Properties

Label 175.10.b.g.99.9
Level $175$
Weight $10$
Character 175.99
Analytic conductor $90.131$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,10,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(90.1312713287\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 6045 x^{10} + 13278528 x^{8} + 12528585876 x^{6} + 4315564707360 x^{4} + 82968810446400 x^{2} + 360088576000000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{4}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.9
Root \(28.3435i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.10.b.g.99.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+26.3435i q^{2} -1.97103i q^{3} -181.982 q^{4} +51.9238 q^{6} +2401.00i q^{7} +8693.85i q^{8} +19679.1 q^{9} -2245.43 q^{11} +358.691i q^{12} -123379. i q^{13} -63250.8 q^{14} -322201. q^{16} +18794.1i q^{17} +518417. i q^{18} -404776. q^{19} +4732.44 q^{21} -59152.4i q^{22} +1.75527e6i q^{23} +17135.8 q^{24} +3.25024e6 q^{26} -77583.8i q^{27} -436938. i q^{28} -3.94483e6 q^{29} +8.99428e6 q^{31} -4.03667e6i q^{32} +4425.79i q^{33} -495103. q^{34} -3.58124e6 q^{36} +1.04609e7i q^{37} -1.06632e7i q^{38} -243184. q^{39} +3.02704e6 q^{41} +124669. i q^{42} +1.60767e7i q^{43} +408626. q^{44} -4.62401e7 q^{46} +3.97557e7i q^{47} +635067. i q^{48} -5.76480e6 q^{49} +37043.7 q^{51} +2.24528e7i q^{52} +4.08073e7i q^{53} +2.04383e6 q^{54} -2.08739e7 q^{56} +797825. i q^{57} -1.03921e8i q^{58} -1.60585e8 q^{59} +1.49289e8 q^{61} +2.36941e8i q^{62} +4.72496e7i q^{63} -5.86269e7 q^{64} -116591. q^{66} -5.12683e7i q^{67} -3.42018e6i q^{68} +3.45969e6 q^{69} -3.35362e8 q^{71} +1.71087e8i q^{72} +1.35293e8i q^{73} -2.75578e8 q^{74} +7.36618e7 q^{76} -5.39127e6i q^{77} -6.40632e6i q^{78} -1.65365e8 q^{79} +3.87191e8 q^{81} +7.97429e7i q^{82} -1.61436e8i q^{83} -861217. q^{84} -4.23516e8 q^{86} +7.77536e6i q^{87} -1.95214e7i q^{88} -1.00313e9 q^{89} +2.96233e8 q^{91} -3.19428e8i q^{92} -1.77280e7i q^{93} -1.04731e9 q^{94} -7.95639e6 q^{96} +2.89165e8i q^{97} -1.51865e8i q^{98} -4.41880e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6018 q^{4} + 9776 q^{6} - 222180 q^{9} - 95592 q^{11} + 72030 q^{14} + 4742130 q^{16} - 722112 q^{19} + 595448 q^{21} - 9656152 q^{24} + 21695244 q^{26} - 32056368 q^{29} + 2725824 q^{31} + 18432588 q^{34}+ \cdots - 7143937568 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 26.3435i 1.16423i 0.813106 + 0.582115i \(0.197775\pi\)
−0.813106 + 0.582115i \(0.802225\pi\)
\(3\) − 1.97103i − 0.0140490i −0.999975 0.00702452i \(-0.997764\pi\)
0.999975 0.00702452i \(-0.00223599\pi\)
\(4\) −181.982 −0.355433
\(5\) 0 0
\(6\) 51.9238 0.0163563
\(7\) 2401.00i 0.377964i
\(8\) 8693.85i 0.750425i
\(9\) 19679.1 0.999803
\(10\) 0 0
\(11\) −2245.43 −0.0462415 −0.0231207 0.999733i \(-0.507360\pi\)
−0.0231207 + 0.999733i \(0.507360\pi\)
\(12\) 358.691i 0.00499350i
\(13\) − 123379.i − 1.19811i −0.800708 0.599055i \(-0.795543\pi\)
0.800708 0.599055i \(-0.204457\pi\)
\(14\) −63250.8 −0.440038
\(15\) 0 0
\(16\) −322201. −1.22910
\(17\) 18794.1i 0.0545760i 0.999628 + 0.0272880i \(0.00868711\pi\)
−0.999628 + 0.0272880i \(0.991313\pi\)
\(18\) 518417.i 1.16400i
\(19\) −404776. −0.712564 −0.356282 0.934379i \(-0.615956\pi\)
−0.356282 + 0.934379i \(0.615956\pi\)
\(20\) 0 0
\(21\) 4732.44 0.00531004
\(22\) − 59152.4i − 0.0538357i
\(23\) 1.75527e6i 1.30789i 0.756544 + 0.653943i \(0.226886\pi\)
−0.756544 + 0.653943i \(0.773114\pi\)
\(24\) 17135.8 0.0105428
\(25\) 0 0
\(26\) 3.25024e6 1.39488
\(27\) − 77583.8i − 0.0280953i
\(28\) − 436938.i − 0.134341i
\(29\) −3.94483e6 −1.03571 −0.517854 0.855469i \(-0.673269\pi\)
−0.517854 + 0.855469i \(0.673269\pi\)
\(30\) 0 0
\(31\) 8.99428e6 1.74920 0.874599 0.484847i \(-0.161125\pi\)
0.874599 + 0.484847i \(0.161125\pi\)
\(32\) − 4.03667e6i − 0.680532i
\(33\) 4425.79i 0 0.000649648i
\(34\) −495103. −0.0635390
\(35\) 0 0
\(36\) −3.58124e6 −0.355363
\(37\) 1.04609e7i 0.917618i 0.888535 + 0.458809i \(0.151724\pi\)
−0.888535 + 0.458809i \(0.848276\pi\)
\(38\) − 1.06632e7i − 0.829589i
\(39\) −243184. −0.0168323
\(40\) 0 0
\(41\) 3.02704e6 0.167298 0.0836489 0.996495i \(-0.473343\pi\)
0.0836489 + 0.996495i \(0.473343\pi\)
\(42\) 124669.i 0.00618211i
\(43\) 1.60767e7i 0.717114i 0.933508 + 0.358557i \(0.116731\pi\)
−0.933508 + 0.358557i \(0.883269\pi\)
\(44\) 408626. 0.0164357
\(45\) 0 0
\(46\) −4.62401e7 −1.52268
\(47\) 3.97557e7i 1.18839i 0.804321 + 0.594196i \(0.202529\pi\)
−0.804321 + 0.594196i \(0.797471\pi\)
\(48\) 635067.i 0.0172677i
\(49\) −5.76480e6 −0.142857
\(50\) 0 0
\(51\) 37043.7 0.000766740 0
\(52\) 2.24528e7i 0.425848i
\(53\) 4.08073e7i 0.710389i 0.934792 + 0.355195i \(0.115585\pi\)
−0.934792 + 0.355195i \(0.884415\pi\)
\(54\) 2.04383e6 0.0327094
\(55\) 0 0
\(56\) −2.08739e7 −0.283634
\(57\) 797825.i 0.0100108i
\(58\) − 1.03921e8i − 1.20580i
\(59\) −1.60585e8 −1.72532 −0.862660 0.505784i \(-0.831203\pi\)
−0.862660 + 0.505784i \(0.831203\pi\)
\(60\) 0 0
\(61\) 1.49289e8 1.38052 0.690260 0.723561i \(-0.257496\pi\)
0.690260 + 0.723561i \(0.257496\pi\)
\(62\) 2.36941e8i 2.03647i
\(63\) 4.72496e7i 0.377890i
\(64\) −5.86269e7 −0.436805
\(65\) 0 0
\(66\) −116591. −0.000756341 0
\(67\) − 5.12683e7i − 0.310822i −0.987850 0.155411i \(-0.950330\pi\)
0.987850 0.155411i \(-0.0496702\pi\)
