -1.41421 q^{31} +(0.707107 + 0.707107i) q^{32} +(-1.00000 + 1.00000i) q^{33} -1.00000 q^{36} +(1.00000 - 1.00000i) q^{38} -1.41421i q^{39} +(-0.707107 + 0.707107i) q^{40} -1.41421 q^{44} -1.00000i q^{45} +(1.41421 + 1.41421i) q^{47} +(-0.707107 - 0.707107i) q^{48} -1.00000i q^{49} +(-0.707107 - 0.707107i) q^{50} +(1.00000 - 1.00000i) q^{52} +(-1.00000 + 1.00000i) q^{53} +1.00000 q^{54} -1.41421i q^{55} +(-1.00000 + 1.00000i) q^{57} +(0.707107 + 0.707107i) q^{58} +(0.707107 - 0.707107i) q^{60} +(1.00000 + 1.00000i) q^{62} -1.00000i q^{64} +(1.00000 + 1.00000i) q^{65} +1.41421 q^{66} +(0.707107 + 0.707107i) q^{72} +(0.707107 + 0.707107i) q^{75} -1.41421 q^{76} +(-1.00000 + 1.00000i) q^{78} +1.41421i q^{79} +1.00000 q^{80} -1.00000 q^{81} +(-0.707107 - 0.707107i) q^{87} +(1.00000 + 1.00000i) q^{88} +(-0.707107 + 0.707107i) q^{90} +(-1.00000 - 1.00000i) q^{93} -2.00000i q^{94} -1.41421i q^{95} +1.00000i q^{96} +(-0.707107 + 0.707107i) q^{98} -1.41421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 4 q^{13} - 4 q^{16} + 4 q^{22} + 4 q^{24} + 4 q^{25} - 4 q^{29} - 4 q^{33} - 4 q^{36} + 4 q^{38} + 4 q^{52} - 4 q^{53} + 4 q^{54} - 4 q^{57} + 4 q^{62} + 4 q^{65} - 4 q^{78} + 4 q^{80} - 4 q^{81}+ \cdots - 4 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1740\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(697\) \(871\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.707107 0.707107i
\(3\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(4\) 1.00000i 1.00000i
\(5\) −1.00000 −1.00000
\(6\) 1.00000i 1.00000i
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0.707107 0.707107i 0.707107 0.707107i
\(9\) 1.00000i 1.00000i
\(10\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(11\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(12\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(13\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) −0.707107 0.707107i −0.707107 0.707107i
\(16\) −1.00000 −1.00000
\(17\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(18\) 0.707107 0.707107i 0.707107 0.707107i
\(19\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(20\) 1.00000i 1.00000i
\(21\) 0 0
\(22\) 1.00000 1.00000i 1.00000 1.00000i
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 1.00000 1.00000
\(25\) 1.00000 1.00000
\(26\) 1.41421i 1.41421i
\(27\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(28\) 0 0
\(29\) −1.00000 −1.00000
\(30\) 1.00000i 1.00000i
\(31\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(32\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(33\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(34\) 0 0
\(35\) 0 0
\(36\) −1.00000 −1.00000
\(37\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(38\) 1.00000 1.00000i 1.00000 1.00000i
\(39\) 1.41421i 1.41421i
\(40\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) −1.41421 −1.41421
\(45\) 1.00000i 1.00000i
\(46\) 0 0
\(47\) 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) −0.707107 0.707107i −0.707107 0.707107i
\(49\) 1.00000i 1.00000i
\(50\) −0.707107 0.707107i −0.707107 0.707107i
\(51\) 0 0
\(52\) 1.00000 1.00000i 1.00000 1.00000i
\(53\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(54\) 1.00000 1.00000
\(55\) 1.41421i 1.41421i
\(56\) 0 0
\(57\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(58\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0.707107 0.707107i 0.707107 0.707107i
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(63\) 0 0
\(64\) 1.00000i 1.00000i
\(65\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(66\) 1.41421 1.41421
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(76\) −1.41421 −1.41421
\(77\) 0 0
\(78\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(79\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(80\) 1.00000 1.00000
\(81\) −1.00000 −1.00000
\(82\) 0 0
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.707107 0.707107i −0.707107 0.707107i
\(88\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(91\) 0 0
\(92\) 0 0
\(93\) −1.00000 1.00000i −1.00000 1.00000i
\(94\) 2.00000i 2.00000i
\(95\) 1.41421i 1.41421i
\(96\) 1.00000i 1.00000i
\(97\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(99\) −1.41421 −1.41421
\(100\) 1.00000i 1.00000i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) −1.41421 −1.41421
\(105\) 0 0
\(106\) 1.41421 1.41421
\(107\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(108\) −0.707107 0.707107i −0.707107 0.707107i
\(109\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 1.41421 1.41421
\(115\) 0 0
\(116\) 1.00000i 1.00000i
\(117\) 1.00000 1.00000i 1.00000 1.00000i
\(118\) 0 0
\(119\) 0 0
\(120\) −1.00000 −1.00000
\(121\) −1.00000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 1.41421i 1.41421i
\(125\) −1.00000 −1.00000
\(126\) 0 0
