Properties

Label 315.10.a.l.1.5
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3018x^{4} + 3368x^{3} + 2066979x^{2} - 6329061x - 14714266 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4}\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(29.3435\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+26.3435 q^{2} +181.982 q^{4} -625.000 q^{5} -2401.00 q^{7} -8693.85 q^{8} -16464.7 q^{10} +2245.43 q^{11} -123379. q^{13} -63250.8 q^{14} -322201. q^{16} +18794.1 q^{17} +404776. q^{19} -113739. q^{20} +59152.4 q^{22} -1.75527e6 q^{23} +390625. q^{25} -3.25024e6 q^{26} -436938. q^{28} -3.94483e6 q^{29} +8.99428e6 q^{31} -4.03667e6 q^{32} +495103. q^{34} +1.50062e6 q^{35} -1.04609e7 q^{37} +1.06632e7 q^{38} +5.43366e6 q^{40} -3.02704e6 q^{41} +1.60767e7 q^{43} +408626. q^{44} -4.62401e7 q^{46} +3.97557e7 q^{47} +5.76480e6 q^{49} +1.02904e7 q^{50} -2.24528e7 q^{52} -4.08073e7 q^{53} -1.40339e6 q^{55} +2.08739e7 q^{56} -1.03921e8 q^{58} -1.60585e8 q^{59} +1.49289e8 q^{61} +2.36941e8 q^{62} +5.86269e7 q^{64} +7.71120e7 q^{65} +5.12683e7 q^{67} +3.42018e6 q^{68} +3.95318e7 q^{70} +3.35362e8 q^{71} +1.35293e8 q^{73} -2.75578e8 q^{74} +7.36618e7 q^{76} -5.39127e6 q^{77} +1.65365e8 q^{79} +2.01376e8 q^{80} -7.97429e7 q^{82} +1.61436e8 q^{83} -1.17463e7 q^{85} +4.23516e8 q^{86} -1.95214e7 q^{88} -1.00313e9 q^{89} +2.96233e8 q^{91} -3.19428e8 q^{92} +1.04731e9 q^{94} -2.52985e8 q^{95} -2.89165e8 q^{97} +1.51865e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 15 q^{2} + 3009 q^{4} - 3750 q^{5} - 14406 q^{7} - 22041 q^{8} + 9375 q^{10} + 47796 q^{11} + 102168 q^{13} + 36015 q^{14} + 2371065 q^{16} + 38472 q^{17} + 361056 q^{19} - 1880625 q^{20} + 2068680 q^{22}+ \cdots - 86472015 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 26.3435 1.16423 0.582115 0.813106i \(-0.302225\pi\)
0.582115 + 0.813106i \(0.302225\pi\)
\(3\) 0 0
\(4\) 181.982 0.355433
\(5\) −625.000 −0.447214
\(6\) 0 0
\(7\) −2401.00 −0.377964
\(8\) −8693.85 −0.750425
\(9\) 0 0
\(10\) −16464.7 −0.520660
\(11\) 2245.43 0.0462415 0.0231207 0.999733i \(-0.492640\pi\)
0.0231207 + 0.999733i \(0.492640\pi\)
\(12\) 0 0
\(13\) −123379. −1.19811 −0.599055 0.800708i \(-0.704457\pi\)
−0.599055 + 0.800708i \(0.704457\pi\)
\(14\) −63250.8 −0.440038
\(15\) 0 0
\(16\) −322201. −1.22910
\(17\) 18794.1 0.0545760 0.0272880 0.999628i \(-0.491313\pi\)