\(68\) − 3.42018e6i − 0.0193981i
\(69\) 3.45969e6 0.0183745
\(70\) 0 0
\(71\) −3.35362e8 −1.56622 −0.783108 0.621886i \(-0.786367\pi\)
−0.783108 + 0.621886i \(0.786367\pi\)
\(72\) 1.71087e8i 0.750277i
\(73\) 1.35293e8i 0.557601i 0.960349 + 0.278801i \(0.0899368\pi\)
−0.960349 + 0.278801i \(0.910063\pi\)
\(74\) −2.75578e8 −1.06832
\(75\) 0 0
\(76\) 7.36618e7 0.253269
\(77\) − 5.39127e6i − 0.0174776i
\(78\) − 6.40632e6i − 0.0195967i
\(79\) −1.65365e8 −0.477665 −0.238832 0.971061i \(-0.576765\pi\)
−0.238832 + 0.971061i \(0.576765\pi\)
\(80\) 0 0
\(81\) 3.87191e8 0.999408
\(82\) 7.97429e7i 0.194773i
\(83\) − 1.61436e8i − 0.373379i −0.982419 0.186690i \(-0.940224\pi\)
0.982419 0.186690i \(-0.0597759\pi\)
\(84\) −861217. −0.00188736
\(85\) 0 0
\(86\) −4.23516e8 −0.834886
\(87\) 7.77536e6i 0.0145507i
\(88\) − 1.95214e7i − 0.0347007i
\(89\) −1.00313e9 −1.69473 −0.847366 0.531009i \(-0.821813\pi\)
−0.847366 + 0.531009i \(0.821813\pi\)
\(90\) 0 0
\(91\) 2.96233e8 0.452843
\(92\) − 3.19428e8i − 0.464866i
\(93\) − 1.77280e7i − 0.0245746i
\(94\) −1.04731e9 −1.38356
\(95\) 0 0
\(96\) −7.95639e6 −0.00956082
\(97\) 2.89165e8i 0.331644i 0.986156 + 0.165822i \(0.0530278\pi\)
−0.986156 + 0.165822i \(0.946972\pi\)
\(98\) − 1.51865e8i − 0.166319i
\(99\) −4.41880e7 −0.0462323
\(100\) 0 0
\(101\) 1.57210e8 0.150326 0.0751629 0.997171i \(-0.476052\pi\)
0.0751629 + 0.997171i \(0.476052\pi\)
\(102\) 975861.i 0 0.000892663i
\(103\) 5.15072e8i 0.450921i 0.974252 + 0.225461i \(0.0723887\pi\)
−0.974252 + 0.225461i \(0.927611\pi\)
\(104\) 1.07264e9 0.899092
\(105\) 0 0
\(106\) −1.07501e9 −0.827057
\(107\) 2.36823e9i 1.74662i 0.487168 + 0.873308i \(0.338030\pi\)
−0.487168 + 0.873308i \(0.661970\pi\)
\(108\) 1.41188e7i 0.00998601i
\(109\) −2.25821e8 −0.153231 −0.0766154 0.997061i \(-0.524411\pi\)
−0.0766154 + 0.997061i \(0.524411\pi\)
\(110\) 0 0
\(111\) 2.06188e7 0.0128917
\(112\) − 7.73605e8i − 0.464556i
\(113\) − 2.93829e9i − 1.69528i −0.530572 0.847640i \(-0.678023\pi\)
0.530572 0.847640i \(-0.321977\pi\)
\(114\) −2.10175e7 −0.0116549
\(115\) 0 0
\(116\) 7.17886e8 0.368125
\(117\) − 2.42799e9i − 1.19787i
\(118\) − 4.23036e9i − 2.00867i
\(119\) −4.51246e7 −0.0206278
\(120\) 0 0
\(121\) −2.35291e9 −0.997862
\(122\) 3.93279e9i 1.60724i
\(123\) − 5.96637e6i − 0.00235038i
\(124\) −1.63679e9 −0.621723
\(125\) 0 0
\(126\) −1.24472e9 −0.439951
\(127\) − 3.08644e9i − 1.05279i −0.850241 0.526393i \(-0.823544\pi\)
0.850241 0.526393i \(-0.176456\pi\)
\(128\) − 3.61122e9i − 1.18907i
\(129\) 3.16876e7 0.0100748
\(130\) 0 0
\(131\) −2.40858e9 −0.714561 −0.357281 0.933997i \(-0.616296\pi\)
−0.357281 + 0.933997i \(0.616296\pi\)
\(132\) − 805413.i 0 0.000230906i
\(133\) − 9.71868e8i − 0.269324i
\(134\) 1.35059e9 0.361869
\(135\) 0 0
\(136\) −1.63393e8 −0.0409551
\(137\) − 5.47458e9i − 1.32772i −0.747855 0.663862i \(-0.768916\pi\)
0.747855 0.663862i \(-0.231084\pi\)
\(138\) 9.11405e7i 0.0213922i
\(139\) −9.08897e8 −0.206513 −0.103257 0.994655i \(-0.532926\pi\)
−0.103257 + 0.994655i \(0.532926\pi\)
\(140\) 0 0
\(141\) 7.83596e7 0.0166958
\(142\) − 8.83462e9i − 1.82344i
\(143\) 2.77039e8i 0.0554024i
\(144\) −6.34064e9 −1.22886
\(145\) 0 0
\(146\) −3.56411e9 −0.649176
\(147\) 1.13626e7i 0.00200701i
\(148\) − 1.90370e9i − 0.326152i
\(149\) −6.00080e9 −0.997403 −0.498702 0.866774i \(-0.666190\pi\)
−0.498702 + 0.866774i \(0.666190\pi\)
\(150\) 0 0
\(151\) 5.35390e9 0.838058 0.419029 0.907973i \(-0.362371\pi\)
0.419029 + 0.907973i \(0.362371\pi\)
\(152\) − 3.51906e9i − 0.534725i
\(153\) 3.69851e8i 0.0545652i
\(154\) 1.42025e8 0.0203480
\(155\) 0 0
\(156\) 4.42550e7 0.00598276
\(157\) 3.05256e8i 0.0400973i 0.999799 + 0.0200487i \(0.00638211\pi\)
−0.999799 + 0.0200487i \(0.993618\pi\)
\(158\) − 4.35631e9i − 0.556112i
\(159\) 8.04323e7 0.00998030
\(160\) 0 0
\(161\) −4.21441e9 −0.494334
\(162\) 1.02000e10i 1.16354i
\(163\) 9.53729e9i 1.05823i 0.848550 + 0.529116i \(0.177476\pi\)
−0.848550 + 0.529116i \(0.822524\pi\)
\(164\) −5.50865e8 −0.0594632
\(165\) 0 0
\(166\) 4.25281e9 0.434700
\(167\) 7.59729e9i 0.755848i 0.925837 + 0.377924i \(0.123362\pi\)
−0.925837 + 0.377924i \(0.876638\pi\)
\(168\) 4.11431e7i 0.00398479i
\(169\) −4.61792e9 −0.435468
\(170\) 0 0
\(171\) −7.96564e9 −0.712423
\(172\) − 2.92566e9i − 0.254886i
\(173\) − 1.61106e10i − 1.36742i −0.729751 0.683712i \(-0.760364\pi\)
0.729751 0.683712i \(-0.239636\pi\)
\(174\) −2.04831e8 −0.0169404
\(175\) 0 0
\(176\) 7.23479e8 0.0568354
\(177\) 3.16516e8i 0.0242391i
\(178\) − 2.64259e10i − 1.97306i
\(179\) −5.90583e9 −0.429974 −0.214987 0.976617i \(-0.568971\pi\)
−0.214987 + 0.976617i \(0.568971\pi\)
\(180\) 0 0
\(181\) −4.57036e9 −0.316517 −0.158258 0.987398i \(-0.550588\pi\)
−0.158258 + 0.987398i \(0.550588\pi\)
\(182\) 7.80383e9i 0.527214i
\(183\) − 2.94252e8i − 0.0193950i
\(184\) −1.52601e10 −0.981469
\(185\) 0 0
\(186\) 4.67018e8 0.0286105
\(187\) − 4.22007e7i − 0.00252367i
\(188\) − 7.23481e9i − 0.422393i
\(189\) 1.86279e8 0.0106190
\(190\) 0 0
\(191\) 1.08620e10 0.590555 0.295277 0.955412i \(-0.404588\pi\)
0.295277 + 0.955412i \(0.404588\pi\)
\(192\) 1.15555e8i 0.00613669i
\(193\) 3.53101e10i 1.83185i 0.401346 + 0.915926i \(0.368542\pi\)
−0.401346 + 0.915926i \(0.631458\pi\)
\(194\) −7.61762e9 −0.386110
\(195\) 0 0
\(196\) 1.04909e9 0.0507761