\(127\) 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i \(-0.250000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(128\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(129\) 0 0
\(130\) 1.41421i 1.41421i
\(131\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(132\) −1.00000 1.00000i −1.00000 1.00000i
\(133\) 0 0
\(134\) 0 0
\(135\) 0.707107 0.707107i 0.707107 0.707107i
\(136\) 0 0
\(137\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 2.00000i 2.00000i
\(142\) 0 0
\(143\) 1.41421 1.41421i 1.41421 1.41421i
\(144\) 1.00000i 1.00000i
\(145\) 1.00000 1.00000
\(146\) 0 0
\(147\) 0.707107 0.707107i 0.707107 0.707107i
\(148\) 0 0
\(149\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(150\) 1.00000i 1.00000i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(153\) 0 0
\(154\) 0 0
\(155\) 1.41421 1.41421
\(156\) 1.41421 1.41421
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 1.00000 1.00000i 1.00000 1.00000i
\(159\) −1.41421 −1.41421
\(160\) −0.707107 0.707107i −0.707107 0.707107i
\(161\) 0 0
\(162\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(163\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) 0 0
\(165\) 1.00000 1.00000i 1.00000 1.00000i
\(166\) 0 0
\(167\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) 1.00000i 1.00000i
\(170\) 0 0
\(171\) −1.41421 −1.41421
\(172\) 0 0
\(173\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(174\) 1.00000i 1.00000i
\(175\) 0 0
\(176\) 1.41421i 1.41421i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 1.00000 1.00000
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 1.41421i 1.41421i
\(187\) 0 0
\(188\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(189\) 0 0
\(190\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(191\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(192\) 0.707107 0.707107i 0.707107 0.707107i
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 0 0
\(195\) 1.41421i 1.41421i
\(196\) 1.00000 1.00000
\(197\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(198\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0.707107 0.707107i 0.707107 0.707107i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(209\) −2.00000 −2.00000
\(210\) 0 0
\(211\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(212\) −1.00000 1.00000i −1.00000 1.00000i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 1.00000i 1.00000i
\(217\) 0 0
\(218\) 1.41421 1.41421i 1.41421 1.41421i
\(219\) 0 0
\(220\) 1.41421 1.41421
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) 1.00000i 1.00000i
\(226\) 0 0
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) −1.00000 1.00000i −1.00000 1.00000i
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(233\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(234\) −1.41421 −1.41421
\(235\) −1.41421 1.41421i −1.41421 1.41421i
\(236\) 0 0
\(237\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(241\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(242\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(243\) −0.707107 0.707107i −0.707107 0.707107i
\(244\) 0 0
\(245\) 1.00000i 1.00000i
\(246\) 0 0
\(247\) 1.41421 1.41421i 1.41421 1.41421i
\(248\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(249\) 0 0
\(250\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(251\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −2.00000 −2.00000
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(261\) 1.00000i 1.00000i
\(262\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 1.41421i 1.41421i
\(265\) 1.00000 1.00000i 1.00000 1.00000i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −1.00000 −1.00000
\(271\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.41421i 1.41421i
\(276\) 0 0
\(277\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(278\) 0 0
\(279\) 1.41421i 1.41421i
\(280\) 0 0
\(281\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(282\) 1.41421 1.41421i 1.41421 1.41421i
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 1.00000 1.00000i 1.00000 1.00000i
\(286\) −2.00000 −2.00000
\(287\) 0 0
\(288\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(289\) 1.00000i 1.00000i
\(290\) −0.707107 0.707107i −0.707107 0.707107i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) −1.00000 −1.00000
\(295\) 0 0
\(296\) 0 0
\(297\) −1.00000 1.00000i −1.00000 1.00000i
\(298\) −1.41421 1.41421i −1.41421 1.41421i
\(299\) 0 0
\(300\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 1.41421i 1.41421i
\(305\) 0 0
\(306\) 0 0
\(307\) −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i \(0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.00000 1.00000i −1.00000 1.00000i
\(311\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(312\) −1.00000 1.00000i −1.00000 1.00000i
\(313\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −1.41421 −1.41421
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(319\) 1.41421i 1.41421i