0.0272880 + 0.999628i \(0.491313\pi\)
\(18\) 0 0
\(19\) 404776. 0.712564 0.356282 0.934379i \(-0.384044\pi\)
0.356282 + 0.934379i \(0.384044\pi\)
\(20\) −113739. −0.158954
\(21\) 0 0
\(22\) 59152.4 0.0538357
\(23\) −1.75527e6 −1.30789 −0.653943 0.756544i \(-0.726886\pi\)
−0.653943 + 0.756544i \(0.726886\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) −3.25024e6 −1.39488
\(27\) 0 0
\(28\) −436938. −0.134341
\(29\) −3.94483e6 −1.03571 −0.517854 0.855469i \(-0.673269\pi\)
−0.517854 + 0.855469i \(0.673269\pi\)
\(30\) 0 0
\(31\) 8.99428e6 1.74920 0.874599 0.484847i \(-0.161125\pi\)
0.874599 + 0.484847i \(0.161125\pi\)
\(32\) −4.03667e6 −0.680532
\(33\) 0 0
\(34\) 495103. 0.0635390
\(35\) 1.50062e6 0.169031
\(36\) 0 0
\(37\) −1.04609e7 −0.917618 −0.458809 0.888535i \(-0.651724\pi\)
−0.458809 + 0.888535i \(0.651724\pi\)
\(38\) 1.06632e7 0.829589
\(39\) 0 0
\(40\) 5.43366e6 0.335600
\(41\) −3.02704e6 −0.167298 −0.0836489 0.996495i \(-0.526657\pi\)
−0.0836489 + 0.996495i \(0.526657\pi\)
\(42\) 0 0
\(43\) 1.60767e7 0.717114 0.358557 0.933508i \(-0.383269\pi\)
0.358557 + 0.933508i \(0.383269\pi\)
\(44\) 408626. 0.0164357
\(45\) 0 0
\(46\) −4.62401e7 −1.52268
\(47\) 3.97557e7 1.18839 0.594196 0.804321i \(-0.297471\pi\)
0.594196 + 0.804321i \(0.297471\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 1.02904e7 0.232846
\(51\) 0 0
\(52\) −2.24528e7 −0.425848
\(53\) −4.08073e7 −0.710389 −0.355195 0.934792i \(-0.615585\pi\)
−0.355195 + 0.934792i \(0.615585\pi\)
\(54\) 0 0
\(55\) −1.40339e6 −0.0206798
\(56\) 2.08739e7 0.283634
\(57\) 0 0
\(58\) −1.03921e8 −1.20580
\(59\) −1.60585e8 −1.72532 −0.862660 0.505784i \(-0.831203\pi\)
−0.862660 + 0.505784i \(0.831203\pi\)
\(60\) 0 0
\(61\) 1.49289e8 1.38052 0.690260 0.723561i \(-0.257496\pi\)
0.690260 + 0.723561i \(0.257496\pi\)
\(62\) 2.36941e8 2.03647
\(63\) 0 0
\(64\) 5.86269e7 0.436805
\(65\) 7.71120e7 0.535811
\(66\) 0 0
\(67\) 5.12683e7 0.310822 0.155411 0.987850i \(-0.450330\pi\)
0.155411 + 0.987850i \(0.450330\pi\)
\(68\) 3.42018e6 0.0193981
\(69\) 0 0
\(70\) 3.95318e7 0.196791
\(71\) 3.35362e8 1.56622 0.783108 0.621886i \(-0.213633\pi\)
0.783108 + 0.621886i \(0.213633\pi\)
\(72\) 0 0
\(73\) 1.35293e8 0.557601 0.278801 0.960349i \(-0.410063\pi\)
0.278801 + 0.960349i \(0.410063\pi\)
\(74\) −2.75578e8 −1.06832
\(75\) 0 0
\(76\) 7.36618e7 0.253269