\(197\) 1.34688e10i 0.637136i 0.947900 + 0.318568i \(0.103202\pi\)
−0.947900 + 0.318568i \(0.896798\pi\)
\(198\) − 1.16407e9i − 0.0538251i
\(199\) 2.38956e10 1.08014 0.540068 0.841621i \(-0.318399\pi\)
0.540068 + 0.841621i \(0.318399\pi\)
\(200\) 0 0
\(201\) −1.01051e8 −0.00436676
\(202\) 4.14146e9i 0.175014i
\(203\) − 9.47153e9i − 0.391461i
\(204\) −6.74127e6 −0.000272525 0
\(205\) 0 0
\(206\) −1.35688e10 −0.524976
\(207\) 3.45422e10i 1.30763i
\(208\) 3.97529e10i 1.47260i
\(209\) 9.08895e8 0.0329500
\(210\) 0 0
\(211\) −2.71767e10 −0.943898 −0.471949 0.881626i \(-0.656449\pi\)
−0.471949 + 0.881626i \(0.656449\pi\)
\(212\) − 7.42618e9i − 0.252496i
\(213\) 6.61008e8i 0.0220038i
\(214\) −6.23876e10 −2.03346
\(215\) 0 0
\(216\) 6.74502e8 0.0210834
\(217\) 2.15953e10i 0.661135i
\(218\) − 5.94893e9i − 0.178396i
\(219\) 2.66667e8 0.00783377
\(220\) 0 0
\(221\) 2.31880e9 0.0653880
\(222\) 5.43171e8i 0.0150089i
\(223\) − 2.65338e8i − 0.00718502i −0.999994 0.00359251i \(-0.998856\pi\)
0.999994 0.00359251i \(-0.00114353\pi\)
\(224\) 9.69204e9 0.257217
\(225\) 0 0
\(226\) 7.74049e10 1.97370
\(227\) 2.92609e10i 0.731428i 0.930727 + 0.365714i \(0.119175\pi\)
−0.930727 + 0.365714i \(0.880825\pi\)
\(228\) − 1.45189e8i − 0.00355818i
\(229\) 3.93335e10 0.945156 0.472578 0.881289i \(-0.343324\pi\)
0.472578 + 0.881289i \(0.343324\pi\)
\(230\) 0 0
\(231\) −1.06263e7 −0.000245544 0
\(232\) − 3.42957e10i − 0.777220i
\(233\) 4.02983e10i 0.895746i 0.894097 + 0.447873i \(0.147818\pi\)
−0.894097 + 0.447873i \(0.852182\pi\)
\(234\) 6.39619e10 1.39460
\(235\) 0 0
\(236\) 2.92234e10 0.613236
\(237\) 3.25940e8i 0.00671073i
\(238\) − 1.18874e9i − 0.0240155i
\(239\) −3.54020e10 −0.701839 −0.350919 0.936406i \(-0.614131\pi\)
−0.350919 + 0.936406i \(0.614131\pi\)
\(240\) 0 0
\(241\) 3.42729e9 0.0654446 0.0327223 0.999464i \(-0.489582\pi\)
0.0327223 + 0.999464i \(0.489582\pi\)
\(242\) − 6.19838e10i − 1.16174i
\(243\) − 2.29025e9i − 0.0421361i
\(244\) −2.71678e10 −0.490683
\(245\) 0 0
\(246\) 1.57175e8 0.00273638
\(247\) 4.99410e10i 0.853730i
\(248\) 7.81949e10i 1.31264i
\(249\) −3.18196e8 −0.00524563
\(250\) 0 0
\(251\) −6.49927e10 −1.03355 −0.516776 0.856120i \(-0.672868\pi\)
−0.516776 + 0.856120i \(0.672868\pi\)
\(252\) − 8.59855e9i − 0.134315i
\(253\) − 3.94134e9i − 0.0604785i
\(254\) 8.13076e10 1.22569
\(255\) 0 0
\(256\) 6.51152e10 0.947551
\(257\) − 7.71755e10i − 1.10352i −0.834003 0.551760i \(-0.813956\pi\)
0.834003 0.551760i \(-0.186044\pi\)
\(258\) 8.34762e8i 0.0117294i
\(259\) −2.51167e10 −0.346827
\(260\) 0 0
\(261\) −7.76307e10 −1.03550
\(262\) − 6.34504e10i − 0.831914i
\(263\) 5.32154e10i 0.685862i 0.939361 + 0.342931i \(0.111420\pi\)
−0.939361 + 0.342931i \(0.888580\pi\)
\(264\) −3.84772e7 −0.000487512 0
\(265\) 0 0
\(266\) 2.56024e10 0.313555
\(267\) 1.97719e9i 0.0238094i
\(268\) 9.32989e9i 0.110476i
\(269\) −2.15319e10 −0.250725 −0.125362 0.992111i \(-0.540009\pi\)
−0.125362 + 0.992111i \(0.540009\pi\)
\(270\) 0 0
\(271\) 4.81053e10 0.541790 0.270895 0.962609i \(-0.412680\pi\)
0.270895 + 0.962609i \(0.412680\pi\)
\(272\) − 6.05548e9i − 0.0670793i
\(273\) − 5.83884e8i − 0.00636202i
\(274\) 1.44220e11 1.54578
\(275\) 0 0
\(276\) −6.29601e8 −0.00653092
\(277\) − 6.60074e10i − 0.673649i −0.941568 0.336824i \(-0.890647\pi\)
0.941568 0.336824i \(-0.109353\pi\)
\(278\) − 2.39436e10i − 0.240429i
\(279\) 1.77000e11 1.74885
\(280\) 0 0
\(281\) 7.31129e10 0.699545 0.349772 0.936835i \(-0.386259\pi\)
0.349772 + 0.936835i \(0.386259\pi\)
\(282\) 2.06427e9i 0.0194377i
\(283\) 1.32293e11i 1.22602i 0.790073 + 0.613012i \(0.210042\pi\)
−0.790073 + 0.613012i \(0.789958\pi\)
\(284\) 6.10298e10 0.556685
\(285\) 0 0
\(286\) −7.29818e9 −0.0645011
\(287\) 7.26792e9i 0.0632327i
\(288\) − 7.94381e10i − 0.680397i
\(289\) 1.18235e11 0.997021
\(290\) 0 0
\(291\) 5.69951e8 0.00465929
\(292\) − 2.46209e10i − 0.198190i
\(293\) − 4.00575e10i − 0.317526i −0.987317 0.158763i \(-0.949249\pi\)
0.987317 0.158763i \(-0.0507505\pi\)
\(294\) −2.99330e8 −0.00233662
\(295\) 0 0
\(296\) −9.09456e10 −0.688603
\(297\) 1.74209e8i 0.00129917i
\(298\) − 1.58082e11i − 1.16121i
\(299\) 2.16564e11 1.56699
\(300\) 0 0
\(301\) −3.86001e10 −0.271044
\(302\) 1.41041e11i 0.975693i
\(303\) − 3.09865e8i − 0.00211193i
\(304\) 1.30419e11 0.875812
\(305\) 0 0
\(306\) −9.74319e9 −0.0635265
\(307\) − 3.61839e10i − 0.232484i −0.993221 0.116242i \(-0.962915\pi\)
0.993221 0.116242i \(-0.0370848\pi\)
\(308\) 9.81112e8i 0.00621212i
\(309\) 1.01522e9 0.00633501
\(310\) 0 0
\(311\) 1.58042e11 0.957968 0.478984 0.877824i \(-0.341005\pi\)
0.478984 + 0.877824i \(0.341005\pi\)
\(312\) − 2.11420e9i − 0.0126314i
\(313\) 1.78114e11i 1.04894i 0.851430 + 0.524468i \(0.175736\pi\)
−0.851430 + 0.524468i \(0.824264\pi\)
\(314\) −8.04151e9 −0.0466825
\(315\) 0 0
\(316\) 3.00935e10 0.169778
\(317\) − 3.74923e10i − 0.208533i −0.994549 0.104267i \(-0.966751\pi\)
0.994549 0.104267i \(-0.0332495\pi\)
\(318\) 2.11887e9i 0.0116194i
\(319\) 8.85782e9 0.0478926
\(320\) 0 0
\(321\) 4.66785e9 0.0245383
\(322\) − 1.11023e11i − 0.575519i
\(323\) − 7.60740e9i − 0.0388888i
\(324\) −7.04617e10 −0.355223
\(325\) 0 0
\(326\) −2.51246e11 −1.23203
\(327\) 4.45100e8i 0.00215275i
\(328\) 2.63166e10i 0.125544i
\(329\) −9.54535e10 −0.449170
\(330\) 0 0