\(320\) 1.00000i 1.00000i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000i 1.00000i
\(325\) −1.00000 1.00000i −1.00000 1.00000i
\(326\) 0 0
\(327\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(328\) 0 0
\(329\) 0 0
\(330\) −1.41421 −1.41421
\(331\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 0.707107 0.707107i 0.707107 0.707107i
\(339\) 0 0
\(340\) 0 0
\(341\) 2.00000i 2.00000i
\(342\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −1.41421 −1.41421
\(347\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(348\) 0.707107 0.707107i 0.707107 0.707107i
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 1.41421 1.41421
\(352\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(353\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(360\) −0.707107 0.707107i −0.707107 0.707107i
\(361\) −1.00000 −1.00000
\(362\) 0 0
\(363\) −0.707107 0.707107i −0.707107 0.707107i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 1.00000 1.00000i 1.00000 1.00000i
\(373\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −0.707107 0.707107i −0.707107 0.707107i
\(376\) 2.00000 2.00000
\(377\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(378\) 0 0
\(379\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(380\) 1.41421 1.41421
\(381\) 2.00000 2.00000
\(382\) 1.00000 1.00000i 1.00000 1.00000i
\(383\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(384\) −1.00000 −1.00000
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 1.00000 1.00000i 1.00000 1.00000i
\(391\) 0 0
\(392\) −0.707107 0.707107i −0.707107 0.707107i
\(393\) 1.00000 1.00000i 1.00000 1.00000i
\(394\) 1.41421i 1.41421i
\(395\) 1.41421i 1.41421i
\(396\) 1.41421i 1.41421i
\(397\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 −1.00000
\(401\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(404\) 0 0
\(405\) 1.00000 1.00000
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 1.41421i 1.41421i
\(417\) 0 0
\(418\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) −1.00000 1.00000i −1.00000 1.00000i
\(423\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(424\) 1.41421i 1.41421i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 2.00000 2.00000
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0.707107 0.707107i 0.707107 0.707107i
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(436\) −2.00000 −2.00000
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) −1.00000 1.00000i −1.00000 1.00000i
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0.707107 0.707107i 0.707107 0.707107i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 1.41421i 1.41421i
\(457\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 1.00000 1.00000
\(465\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(466\) −1.41421 −1.41421
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(469\) 0 0
\(470\) 2.00000i 2.00000i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 1.41421 1.41421
\(475\) 1.41421i 1.41421i
\(476\) 0 0
\(477\) −1.00000 1.00000i −1.00000 1.00000i
\(478\) 0 0
\(479\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(480\) 1.00000i 1.00000i
\(481\) 0 0
\(482\) −1.41421 1.41421i −1.41421 1.41421i
\(483\) 0 0
\(484\) 1.00000i 1.00000i
\(485\) 0 0
\(486\) 1.00000i 1.00000i
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0.707107 0.707107i 0.707107 0.707107i
\(491\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −2.00000 −2.00000
\(495\) 1.41421 1.41421
\(496\) 1.41421 1.41421
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 1.00000i 1.00000i
\(501\) 0 0
\(502\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(508\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.707107 0.707107i −0.707107 0.707107i
\(513\) −1.00000 1.00000i −1.00000 1.00000i
\(514\) 1.41421i 1.41421i
\(515\) 0 0
\(516\) 0 0
\(517\) −2.00000 + 2.00000i −2.00000 + 2.00000i
\(518\) 0 0
\(519\) 1.41421 1.41421
\(520\) 1.41421 1.41421
\(521\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 1.41421 1.41421
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 1.00000 1.00000i 1.00000 1.00000i
\(529\) 1.00000i 1.00000i
\(530\) −1.41421 −1.41421
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.41421 1.41421
\(540\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) −1.00000 1.00000i −1.00000 1.00000i
\(543\) 0 0
\(544\) 0 0
\(545\) 2.00000i 2.00000i
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.00000 1.00000i 1.00000 1.00000i
\(551\) 1.41421i 1.41421i
\(552\) 0 0
\(553\) 0 0
\(554\) −1.41421 −1.41421
\(555\) 0 0
\(556\) 0 0
\(557\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(558\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(563\) −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i \(0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) −2.00000 −2.00000