\(77\) −5.39127e6 −0.0174776
\(78\) 0 0
\(79\) 1.65365e8 0.477665 0.238832 0.971061i \(-0.423235\pi\)
0.238832 + 0.971061i \(0.423235\pi\)
\(80\) 2.01376e8 0.549670
\(81\) 0 0
\(82\) −7.97429e7 −0.194773
\(83\) 1.61436e8 0.373379 0.186690 0.982419i \(-0.440224\pi\)
0.186690 + 0.982419i \(0.440224\pi\)
\(84\) 0 0
\(85\) −1.17463e7 −0.0244071
\(86\) 4.23516e8 0.834886
\(87\) 0 0
\(88\) −1.95214e7 −0.0347007
\(89\) −1.00313e9 −1.69473 −0.847366 0.531009i \(-0.821813\pi\)
−0.847366 + 0.531009i \(0.821813\pi\)
\(90\) 0 0
\(91\) 2.96233e8 0.452843
\(92\) −3.19428e8 −0.464866
\(93\) 0 0
\(94\) 1.04731e9 1.38356
\(95\) −2.52985e8 −0.318668
\(96\) 0 0
\(97\) −2.89165e8 −0.331644 −0.165822 0.986156i \(-0.553028\pi\)
−0.165822 + 0.986156i \(0.553028\pi\)
\(98\) 1.51865e8 0.166319
\(99\) 0 0
\(100\) 7.10866e7 0.0710866
\(101\) −1.57210e8 −0.150326 −0.0751629 0.997171i \(-0.523948\pi\)
−0.0751629 + 0.997171i \(0.523948\pi\)
\(102\) 0 0
\(103\) 5.15072e8 0.450921 0.225461 0.974252i \(-0.427611\pi\)
0.225461 + 0.974252i \(0.427611\pi\)
\(104\) 1.07264e9 0.899092
\(105\) 0 0
\(106\) −1.07501e9 −0.827057
\(107\) 2.36823e9 1.74662 0.873308 0.487168i \(-0.161970\pi\)
0.873308 + 0.487168i \(0.161970\pi\)
\(108\) 0 0
\(109\) 2.25821e8 0.153231 0.0766154 0.997061i \(-0.475589\pi\)
0.0766154 + 0.997061i \(0.475589\pi\)
\(110\) −3.69703e7 −0.0240761
\(111\) 0 0
\(112\) 7.73605e8 0.464556
\(113\) 2.93829e9 1.69528 0.847640 0.530572i \(-0.178023\pi\)
0.847640 + 0.530572i \(0.178023\pi\)
\(114\) 0 0
\(115\) 1.09705e9 0.584904
\(116\) −7.17886e8 −0.368125
\(117\) 0 0
\(118\) −4.23036e9 −2.00867
\(119\) −4.51246e7 −0.0206278
\(120\) 0 0
\(121\) −2.35291e9 −0.997862
\(122\) 3.93279e9 1.60724
\(123\) 0 0
\(124\) 1.63679e9 0.621723
\(125\) −2.44141e8 −0.0894427
\(126\) 0 0
\(127\) 3.08644e9 1.05279 0.526393 0.850241i \(-0.323544\pi\)
0.526393 + 0.850241i \(0.323544\pi\)
\(128\) 3.61122e9 1.18907
\(129\) 0 0
\(130\) 2.03140e9 0.623808
\(131\) 2.40858e9 0.714561 0.357281 0.933997i \(-0.383704\pi\)
0.357281 + 0.933997i \(0.383704\pi\)
\(132\) 0 0
\(133\) −9.71868e8 −0.269324
\(134\) 1.35059e9 0.361869
\(135\) 0 0
\(136\) −1.63393e8 −0.0409551
\(137\) −5.47458e9 −1.32772 −0.663862 0.747855i \(-0.731084\pi\)
−0.663862 + 0.747855i \(0.731084\pi\)
\(138\) 0 0
\(139\) 9.08897e8 0.206513 0.103257 0.994655i \(-0.467074\pi\)