\(331\) 1.08393e11 0.496335 0.248167 0.968717i \(-0.420172\pi\)
0.248167 + 0.968717i \(0.420172\pi\)
\(332\) 2.93785e10i 0.132711i
\(333\) 2.05862e11i 0.917437i
\(334\) −2.00139e11 −0.879981
\(335\) 0 0
\(336\) −1.52480e9 −0.00652657
\(337\) − 3.53012e11i − 1.49092i −0.666548 0.745462i \(-0.732229\pi\)
0.666548 0.745462i \(-0.267771\pi\)
\(338\) − 1.21652e11i − 0.506986i
\(339\) −5.79145e9 −0.0238171
\(340\) 0 0
\(341\) −2.01960e10 −0.0808855
\(342\) − 2.09843e11i − 0.829425i
\(343\) − 1.38413e10i − 0.0539949i
\(344\) −1.39768e11 −0.538140
\(345\) 0 0
\(346\) 4.24409e11 1.59200
\(347\) 4.58221e11i 1.69665i 0.529477 + 0.848324i \(0.322388\pi\)
−0.529477 + 0.848324i \(0.677612\pi\)
\(348\) − 1.41497e9i − 0.00517180i
\(349\) −4.77589e11 −1.72322 −0.861608 0.507575i \(-0.830542\pi\)
−0.861608 + 0.507575i \(0.830542\pi\)
\(350\) 0 0
\(351\) −9.57223e9 −0.0336613
\(352\) 9.06404e9i 0.0314688i
\(353\) 4.13087e11i 1.41597i 0.706226 + 0.707986i \(0.250396\pi\)
−0.706226 + 0.707986i \(0.749604\pi\)
\(354\) −8.33816e9 −0.0282199
\(355\) 0 0
\(356\) 1.82551e11 0.602364
\(357\) 8.89419e7i 0 0.000289801i
\(358\) − 1.55581e11i − 0.500589i
\(359\) 1.83554e11 0.583230 0.291615 0.956536i \(-0.405807\pi\)
0.291615 + 0.956536i \(0.405807\pi\)
\(360\) 0 0
\(361\) −1.58844e11 −0.492253
\(362\) − 1.20399e11i − 0.368498i
\(363\) 4.63764e9i 0.0140190i
\(364\) −5.39091e10 −0.160955
\(365\) 0 0
\(366\) 7.75164e9 0.0225803
\(367\) 1.52885e11i 0.439915i 0.975509 + 0.219957i \(0.0705919\pi\)
−0.975509 + 0.219957i \(0.929408\pi\)
\(368\) − 5.65552e11i − 1.60752i
\(369\) 5.95694e10 0.167265
\(370\) 0 0
\(371\) −9.79783e10 −0.268502
\(372\) 3.22617e9i 0.00873461i
\(373\) 3.94586e11i 1.05548i 0.849405 + 0.527742i \(0.176961\pi\)
−0.849405 + 0.527742i \(0.823039\pi\)
\(374\) 1.11172e9 0.00293814
\(375\) 0 0
\(376\) −3.45630e11 −0.891798
\(377\) 4.86710e11i 1.24089i
\(378\) 4.90724e9i 0.0123630i
\(379\) −7.26412e11 −1.80845 −0.904225 0.427057i \(-0.859550\pi\)
−0.904225 + 0.427057i \(0.859550\pi\)
\(380\) 0 0
\(381\) −6.08345e9 −0.0147907
\(382\) 2.86144e11i 0.687542i
\(383\) − 5.73936e11i − 1.36292i −0.731857 0.681458i \(-0.761346\pi\)
0.731857 0.681458i \(-0.238654\pi\)
\(384\) −7.11780e9 −0.0167053
\(385\) 0 0
\(386\) −9.30192e11 −2.13270
\(387\) 3.16375e11i 0.716972i
\(388\) − 5.26227e10i − 0.117877i
\(389\) −2.27345e11 −0.503400 −0.251700 0.967805i \(-0.580990\pi\)
−0.251700 + 0.967805i \(0.580990\pi\)
\(390\) 0 0
\(391\) −3.29888e10 −0.0713791
\(392\) − 5.01183e10i − 0.107204i
\(393\) 4.74737e9i 0.0100389i
\(394\) −3.54817e11 −0.741773
\(395\) 0 0
\(396\) 8.04140e9 0.0164325
\(397\) 9.03630e11i 1.82572i 0.408277 + 0.912858i \(0.366130\pi\)
−0.408277 + 0.912858i \(0.633870\pi\)
\(398\) 6.29493e11i 1.25753i
\(399\) −1.91558e9 −0.00378374
\(400\) 0 0
\(401\) 3.47203e11 0.670555 0.335277 0.942119i \(-0.391170\pi\)
0.335277 + 0.942119i \(0.391170\pi\)
\(402\) − 2.66204e9i − 0.00508391i
\(403\) − 1.10971e12i − 2.09573i
\(404\) −2.86093e10 −0.0534307
\(405\) 0 0
\(406\) 2.49514e11 0.455750
\(407\) − 2.34892e10i − 0.0424320i
\(408\) 3.22052e8i 0 0.000575381i
\(409\) 1.06690e12 1.88524 0.942621 0.333866i \(-0.108353\pi\)
0.942621 + 0.333866i \(0.108353\pi\)
\(410\) 0 0
\(411\) −1.07905e10 −0.0186533
\(412\) − 9.37337e10i − 0.160272i
\(413\) − 3.85563e11i − 0.652110i
\(414\) −9.09965e11 −1.52238
\(415\) 0 0
\(416\) −4.98041e11 −0.815352
\(417\) 1.79146e9i 0.00290132i
\(418\) 2.39435e10i 0.0383614i
\(419\) −8.89018e11 −1.40912 −0.704559 0.709645i \(-0.748855\pi\)
−0.704559 + 0.709645i \(0.748855\pi\)
\(420\) 0 0
\(421\) 9.18431e11 1.42488 0.712438 0.701735i \(-0.247591\pi\)
0.712438 + 0.701735i \(0.247591\pi\)
\(422\) − 7.15929e11i − 1.09891i
\(423\) 7.82358e11i 1.18816i
\(424\) −3.54773e11 −0.533094
\(425\) 0 0
\(426\) −1.74133e10 −0.0256175
\(427\) 3.58442e11i 0.521788i
\(428\) − 4.30975e11i − 0.620805i
\(429\) 5.46051e8 0.000778351 0
\(430\) 0 0
\(431\) −7.15695e11 −0.999034 −0.499517 0.866304i \(-0.666489\pi\)
−0.499517 + 0.866304i \(0.666489\pi\)
\(432\) 2.49976e10i 0.0345320i
\(433\) − 1.30709e12i − 1.78694i −0.449119 0.893472i \(-0.648262\pi\)
0.449119 0.893472i \(-0.351738\pi\)
\(434\) −5.68896e11 −0.769713
\(435\) 0 0
\(436\) 4.10954e10 0.0544633
\(437\) − 7.10493e11i − 0.931952i
\(438\) 7.02495e9i 0.00912031i
\(439\) 8.08851e11 1.03939 0.519695 0.854352i \(-0.326046\pi\)
0.519695 + 0.854352i \(0.326046\pi\)
\(440\) 0 0
\(441\) −1.13446e11 −0.142829
\(442\) 6.10854e10i 0.0761267i
\(443\) 2.49522e11i 0.307816i 0.988085 + 0.153908i \(0.0491860\pi\)
−0.988085 + 0.153908i \(0.950814\pi\)
\(444\) −3.75223e9 −0.00458212
\(445\) 0 0
\(446\) 6.98995e9 0.00836503
\(447\) 1.18277e10i 0.0140126i
\(448\) − 1.40763e11i − 0.165097i
\(449\) −1.12524e12 −1.30658 −0.653291 0.757107i \(-0.726612\pi\)
−0.653291 + 0.757107i \(0.726612\pi\)
\(450\) 0 0
\(451\) −6.79699e9 −0.00773610
\(452\) 5.34715e11i 0.602558i
\(453\) − 1.05527e10i − 0.0117739i
\(454\) −7.70835e11 −0.851550
\(455\) 0 0
\(456\) −6.93617e9 −0.00751238
\(457\) − 7.92565e11i − 0.849987i −0.905196 0.424993i \(-0.860276\pi\)
0.905196 0.424993i \(-0.139724\pi\)
\(458\) 1.03618e12i 1.10038i
\(459\) 1.45812e9 0.00153333
\(460\) 0 0
\(461\) 8.54573e11 0.881241 0.440621 0.897693i \(-0.354758\pi\)
0.440621 + 0.897693i \(0.354758\pi\)