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) −1.41421 −1.41421
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(573\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 1.00000
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) 0.707107 0.707107i 0.707107 0.707107i
\(579\) 0 0
\(580\) 1.00000i 1.00000i
\(581\) 0 0
\(582\) 0 0
\(583\) −1.41421 1.41421i −1.41421 1.41421i
\(584\) 0 0
\(585\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(586\) 0 0
\(587\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(589\) 2.00000i 2.00000i
\(590\) 0 0
\(591\) 1.41421i 1.41421i
\(592\) 0 0
\(593\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(594\) 1.41421i 1.41421i
\(595\) 0 0
\(596\) 2.00000i 2.00000i
\(597\) 0 0
\(598\) 0 0
\(599\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(600\) 1.00000 1.00000
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.00000 1.00000
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(609\) 0 0
\(610\) 0 0
\(611\) 2.82843i 2.82843i
\(612\) 0 0
\(613\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(614\) 2.00000 2.00000
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(618\) 0 0
\(619\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(620\) 1.41421i 1.41421i
\(621\) 0 0
\(622\) 1.00000 1.00000i 1.00000 1.00000i
\(623\) 0 0
\(624\) 1.41421i 1.41421i
\(625\) 1.00000 1.00000
\(626\) 1.41421i 1.41421i
\(627\) −1.41421 1.41421i −1.41421 1.41421i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(633\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(634\) 0 0
\(635\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(636\) 1.41421i 1.41421i
\(637\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(638\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(639\) 0 0
\(640\) 0.707107 0.707107i 0.707107 0.707107i
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(649\) 0 0
\(650\) 1.41421i 1.41421i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 2.00000 2.00000
\(655\) 1.41421i 1.41421i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(660\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(676\) −1.00000 −1.00000
\(677\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(683\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) 1.41421i 1.41421i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.00000 2.00000
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) −1.00000 −1.00000
\(697\) 0 0
\(698\) 0 0
\(699\) 1.41421 1.41421
\(700\) 0 0
\(701\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(702\) −1.00000 1.00000i −1.00000 1.00000i
\(703\) 0 0
\(704\) 1.41421 1.41421
\(705\) 2.00000i 2.00000i
\(706\) −1.41421 −1.41421
\(707\) 0 0
\(708\) 0 0
\(709\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) −1.41421 −1.41421
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(716\) 0 0
\(717\) 0 0
\(718\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 1.00000i 1.00000i
\(721\) 0 0
\(722\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(723\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(724\) 0 0
\(725\) −1.00000 −1.00000
\(726\) 1.00000i 1.00000i
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) 1.00000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(740\) 0 0
\(741\) 2.00000 2.00000
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) −1.41421 −1.41421
\(745\) −2.00000 −2.00000
\(746\) 1.41421i 1.41421i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 1.00000i 1.00000i
\(751\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(752\) −1.41421 1.41421i −1.41421 1.41421i
\(753\) 1.00000 1.00000i 1.00000 1.00000i
\(754\) 1.41421i 1.41421i
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) 1.00000 1.00000i 1.00000 1.00000i
\(759\) 0 0
\(760\) −1.00000 1.00000i −1.00000 1.00000i
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) −1.41421 1.41421i −1.41421 1.41421i
\(763\) 0 0
\(764\) −1.41421 −1.41421
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 1.41421i 1.41421i
\(772\) 0 0
\(773\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) 0 0
\(775\) −1.41421 −1.41421
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −1.41421 −1.41421
\(781\) 0 0
\(782\) 0 0
\(783\) 0.707107 0.707107i 0.707107 0.707107i
\(784\) 1.00000i 1.00000i
\(785\) 0 0
\(786\) −1.41421 −1.41421
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(789\) 0 0
\(790\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(791\) 0 0
\(792\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(793\) 0 0
\(794\) 1.41421 1.41421
\(795\) 1.41421 1.41421
\(796\) 0 0
\(797\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(801\) 0 0
\(802\) 1.41421 1.41421i 1.41421 1.41421i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 2.00000i 2.00000i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −0.707107 0.707107i −0.707107 0.707107i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(824\) 0 0