0.103257 + 0.994655i \(0.467074\pi\)
\(140\) 2.73086e8 0.0600791
\(141\) 0 0
\(142\) 8.83462e9 1.82344
\(143\) −2.77039e8 −0.0554024
\(144\) 0 0
\(145\) 2.46552e9 0.463182
\(146\) 3.56411e9 0.649176
\(147\) 0 0
\(148\) −1.90370e9 −0.326152
\(149\) −6.00080e9 −0.997403 −0.498702 0.866774i \(-0.666190\pi\)
−0.498702 + 0.866774i \(0.666190\pi\)
\(150\) 0 0
\(151\) 5.35390e9 0.838058 0.419029 0.907973i \(-0.362371\pi\)
0.419029 + 0.907973i \(0.362371\pi\)
\(152\) −3.51906e9 −0.534725
\(153\) 0 0
\(154\) −1.42025e8 −0.0203480
\(155\) −5.62143e9 −0.782265
\(156\) 0 0
\(157\) −3.05256e8 −0.0400973 −0.0200487 0.999799i \(-0.506382\pi\)
−0.0200487 + 0.999799i \(0.506382\pi\)
\(158\) 4.35631e9 0.556112
\(159\) 0 0
\(160\) 2.52292e9 0.304343
\(161\) 4.21441e9 0.494334
\(162\) 0 0
\(163\) 9.53729e9 1.05823 0.529116 0.848550i \(-0.322524\pi\)
0.529116 + 0.848550i \(0.322524\pi\)
\(164\) −5.50865e8 −0.0594632
\(165\) 0 0
\(166\) 4.25281e9 0.434700
\(167\) 7.59729e9 0.755848 0.377924 0.925837i \(-0.376638\pi\)
0.377924 + 0.925837i \(0.376638\pi\)
\(168\) 0 0
\(169\) 4.61792e9 0.435468
\(170\) −3.09439e8 −0.0284155
\(171\) 0 0
\(172\) 2.92566e9 0.254886
\(173\) 1.61106e10 1.36742 0.683712 0.729751i \(-0.260364\pi\)
0.683712 + 0.729751i \(0.260364\pi\)
\(174\) 0 0
\(175\) −9.37891e8 −0.0755929
\(176\) −7.23479e8 −0.0568354
\(177\) 0 0
\(178\) −2.64259e10 −1.97306
\(179\) −5.90583e9 −0.429974 −0.214987 0.976617i \(-0.568971\pi\)
−0.214987 + 0.976617i \(0.568971\pi\)
\(180\) 0 0
\(181\) −4.57036e9 −0.316517 −0.158258 0.987398i \(-0.550588\pi\)
−0.158258 + 0.987398i \(0.550588\pi\)
\(182\) 7.80383e9 0.527214
\(183\) 0 0
\(184\) 1.52601e10 0.981469
\(185\) 6.53807e9 0.410371
\(186\) 0 0
\(187\) 4.22007e7 0.00252367
\(188\) 7.23481e9 0.422393
\(189\) 0 0
\(190\) −6.66452e9 −0.371003
\(191\) −1.08620e10 −0.590555 −0.295277 0.955412i \(-0.595412\pi\)
−0.295277 + 0.955412i \(0.595412\pi\)
\(192\) 0 0
\(193\) 3.53101e10 1.83185 0.915926 0.401346i \(-0.131458\pi\)
0.915926 + 0.401346i \(0.131458\pi\)
\(194\) −7.61762e9 −0.386110
\(195\) 0 0
\(196\) 1.04909e9 0.0507761
\(197\) 1.34688e10 0.637136 0.318568 0.947900i \(-0.396798\pi\)
0.318568 + 0.947900i \(0.396798\pi\)
\(198\) 0 0
\(199\) −2.38956e10 −1.08014 −0.540068 0.841621i \(-0.681601\pi\)
−0.540068 + 0.841621i \(0.681601\pi\)
\(200\) −3.39603e9 −0.150085