\(462\) − 2.79935e8i 0 0.000285870i
\(463\) − 1.55057e12i − 1.56811i −0.620690 0.784056i \(-0.713148\pi\)
0.620690 0.784056i \(-0.286852\pi\)
\(464\) 1.27103e12 1.27299
\(465\) 0 0
\(466\) −1.06160e12 −1.04285
\(467\) 1.54154e11i 0.149979i 0.997184 + 0.0749893i \(0.0238923\pi\)
−0.997184 + 0.0749893i \(0.976108\pi\)
\(468\) 4.41850e11i 0.425764i
\(469\) 1.23095e11 0.117480
\(470\) 0 0
\(471\) 6.01667e8 0.000563329 0
\(472\) − 1.39610e12i − 1.29472i
\(473\) − 3.60990e10i − 0.0331604i
\(474\) −8.58641e9 −0.00781284
\(475\) 0 0
\(476\) 8.21186e9 0.00733179
\(477\) 8.03052e11i 0.710249i
\(478\) − 9.32614e11i − 0.817102i
\(479\) 1.96197e12 1.70287 0.851437 0.524457i \(-0.175732\pi\)
0.851437 + 0.524457i \(0.175732\pi\)
\(480\) 0 0
\(481\) 1.29066e12 1.09941
\(482\) 9.02868e10i 0.0761926i
\(483\) 8.30672e9i 0.00694492i
\(484\) 4.28186e11 0.354673
\(485\) 0 0
\(486\) 6.03332e10 0.0490561
\(487\) − 8.97598e11i − 0.723106i −0.932352 0.361553i \(-0.882247\pi\)
0.932352 0.361553i \(-0.117753\pi\)
\(488\) 1.29789e12i 1.03598i
\(489\) 1.87983e10 0.0148671
\(490\) 0 0
\(491\) 4.80068e11 0.372766 0.186383 0.982477i \(-0.440324\pi\)
0.186383 + 0.982477i \(0.440324\pi\)
\(492\) 1.08577e9i 0 0.000835401i
\(493\) − 7.41395e10i − 0.0565247i
\(494\) −1.31562e12 −0.993939
\(495\) 0 0
\(496\) −2.89797e12 −2.14994
\(497\) − 8.05205e11i − 0.591974i
\(498\) − 8.38240e9i − 0.00610712i
\(499\) 1.81750e12 1.31227 0.656133 0.754646i \(-0.272191\pi\)
0.656133 + 0.754646i \(0.272191\pi\)
\(500\) 0 0
\(501\) 1.49745e10 0.0106189
\(502\) − 1.71214e12i − 1.20329i
\(503\) 9.78467e11i 0.681538i 0.940147 + 0.340769i \(0.110687\pi\)
−0.940147 + 0.340769i \(0.889313\pi\)
\(504\) −4.10780e11 −0.283578
\(505\) 0 0
\(506\) 1.03829e11 0.0704109
\(507\) 9.10205e9i 0.00611792i
\(508\) 5.61675e11i 0.374195i
\(509\) −9.49400e11 −0.626930 −0.313465 0.949600i \(-0.601490\pi\)
−0.313465 + 0.949600i \(0.601490\pi\)
\(510\) 0 0
\(511\) −3.24839e11 −0.210753
\(512\) − 1.33578e11i − 0.0859056i
\(513\) 3.14041e10i 0.0200197i
\(514\) 2.03308e12 1.28475
\(515\) 0 0
\(516\) −5.76655e9 −0.00358090
\(517\) − 8.92685e10i − 0.0549529i
\(518\) − 6.61662e11i − 0.403787i
\(519\) −3.17544e10 −0.0192110
\(520\) 0 0
\(521\) 3.20965e12 1.90848 0.954240 0.299042i \(-0.0966670\pi\)
0.954240 + 0.299042i \(0.0966670\pi\)
\(522\) − 2.04507e12i − 1.20556i
\(523\) − 2.27961e12i − 1.33230i −0.745816 0.666152i \(-0.767940\pi\)
0.745816 0.666152i \(-0.232060\pi\)
\(524\) 4.38317e11 0.253979
\(525\) 0 0
\(526\) −1.40188e12 −0.798501
\(527\) 1.69039e11i 0.0954642i
\(528\) − 1.42600e9i 0 0.000798483i
\(529\) −1.27983e12 −0.710564
\(530\) 0 0
\(531\) −3.16016e12 −1.72498
\(532\) 1.76862e11i 0.0957265i
\(533\) − 3.73473e11i − 0.200441i
\(534\) −5.20862e10 −0.0277196
\(535\) 0 0
\(536\) 4.45719e11 0.233249
\(537\) 1.16406e10i 0.00604073i
\(538\) − 5.67226e11i − 0.291901i
\(539\) 1.29444e10 0.00660592
\(540\) 0 0
\(541\) 2.51926e12 1.26440 0.632201 0.774804i \(-0.282152\pi\)
0.632201 + 0.774804i \(0.282152\pi\)
\(542\) 1.26726e12i 0.630769i
\(543\) 9.00830e9i 0.00444676i
\(544\) 7.58656e10 0.0371407
\(545\) 0 0
\(546\) 1.53816e10 0.00740685
\(547\) 2.15157e12i 1.02757i 0.857918 + 0.513787i \(0.171758\pi\)
−0.857918 + 0.513787i \(0.828242\pi\)
\(548\) 9.96272e11i 0.471917i
\(549\) 2.93787e12 1.38025
\(550\) 0 0
\(551\) 1.59677e12 0.738008
\(552\) 3.00780e10i 0.0137887i
\(553\) − 3.97043e11i − 0.180540i
\(554\) 1.73887e12 0.784282
\(555\) 0 0
\(556\) 1.65403e11 0.0734016
\(557\) 2.27895e12i 1.00320i 0.865100 + 0.501600i \(0.167255\pi\)
−0.865100 + 0.501600i \(0.832745\pi\)
\(558\) 4.66279e12i 2.03607i
\(559\) 1.98353e12 0.859181
\(560\) 0 0
\(561\) −8.31788e7 −3.54552e−5 0
\(562\) 1.92605e12i 0.814431i
\(563\) 3.82145e12i 1.60303i 0.597978 + 0.801513i \(0.295971\pi\)
−0.597978 + 0.801513i \(0.704029\pi\)
\(564\) −1.42600e10 −0.00593423
\(565\) 0 0
\(566\) −3.48508e12 −1.42738
\(567\) 9.29646e11i 0.377741i
\(568\) − 2.91559e12i − 1.17533i
\(569\) 2.94845e12 1.17920 0.589601 0.807695i \(-0.299285\pi\)
0.589601 + 0.807695i \(0.299285\pi\)
\(570\) 0 0
\(571\) 2.99642e12 1.17962 0.589808 0.807544i \(-0.299203\pi\)
0.589808 + 0.807544i \(0.299203\pi\)
\(572\) − 5.04160e10i − 0.0196918i
\(573\) − 2.14093e10i − 0.00829673i
\(574\) −1.91463e11 −0.0736174
\(575\) 0 0
\(576\) −1.15373e12 −0.436718
\(577\) 1.87283e12i 0.703407i 0.936111 + 0.351703i \(0.114397\pi\)
−0.936111 + 0.351703i \(0.885603\pi\)
\(578\) 3.11472e12i 1.16076i
\(579\) 6.95971e10 0.0257358
\(580\) 0 0
\(581\) 3.87609e11 0.141124
\(582\) 1.50145e10i 0.00542448i
\(583\) − 9.16297e10i − 0.0328494i
\(584\) −1.17622e12 −0.418438
\(585\) 0 0
\(586\) 1.05525e12 0.369673
\(587\) 1.94572e12i 0.676410i 0.941073 + 0.338205i \(0.109820\pi\)
−0.941073 + 0.338205i \(0.890180\pi\)
\(588\) − 2.06778e9i 0 0.000713356i
\(589\) −3.64067e12 −1.24642
\(590\) 0 0
\(591\) 2.65474e10 0.00895116
\(592\) − 3.37052e12i − 1.12784i
\(593\) 8.61235e11i 0.286006i 0.989722 + 0.143003i \(0.0456759\pi\)
−0.989722 + 0.143003i \(0.954324\pi\)
\(594\) −4.58927e9 −0.00151253
\(595\) 0 0
\(596\) 1.09204e12 0.354510
\(597\) − 4.70988e10i − 0.0151749i
\(598\) 5.70507e12i 1.82434i
\(599\) −2.81546e12 −0.893570 −0.446785 0.894641i \(-0.647431\pi\)
−0.446785 + 0.894641i \(0.647431\pi\)
\(600\) 0 0