\(825\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(826\) 0 0
\(827\) −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 1.41421 1.41421
\(832\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 2.00000i 2.00000i
\(837\) 1.00000 1.00000i 1.00000 1.00000i
\(838\) 0 0
\(839\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 1.41421 1.41421i 1.41421 1.41421i
\(844\) 1.41421i 1.41421i
\(845\) 1.00000i 1.00000i
\(846\) 2.00000 2.00000
\(847\) 0 0
\(848\) 1.00000 1.00000i 1.00000 1.00000i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 1.41421 1.41421
\(856\) 0 0
\(857\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(858\) −1.41421 1.41421i −1.41421 1.41421i
\(859\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) −1.00000 −1.00000
\(865\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(866\) 0 0
\(867\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(868\) 0 0
\(869\) −2.00000 −2.00000
\(870\) 1.00000i 1.00000i
\(871\) 0 0
\(872\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(878\) 0 0
\(879\) 0 0
\(880\) 1.41421i 1.41421i
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) −0.707107 0.707107i −0.707107 0.707107i
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.41421i 1.41421i
\(892\) 0 0
\(893\) −2.00000 + 2.00000i −2.00000 + 2.00000i
\(894\) 2.00000i 2.00000i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.41421 1.41421
\(900\) −1.00000 −1.00000
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(912\) 1.00000 1.00000i 1.00000 1.00000i
\(913\) 0 0
\(914\) 1.41421 1.41421
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −2.00000 −2.00000
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) −0.707107 0.707107i −0.707107 0.707107i
\(929\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(930\) 1.41421i 1.41421i
\(931\) 1.41421 1.41421
\(932\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(933\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(934\) 0 0
\(935\) 0 0
\(936\) 1.41421i 1.41421i
\(937\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(938\) 0 0
\(939\) 1.41421i 1.41421i
\(940\) 1.41421 1.41421i 1.41421 1.41421i
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) −1.00000 1.00000i −1.00000 1.00000i
\(949\) 0 0
\(950\) 1.00000 1.00000i 1.00000 1.00000i
\(951\) 0 0
\(952\) 0 0
\(953\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(954\) 1.41421i 1.41421i
\(955\) 1.41421i 1.41421i
\(956\) 0 0
\(957\) 1.00000 1.00000i 1.00000 1.00000i
\(958\) −1.00000 1.00000i −1.00000 1.00000i
\(959\) 0 0
\(960\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 2.00000i 2.00000i
\(965\) 0 0
\(966\) 0 0
\(967\) −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i \(0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(969\) 0 0
\(970\) 0 0
\(971\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(972\) 0.707107 0.707107i 0.707107 0.707107i
\(973\) 0 0
\(974\) 0 0
\(975\) 1.41421i 1.41421i
\(976\) 0 0
\(977\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −1.00000 −1.00000
\(981\) −2.00000 −2.00000
\(982\) 1.00000 1.00000i 1.00000 1.00000i
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) −1.00000 1.00000i −1.00000 1.00000i
\(986\) 0 0
\(987\) 0 0
\(988\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(989\) 0 0
\(990\) −1.00000 1.00000i −1.00000 1.00000i
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −1.00000 1.00000i −1.00000 1.00000i
\(993\) −1.00000 1.00000i −1.00000 1.00000i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1740.1.v.a.1043.1 yes 4
3.2 odd 2 1740.1.v.b.1043.2 yes 4
4.3 odd 2 inner 1740.1.v.a.1043.2 yes 4
5.2 odd 4 1740.1.v.b.347.2 yes 4
12.11 even 2 1740.1.v.b.1043.1 yes 4
15.2 even 4 inner 1740.1.v.a.347.1 4
20.7 even 4 1740.1.v.b.347.1 yes 4
29.28 even 2 inner 1740.1.v.a.1043.2 yes 4
60.47 odd 4 inner 1740.1.v.a.347.2 yes 4
87.86 odd 2 1740.1.v.b.1043.1 yes 4
116.115 odd 2 CM 1740.1.v.a.1043.1 yes 4
145.57 odd 4 1740.1.v.b.347.1 yes 4
348.347 even 2 1740.1.v.b.1043.2 yes 4
435.347 even 4 inner 1740.1.v.a.347.2 yes 4
580.347 even 4 1740.1.v.b.347.2 yes 4
1740.347 odd 4 inner 1740.1.v.a.347.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.1.v.a.347.1 4 15.2 even 4 inner
1740.1.v.a.347.1 4 1740.347 odd 4 inner
1740.1.v.a.347.2 yes 4 60.47 odd 4 inner
1740.1.v.a.347.2 yes 4 435.347 even 4 inner
1740.1.v.a.1043.1 yes 4 1.1 even 1 trivial
1740.1.v.a.1043.1 yes 4 116.115 odd 2 CM
1740.1.v.a.1043.2 yes 4 4.3 odd 2 inner
1740.1.v.a.1043.2 yes 4 29.28 even 2 inner
1740.1.v.b.347.1 yes 4 20.7 even 4
1740.1.v.b.347.1 yes 4 145.57 odd 4
1740.1.v.b.347.2 yes 4 5.2 odd 4
1740.1.v.b.347.2 yes 4 580.347 even 4
1740.1.v.b.1043.1 yes 4 12.11 even 2
1740.1.v.b.1043.1 yes 4 87.86 odd 2
1740.1.v.b.1043.2 yes 4 3.2 odd 2
1740.1.v.b.1043.2 yes 4 348.347 even 2