\(201\) 0 0
\(202\) −4.14146e9 −0.175014
\(203\) 9.47153e9 0.391461
\(204\) 0 0
\(205\) 1.89190e9 0.0748179
\(206\) 1.35688e10 0.524976
\(207\) 0 0
\(208\) 3.97529e10 1.47260
\(209\) 9.08895e8 0.0329500
\(210\) 0 0
\(211\) −2.71767e10 −0.943898 −0.471949 0.881626i \(-0.656449\pi\)
−0.471949 + 0.881626i \(0.656449\pi\)
\(212\) −7.42618e9 −0.252496
\(213\) 0 0
\(214\) 6.23876e10 2.03346
\(215\) −1.00479e10 −0.320703
\(216\) 0 0
\(217\) −2.15953e10 −0.661135
\(218\) 5.94893e9 0.178396
\(219\) 0 0
\(220\) −2.55391e8 −0.00735029
\(221\) −2.31880e9 −0.0653880
\(222\) 0 0
\(223\) −2.65338e8 −0.00718502 −0.00359251 0.999994i \(-0.501144\pi\)
−0.00359251 + 0.999994i \(0.501144\pi\)
\(224\) 9.69204e9 0.257217
\(225\) 0 0
\(226\) 7.74049e10 1.97370
\(227\) 2.92609e10 0.731428 0.365714 0.930727i \(-0.380825\pi\)
0.365714 + 0.930727i \(0.380825\pi\)
\(228\) 0 0
\(229\) −3.93335e10 −0.945156 −0.472578 0.881289i \(-0.656676\pi\)
−0.472578 + 0.881289i \(0.656676\pi\)
\(230\) 2.89001e10 0.680963
\(231\) 0 0
\(232\) 3.42957e10 0.777220
\(233\) −4.02983e10 −0.895746 −0.447873 0.894097i \(-0.647818\pi\)
−0.447873 + 0.894097i \(0.647818\pi\)
\(234\) 0 0
\(235\) −2.48473e10 −0.531465
\(236\) −2.92234e10 −0.613236
\(237\) 0 0
\(238\) −1.18874e9 −0.0240155
\(239\) −3.54020e10 −0.701839 −0.350919 0.936406i \(-0.614131\pi\)
−0.350919 + 0.936406i \(0.614131\pi\)
\(240\) 0 0
\(241\) 3.42729e9 0.0654446 0.0327223 0.999464i \(-0.489582\pi\)
0.0327223 + 0.999464i \(0.489582\pi\)
\(242\) −6.19838e10 −1.16174
\(243\) 0 0
\(244\) 2.71678e10 0.490683
\(245\) −3.60300e9 −0.0638877
\(246\) 0 0
\(247\) −4.99410e10 −0.853730
\(248\) −7.81949e10 −1.31264
\(249\) 0 0
\(250\) −6.43153e9 −0.104132
\(251\) 6.49927e10 1.03355 0.516776 0.856120i \(-0.327132\pi\)
0.516776 + 0.856120i \(0.327132\pi\)
\(252\) 0 0
\(253\) −3.94134e9 −0.0604785
\(254\) 8.13076e10 1.22569
\(255\) 0 0
\(256\) 6.51152e10 0.947551
\(257\) −7.71755e10 −1.10352 −0.551760 0.834003i \(-0.686044\pi\)
−0.551760 + 0.834003i \(0.686044\pi\)
\(258\) 0 0
\(259\) 2.51167e10 0.346827
\(260\) 1.40330e10 0.190445
\(261\) 0 0
\(262\) 6.34504e10 0.831914
\(263\) −5.32154e10 −0.685862 −0.342931 0.939361i \(-0.611420\pi\)
−0.342931 + 0.939361i \(0.611420\pi\)
\(264\) 0 0
\(265\) 2.55046e10 0.317696
\(266\) −2.56024e10 −0.313555
\(267\) 0 0
\(268\) 9.32989e9 0.110476