\(601\) 4.79484e12 1.49913 0.749565 0.661931i \(-0.230263\pi\)
0.749565 + 0.661931i \(0.230263\pi\)
\(602\) − 1.01686e12i − 0.315557i
\(603\) − 1.00891e12i − 0.310761i
\(604\) −9.74312e11 −0.297873
\(605\) 0 0
\(606\) 8.16293e9 0.00245878
\(607\) − 7.43279e11i − 0.222230i −0.993808 0.111115i \(-0.964558\pi\)
0.993808 0.111115i \(-0.0354422\pi\)
\(608\) 1.63395e12i 0.484922i
\(609\) −1.86686e10 −0.00549965
\(610\) 0 0
\(611\) 4.90503e12 1.42382
\(612\) − 6.73061e10i − 0.0193943i
\(613\) 6.45388e11i 0.184607i 0.995731 + 0.0923036i \(0.0294230\pi\)
−0.995731 + 0.0923036i \(0.970577\pi\)
\(614\) 9.53213e11 0.270665
\(615\) 0 0
\(616\) 4.68708e10 0.0131156
\(617\) − 4.66543e12i − 1.29601i −0.761636 0.648005i \(-0.775604\pi\)
0.761636 0.648005i \(-0.224396\pi\)
\(618\) 2.67445e10i 0.00737542i
\(619\) 2.49665e12 0.683519 0.341759 0.939787i \(-0.388977\pi\)
0.341759 + 0.939787i \(0.388977\pi\)
\(620\) 0 0
\(621\) 1.36181e11 0.0367455
\(622\) 4.16338e12i 1.11530i
\(623\) − 2.40851e12i − 0.640549i
\(624\) 7.83541e10 0.0206886
\(625\) 0 0
\(626\) −4.69215e12 −1.22120
\(627\) − 1.79146e9i 0 0.000462916i
\(628\) − 5.55509e10i − 0.0142519i
\(629\) −1.96604e11 −0.0500799
\(630\) 0 0
\(631\) 2.92442e12 0.734357 0.367179 0.930150i \(-0.380324\pi\)
0.367179 + 0.930150i \(0.380324\pi\)
\(632\) − 1.43766e12i − 0.358451i
\(633\) 5.35659e10i 0.0132609i
\(634\) 9.87678e11 0.242781
\(635\) 0 0
\(636\) −1.46372e10 −0.00354733
\(637\) 7.11256e11i 0.171159i
\(638\) 2.33346e11i 0.0557581i
\(639\) −6.59963e12 −1.56591
\(640\) 0 0
\(641\) −4.23039e12 −0.989736 −0.494868 0.868968i \(-0.664784\pi\)
−0.494868 + 0.868968i \(0.664784\pi\)
\(642\) 1.22968e11i 0.0285682i
\(643\) 1.95718e12i 0.451524i 0.974183 + 0.225762i \(0.0724871\pi\)
−0.974183 + 0.225762i \(0.927513\pi\)
\(644\) 7.66946e11 0.175703
\(645\) 0 0
\(646\) 2.00406e11 0.0452756
\(647\) 4.71751e12i 1.05838i 0.848502 + 0.529192i \(0.177505\pi\)
−0.848502 + 0.529192i \(0.822495\pi\)
\(648\) 3.36618e12i 0.749980i
\(649\) 3.60580e11 0.0797813
\(650\) 0 0
\(651\) 4.25649e10 0.00928831
\(652\) − 1.73561e12i − 0.376130i
\(653\) 5.50754e12i 1.18536i 0.805440 + 0.592678i \(0.201929\pi\)
−0.805440 + 0.592678i \(0.798071\pi\)
\(654\) −1.17255e10 −0.00250629
\(655\) 0 0
\(656\) −9.75315e11 −0.205626
\(657\) 2.66245e12i 0.557491i
\(658\) − 2.51458e12i − 0.522937i
\(659\) 4.05044e12 0.836599 0.418300 0.908309i \(-0.362626\pi\)
0.418300 + 0.908309i \(0.362626\pi\)
\(660\) 0 0
\(661\) −2.16897e12 −0.441923 −0.220962 0.975283i \(-0.570920\pi\)
−0.220962 + 0.975283i \(0.570920\pi\)
\(662\) 2.85545e12i 0.577848i
\(663\) − 4.57042e9i 0 0.000918640i
\(664\) 1.40350e12 0.280193
\(665\) 0 0
\(666\) −5.42312e12 −1.06811
\(667\) − 6.92425e12i − 1.35459i
\(668\) − 1.38257e12i − 0.268653i
\(669\) −5.22989e8 −0.000100943 0
\(670\) 0 0
\(671\) −3.35217e11 −0.0638373
\(672\) − 1.91033e10i − 0.00361365i
\(673\) − 7.79666e12i − 1.46501i −0.680761 0.732505i \(-0.738351\pi\)
0.680761 0.732505i \(-0.261649\pi\)
\(674\) 9.29959e12 1.73578
\(675\) 0 0
\(676\) 8.40378e11 0.154780
\(677\) 3.98612e12i 0.729293i 0.931146 + 0.364646i \(0.118810\pi\)
−0.931146 + 0.364646i \(0.881190\pi\)
\(678\) − 1.52567e11i − 0.0277286i
\(679\) −6.94284e11 −0.125350
\(680\) 0 0
\(681\) 5.76740e10 0.0102759
\(682\) − 5.32034e11i − 0.0941693i
\(683\) − 7.20461e12i − 1.26683i −0.773814 0.633413i \(-0.781653\pi\)
0.773814 0.633413i \(-0.218347\pi\)
\(684\) 1.44960e12 0.253219
\(685\) 0 0
\(686\) 3.64628e11 0.0628625
\(687\) − 7.75275e10i − 0.0132785i
\(688\) − 5.17992e12i − 0.881405i
\(689\) 5.03477e12 0.851125
\(690\) 0 0
\(691\) 7.66976e12 1.27977 0.639883 0.768472i \(-0.278983\pi\)
0.639883 + 0.768472i \(0.278983\pi\)
\(692\) 2.93183e12i 0.486028i
\(693\) − 1.06095e11i − 0.0174742i
\(694\) −1.20711e13 −1.97529
\(695\) 0 0
\(696\) −6.75978e10 −0.0109192
\(697\) 5.68904e10i 0.00913044i
\(698\) − 1.25814e13i − 2.00622i
\(699\) 7.94290e10 0.0125844
\(700\) 0 0
\(701\) −6.76464e11 −0.105807 −0.0529034 0.998600i \(-0.516848\pi\)
−0.0529034 + 0.998600i \(0.516848\pi\)
\(702\) − 2.52166e11i − 0.0391895i
\(703\) − 4.23433e12i − 0.653861i
\(704\) 1.31642e11 0.0201985
\(705\) 0 0
\(706\) −1.08822e13 −1.64852
\(707\) 3.77461e11i 0.0568178i
\(708\) − 5.76002e10i − 0.00861538i
\(709\) −1.19764e13 −1.77999 −0.889995 0.455970i \(-0.849292\pi\)
−0.889995 + 0.455970i \(0.849292\pi\)
\(710\) 0 0
\(711\) −3.25425e12 −0.477570
\(712\) − 8.72104e12i − 1.27177i
\(713\) 1.57874e13i 2.28775i
\(714\) −2.34304e9 −0.000337395 0
\(715\) 0 0
\(716\) 1.07475e12 0.152827
\(717\) 6.97783e10i 0.00986016i
\(718\) 4.83547e12i 0.679014i
\(719\) 9.56848e12 1.33525 0.667626 0.744497i \(-0.267311\pi\)
0.667626 + 0.744497i \(0.267311\pi\)
\(720\) 0 0
\(721\) −1.23669e12 −0.170432
\(722\) − 4.18451e12i − 0.573096i
\(723\) − 6.75527e9i 0 0.000919434i
\(724\) 8.31721e11 0.112500
\(725\) 0 0
\(726\) −1.22172e11 −0.0163214
\(727\) − 1.05787e13i − 1.40451i −0.711924 0.702257i \(-0.752176\pi\)
0.711924 0.702257i \(-0.247824\pi\)
\(728\) 2.57541e12i 0.339825i
\(729\) 7.61657e12 0.998816
\(730\) 0 0
\(731\) −3.02147e11 −0.0391372
\(732\) 5.35485e10i 0.00689362i
\(733\) − 5.59263e12i − 0.715563i −0.933805 0.357782i \(-0.883533\pi\)
0.933805 0.357782i \(-0.116467\pi\)
\(734\) −4.02754e12 −0.512162
\(735\) 0 0
\(736\) 7.08546e12 0.890057