\(269\) −2.15319e10 −0.250725 −0.125362 0.992111i \(-0.540009\pi\)
−0.125362 + 0.992111i \(0.540009\pi\)
\(270\) 0 0
\(271\) 4.81053e10 0.541790 0.270895 0.962609i \(-0.412680\pi\)
0.270895 + 0.962609i \(0.412680\pi\)
\(272\) −6.05548e9 −0.0670793
\(273\) 0 0
\(274\) −1.44220e11 −1.54578
\(275\) 8.77119e8 0.00924829
\(276\) 0 0
\(277\) 6.60074e10 0.673649 0.336824 0.941568i \(-0.390647\pi\)
0.336824 + 0.941568i \(0.390647\pi\)
\(278\) 2.39436e10 0.240429
\(279\) 0 0
\(280\) −1.30462e10 −0.126845
\(281\) −7.31129e10 −0.699545 −0.349772 0.936835i \(-0.613741\pi\)
−0.349772 + 0.936835i \(0.613741\pi\)
\(282\) 0 0
\(283\) 1.32293e11 1.22602 0.613012 0.790073i \(-0.289958\pi\)
0.613012 + 0.790073i \(0.289958\pi\)
\(284\) 6.10298e10 0.556685
\(285\) 0 0
\(286\) −7.29818e9 −0.0645011
\(287\) 7.26792e9 0.0632327
\(288\) 0 0
\(289\) −1.18235e11 −0.997021
\(290\) 6.49504e10 0.539251
\(291\) 0 0
\(292\) 2.46209e10 0.198190
\(293\) 4.00575e10 0.317526 0.158763 0.987317i \(-0.449249\pi\)
0.158763 + 0.987317i \(0.449249\pi\)
\(294\) 0 0
\(295\) 1.00365e11 0.771586
\(296\) 9.09456e10 0.688603
\(297\) 0 0
\(298\) −1.58082e11 −1.16121
\(299\) 2.16564e11 1.56699
\(300\) 0 0
\(301\) −3.86001e10 −0.271044
\(302\) 1.41041e11 0.975693
\(303\) 0 0
\(304\) −1.30419e11 −0.875812
\(305\) −9.33055e10 −0.617388
\(306\) 0 0
\(307\) 3.61839e10 0.232484 0.116242 0.993221i \(-0.462915\pi\)
0.116242 + 0.993221i \(0.462915\pi\)
\(308\) −9.81112e8 −0.00621212
\(309\) 0 0
\(310\) −1.48088e11 −0.910737
\(311\) −1.58042e11 −0.957968 −0.478984 0.877824i \(-0.658995\pi\)
−0.478984 + 0.877824i \(0.658995\pi\)
\(312\) 0 0
\(313\) 1.78114e11 1.04894 0.524468 0.851430i \(-0.324264\pi\)
0.524468 + 0.851430i \(0.324264\pi\)
\(314\) −8.04151e9 −0.0466825
\(315\) 0 0
\(316\) 3.00935e10 0.169778
\(317\) −3.74923e10 −0.208533 −0.104267 0.994549i \(-0.533249\pi\)
−0.104267 + 0.994549i \(0.533249\pi\)
\(318\) 0 0
\(319\) −8.85782e9 −0.0478926
\(320\) −3.66418e10 −0.195345
\(321\) 0 0
\(322\) 1.11023e11 0.575519
\(323\) 7.60740e9 0.0388888
\(324\) 0 0
\(325\) −4.81950e10 −0.239622
\(326\) 2.51246e11 1.23203
\(327\) 0 0
\(328\) 2.63166e10 0.125544
\(329\) −9.54535e10 −0.449170
\(330\) 0 0
\(331\) 1.08393e11 0.496335 0.248167 0.968717i \(-0.420172\pi\)
0.248167 + 0.968717i \(0.420172\pi\)
\(332\) 2.93785e10 0.132711
\(333\) 0 0
\(334\) 2.00139e11 0.879981