\(737\) 1.15119e11i 0.0143729i
\(738\) 1.56927e12i 0.194735i
\(739\) 7.75052e11 0.0955941 0.0477970 0.998857i \(-0.484780\pi\)
0.0477970 + 0.998857i \(0.484780\pi\)
\(740\) 0 0
\(741\) 9.84350e10 0.0119941
\(742\) − 2.58110e12i − 0.312598i
\(743\) 2.61033e12i 0.314228i 0.987580 + 0.157114i \(0.0502191\pi\)
−0.987580 + 0.157114i \(0.949781\pi\)
\(744\) 1.54124e11 0.0184414
\(745\) 0 0
\(746\) −1.03948e13 −1.22883
\(747\) − 3.17693e12i − 0.373306i
\(748\) 7.67976e9i 0 0.000896996i
\(749\) −5.68613e12 −0.660159
\(750\) 0 0
\(751\) 1.00388e13 1.15160 0.575801 0.817590i \(-0.304690\pi\)
0.575801 + 0.817590i \(0.304690\pi\)
\(752\) − 1.28093e13i − 1.46065i
\(753\) 1.28102e11i 0.0145204i
\(754\) −1.28217e13 −1.44468
\(755\) 0 0
\(756\) −3.38993e10 −0.00377436
\(757\) 1.40463e12i 0.155464i 0.996974 + 0.0777320i \(0.0247678\pi\)
−0.996974 + 0.0777320i \(0.975232\pi\)
\(758\) − 1.91363e13i − 2.10545i
\(759\) −7.76848e9 −0.000849666 0
\(760\) 0 0
\(761\) −1.42436e13 −1.53954 −0.769769 0.638323i \(-0.779628\pi\)
−0.769769 + 0.638323i \(0.779628\pi\)
\(762\) − 1.60260e11i − 0.0172197i
\(763\) − 5.42197e11i − 0.0579158i
\(764\) −1.97669e12 −0.209903
\(765\) 0 0
\(766\) 1.51195e13 1.58675
\(767\) 1.98128e13i 2.06712i
\(768\) − 1.28344e11i − 0.0133122i
\(769\) 1.29105e12 0.133129 0.0665647 0.997782i \(-0.478796\pi\)
0.0665647 + 0.997782i \(0.478796\pi\)
\(770\) 0 0
\(771\) −1.52115e11 −0.0155034
\(772\) − 6.42578e12i − 0.651101i
\(773\) − 8.58124e12i − 0.864455i −0.901765 0.432227i \(-0.857728\pi\)
0.901765 0.432227i \(-0.142272\pi\)
\(774\) −8.33443e12 −0.834721
\(775\) 0 0
\(776\) −2.51395e12 −0.248874
\(777\) 4.95056e10i 0.00487259i
\(778\) − 5.98908e12i − 0.586073i
\(779\) −1.22527e12 −0.119210
\(780\) 0 0
\(781\) 7.53031e11 0.0724241
\(782\) − 8.69041e11i − 0.0831017i
\(783\) 3.06055e11i 0.0290985i
\(784\) 1.85743e12 0.175586
\(785\) 0 0
\(786\) −1.25062e11 −0.0116876
\(787\) 3.12167e11i 0.0290068i 0.999895 + 0.0145034i \(0.00461674\pi\)
−0.999895 + 0.0145034i \(0.995383\pi\)
\(788\) − 2.45108e12i − 0.226459i
\(789\) 1.04889e11 0.00963570
\(790\) 0 0
\(791\) 7.05483e12 0.640756
\(792\) − 3.84164e11i − 0.0346939i
\(793\) − 1.84191e13i − 1.65402i
\(794\) −2.38048e13 −2.12555
\(795\) 0 0
\(796\) −4.34855e12 −0.383916
\(797\) 8.61341e12i 0.756159i 0.925773 + 0.378079i \(0.123415\pi\)
−0.925773 + 0.378079i \(0.876585\pi\)
\(798\) − 5.04631e10i − 0.00440515i
\(799\) −7.47173e11 −0.0648576
\(800\) 0 0
\(801\) −1.97407e13 −1.69440
\(802\) 9.14656e12i 0.780680i
\(803\) − 3.03791e11i − 0.0257843i
\(804\) 1.83895e10 0.00155209
\(805\) 0 0
\(806\) 2.92336e13 2.43992
\(807\) 4.24400e10i 0.00352244i
\(808\) 1.36676e12i 0.112808i
\(809\) 2.01016e13 1.64992 0.824958 0.565193i \(-0.191198\pi\)
0.824958 + 0.565193i \(0.191198\pi\)
\(810\) 0 0
\(811\) −1.62455e13 −1.31868 −0.659340 0.751845i \(-0.729164\pi\)
−0.659340 + 0.751845i \(0.729164\pi\)
\(812\) 1.72365e12i 0.139138i
\(813\) − 9.48169e10i − 0.00761164i
\(814\) 6.18789e11 0.0494006
\(815\) 0 0
\(816\) −1.19355e10 −0.000942401 0
\(817\) − 6.50745e12i − 0.510989i
\(818\) 2.81058e13i 2.19486i
\(819\) 5.82961e12 0.452754
\(820\) 0 0
\(821\) −8.24254e11 −0.0633165 −0.0316583 0.999499i \(-0.510079\pi\)
−0.0316583 + 0.999499i \(0.510079\pi\)
\(822\) − 2.84261e11i − 0.0217167i
\(823\) 2.59567e13i 1.97220i 0.166159 + 0.986099i \(0.446864\pi\)
−0.166159 + 0.986099i \(0.553136\pi\)
\(824\) −4.47796e12 −0.338382
\(825\) 0 0
\(826\) 1.01571e13 0.759206
\(827\) 1.31498e13i 0.977560i 0.872407 + 0.488780i \(0.162558\pi\)
−0.872407 + 0.488780i \(0.837442\pi\)
\(828\) − 6.28605e12i − 0.464774i
\(829\) −1.78218e13 −1.31056 −0.655279 0.755387i \(-0.727449\pi\)
−0.655279 + 0.755387i \(0.727449\pi\)
\(830\) 0 0
\(831\) −1.30102e11 −0.00946412
\(832\) 7.23334e12i 0.523340i
\(833\) − 1.08344e11i − 0.00779657i
\(834\) −4.71934e10 −0.00337780
\(835\) 0 0
\(836\) −1.65402e11 −0.0117115
\(837\) − 6.97811e11i − 0.0491443i
\(838\) − 2.34199e13i − 1.64054i
\(839\) −1.79273e13 −1.24906 −0.624532 0.780999i \(-0.714710\pi\)
−0.624532 + 0.780999i \(0.714710\pi\)
\(840\) 0 0
\(841\) 1.05452e12 0.0726898
\(842\) 2.41947e13i 1.65888i
\(843\) − 1.44107e11i − 0.00982794i
\(844\) 4.94565e12 0.335492
\(845\) 0 0
\(846\) −2.06101e13 −1.38329
\(847\) − 5.64933e12i − 0.377156i
\(848\) − 1.31482e13i − 0.873140i
\(849\) 2.60754e11 0.0172245
\(850\) 0 0
\(851\) −1.83618e13 −1.20014
\(852\) − 1.20291e11i − 0.00782089i
\(853\) 1.65652e13i 1.07134i 0.844429 + 0.535668i \(0.179940\pi\)
−0.844429 + 0.535668i \(0.820060\pi\)
\(854\) −9.44264e12 −0.607481
\(855\) 0 0
\(856\) −2.05891e13 −1.31070
\(857\) 1.00056e13i 0.633619i 0.948489 + 0.316810i \(0.102612\pi\)
−0.948489 + 0.316810i \(0.897388\pi\)
\(858\) 1.43849e10i 0 0.000906180i
\(859\) −4.82691e12 −0.302482 −0.151241 0.988497i \(-0.548327\pi\)
−0.151241 + 0.988497i \(0.548327\pi\)
\(860\) 0 0
\(861\) 1.43253e10 0.000888359 0
\(862\) − 1.88539e13i − 1.16311i
\(863\) 2.92326e12i 0.179398i 0.995969 + 0.0896992i \(0.0285906\pi\)
−0.995969 + 0.0896992i \(0.971409\pi\)
\(864\) −3.13180e11 −0.0191198
\(865\) 0 0
\(866\) 3.44334e13 2.08042
\(867\) − 2.33044e11i − 0.0140072i
\(868\) − 3.92994e12i − 0.234989i
\(869\) 3.71316e11 0.0220879
\(870\) 0 0
\(871\) −6.32544e12 −0.372399
\(872\) − 1.96326e12i − 0.114988i
\(873\) 5.69050e12i 0.331579i
\(874\) 1.87169e13 1.08501
\(875\) 0 0
\(876\) −4.85285e10 −0.00278438
\(877\) 9.67239e12i 0.552123i 0.961140 + 0.276061i \(0.0890293\pi\)
−0.961140 + 0.276061i \(0.910971\pi\)
\(878\) 2.13080e13i 1.21009i
\(879\) −7.89543e10 −0.00446094
\(880\) 0 0
\(881\) 1.87103e12 0.104638 0.0523191 0.998630i \(-0.483339\pi\)
0.0523191 + 0.998630i \(0.483339\pi\)
\(882\) − 2.98857e12i − 0.166286i
\(883\) 8.57451e12i 0.474664i 0.971429 + 0.237332i \(0.0762729\pi\)
−0.971429 + 0.237332i \(0.923727\pi\)
\(884\) −4.21979e11 −0.0232411
\(885\) 0 0
\(886\) −6.57328e12 −0.358369
\(887\) 1.80022e13i 0.976494i 0.872705 + 0.488247i \(0.162364\pi\)
−0.872705 + 0.488247i \(0.837636\pi\)
\(888\) 1.79256e11i 0.00967422i
\(889\) 7.41053e12 0.397916
\(890\) 0 0
\(891\) −8.69409e11 −0.0462141
\(892\) 4.82867e10i 0.00255379i
\(893\) − 1.60922e13i − 0.846804i
\(894\) −3.11584e11 −0.0163139
\(895\) 0 0
\(896\) 8.67053e12 0.449427
\(897\) − 4.26854e11i − 0.0220147i
\(898\) − 2.96428e13i − 1.52116i
\(899\) −3.54809e13 −1.81166
\(900\) 0 0
\(901\) −7.66937e11 −0.0387702
\(902\) − 1.79057e11i − 0.00900660i
\(903\) 7.60818e10i 0.00380790i
\(904\) 2.55450e13 1.27218
\(905\) 0 0
\(906\) 2.77995e11 0.0137076
\(907\) − 2.53756e13i − 1.24504i −0.782604 0.622520i \(-0.786109\pi\)
0.782604 0.622520i \(-0.213891\pi\)
\(908\) − 5.32495e12i − 0.259973i
\(909\) 3.09375e12 0.150296
\(910\) 0 0
\(911\) 1.84038e13 0.885268 0.442634 0.896702i \(-0.354044\pi\)
0.442634 + 0.896702i \(0.354044\pi\)
\(912\) − 2.57060e11i − 0.0123043i
\(913\) 3.62494e11i 0.0172656i
\(914\) 2.08790e13 0.989581
\(915\) 0 0
\(916\) −7.15798e12 −0.335939
\(917\) − 5.78299e12i − 0.270079i
\(918\) 3.84120e10i 0.00178515i
\(919\) −7.61943e12 −0.352373 −0.176186 0.984357i \(-0.556376\pi\)
−0.176186 + 0.984357i \(0.556376\pi\)
\(920\) 0 0
\(921\) −7.13195e10 −0.00326618
\(922\) 2.25125e13i 1.02597i
\(923\) 4.13767e13i 1.87650i
\(924\) 1.93380e9 8.72744e−5 0
\(925\) 0 0
\(926\) 4.08475e13 1.82564
\(927\) 1.01362e13i 0.450832i
\(928\) 1.59240e13i 0.704832i
\(929\) 3.02391e12 0.133198 0.0665991 0.997780i \(-0.478785\pi\)
0.0665991 + 0.997780i \(0.478785\pi\)
\(930\) 0 0
\(931\) 2.33345e12 0.101795
\(932\) − 7.33355e12i − 0.318378i
\(933\) − 3.11505e11i − 0.0134585i
\(934\) −4.06097e12 −0.174610
\(935\) 0 0
\(936\) 2.11086e13 0.898914
\(937\) 1.00516e13i 0.425999i 0.977052 + 0.212999i \(0.0683233\pi\)
−0.977052 + 0.212999i \(0.931677\pi\)
\(938\) 3.24276e12i 0.136774i
\(939\) 3.51068e11 0.0147365
\(940\) 0 0
\(941\) −1.52744e13 −0.635053 −0.317526 0.948249i \(-0.602852\pi\)
−0.317526 + 0.948249i \(0.602852\pi\)
\(942\) 1.58500e10i 0 0.000655845i
\(943\) 5.31328e12i 0.218806i
\(944\) 5.17405e13 2.12059
\(945\) 0 0
\(946\) 9.50974e11 0.0386063
\(947\) − 4.29774e13i − 1.73646i −0.496162 0.868230i \(-0.665258\pi\)
0.496162 0.868230i \(-0.334742\pi\)
\(948\) − 5.93151e10i − 0.00238522i
\(949\) 1.66924e13 0.668068
\(950\) 0 0
\(951\) −7.38982e10 −0.00292969
\(952\) − 3.92307e11i − 0.0154796i
\(953\) 1.01121e13i 0.397120i 0.980089 + 0.198560i \(0.0636265\pi\)
−0.980089 + 0.198560i \(0.936373\pi\)
\(954\) −2.11552e13 −0.826894
\(955\) 0 0
\(956\) 6.44251e12 0.249457
\(957\) − 1.74590e10i 0 0.000672846i
\(958\) 5.16852e13i 1.98254i
\(959\) 1.31445e13 0.501833
\(960\) 0 0
\(961\) 5.44575e13 2.05969
\(962\) 3.40005e13i 1.27996i
\(963\) 4.66047e13i 1.74627i
\(964\) −6.23703e11 −0.0232612
\(965\) 0 0
\(966\) −2.18828e11 −0.00808549
\(967\) − 4.14688e13i − 1.52511i −0.646922 0.762556i \(-0.723944\pi\)
0.646922 0.762556i \(-0.276056\pi\)
\(968\) − 2.04558e13i − 0.748820i
\(969\) −1.49944e10 −0.000546351 0
\(970\) 0 0
\(971\) 3.67205e12 0.132563 0.0662814 0.997801i \(-0.478886\pi\)
0.0662814 + 0.997801i \(0.478886\pi\)
\(972\) 4.16783e11i 0.0149765i
\(973\) − 2.18226e12i − 0.0780547i
\(974\) 2.36459e13 0.841862
\(975\) 0 0
\(976\) −4.81010e13 −1.69680
\(977\) − 8.95608e10i − 0.00314480i −0.999999 0.00157240i \(-0.999499\pi\)
0.999999 0.00157240i \(-0.000500510\pi\)
\(978\) 4.95212e11i 0.0173088i
\(979\) 2.25245e12 0.0783669
\(980\) 0 0
\(981\) −4.44397e12 −0.153200
\(982\) 1.26467e13i 0.433985i
\(983\) − 4.67974e13i − 1.59857i −0.600953 0.799284i \(-0.705212\pi\)
0.600953 0.799284i \(-0.294788\pi\)
\(984\) 5.18707e10 0.00176378
\(985\) 0 0
\(986\) 1.95310e12 0.0658078
\(987\) 1.88141e11i 0.00631041i
\(988\) − 9.08834e12i − 0.303444i
\(989\) −2.82190e13 −0.937902
\(990\) 0 0
\(991\) −1.94121e12 −0.0639353 −0.0319677 0.999489i \(-0.510177\pi\)
−0.0319677 + 0.999489i \(0.510177\pi\)
\(992\) − 3.63070e13i − 1.19038i
\(993\) − 2.13645e11i − 0.00697303i
\(994\) 2.12119e13 0.689194
\(995\) 0 0
\(996\) 5.79058e10 0.00186447
\(997\) − 2.62275e13i − 0.840677i −0.907367 0.420338i \(-0.861911\pi\)
0.907367 0.420338i \(-0.138089\pi\)
\(998\) 4.78793e13i 1.52778i
\(999\) 8.11598e11 0.0257808
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.10.b.g.99.9 12
5.2 odd 4 35.10.a.e.1.2 6
5.3 odd 4 175.10.a.g.1.5 6
5.4 even 2 inner 175.10.b.g.99.4 12
15.2 even 4 315.10.a.l.1.5 6
35.27 even 4 245.10.a.g.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.e.1.2 6 5.2 odd 4
175.10.a.g.1.5 6 5.3 odd 4
175.10.b.g.99.4 12 5.4 even 2 inner
175.10.b.g.99.9 12 1.1 even 1 trivial
245.10.a.g.1.2 6 35.27 even 4
315.10.a.l.1.5 6 15.2 even 4