\(335\) −3.20427e10 −0.139004
\(336\) 0 0
\(337\) 3.53012e11 1.49092 0.745462 0.666548i \(-0.232229\pi\)
0.745462 + 0.666548i \(0.232229\pi\)
\(338\) 1.21652e11 0.506986
\(339\) 0 0
\(340\) −2.13761e9 −0.00867509
\(341\) 2.01960e10 0.0808855
\(342\) 0 0
\(343\) −1.38413e10 −0.0539949
\(344\) −1.39768e11 −0.538140
\(345\) 0 0
\(346\) 4.24409e11 1.59200
\(347\) 4.58221e11 1.69665 0.848324 0.529477i \(-0.177612\pi\)
0.848324 + 0.529477i \(0.177612\pi\)
\(348\) 0 0
\(349\) 4.77589e11 1.72322 0.861608 0.507575i \(-0.169458\pi\)
0.861608 + 0.507575i \(0.169458\pi\)
\(350\) −2.47074e10 −0.0880076
\(351\) 0 0
\(352\) −9.06404e9 −0.0314688
\(353\) −4.13087e11 −1.41597 −0.707986 0.706226i \(-0.750396\pi\)
−0.707986 + 0.706226i \(0.750396\pi\)
\(354\) 0 0
\(355\) −2.09601e11 −0.700433
\(356\) −1.82551e11 −0.602364
\(357\) 0 0
\(358\) −1.55581e11 −0.500589
\(359\) 1.83554e11 0.583230 0.291615 0.956536i \(-0.405807\pi\)
0.291615 + 0.956536i \(0.405807\pi\)
\(360\) 0 0
\(361\) −1.58844e11 −0.492253
\(362\) −1.20399e11 −0.368498
\(363\) 0 0
\(364\) 5.39091e10 0.160955
\(365\) −8.45584e10 −0.249367
\(366\) 0 0
\(367\) −1.52885e11 −0.439915 −0.219957 0.975509i \(-0.570592\pi\)
−0.219957 + 0.975509i \(0.570592\pi\)
\(368\) 5.65552e11 1.60752
\(369\) 0 0
\(370\) 1.72236e11 0.477767
\(371\) 9.79783e10 0.268502
\(372\) 0 0
\(373\) 3.94586e11 1.05548 0.527742 0.849405i \(-0.323039\pi\)
0.527742 + 0.849405i \(0.323039\pi\)
\(374\) 1.11172e9 0.00293814
\(375\) 0 0
\(376\) −3.45630e11 −0.891798
\(377\) 4.86710e11 1.24089
\(378\) 0 0
\(379\) 7.26412e11 1.80845 0.904225 0.427057i \(-0.140450\pi\)
0.904225 + 0.427057i \(0.140450\pi\)
\(380\) −4.60387e10 −0.113265
\(381\) 0 0
\(382\) −2.86144e11 −0.687542
\(383\) 5.73936e11 1.36292 0.681458 0.731857i \(-0.261346\pi\)
0.681458 + 0.731857i \(0.261346\pi\)
\(384\) 0 0
\(385\) 3.36954e9 0.00781623
\(386\) 9.30192e11 2.13270
\(387\) 0 0
\(388\) −5.26227e10 −0.117877
\(389\) −2.27345e11 −0.503400 −0.251700 0.967805i \(-0.580990\pi\)
−0.251700 + 0.967805i \(0.580990\pi\)
\(390\) 0 0
\(391\) −3.29888e10 −0.0713791
\(392\) −5.01183e10 −0.107204
\(393\) 0 0
\(394\) 3.54817e11 0.741773
\(395\) −1.03353e11 −0.213618
\(396\) 0 0
\(397\) −9.03630e11 −1.82572 −0.912858 0.408277i \(-0.866130\pi\)
−0.912858 + 0.408277i \(0.866130\pi\)
\(398\) −6.29493e11 −1.25753
\(399\) 0 0
\(400\) −1.25860e11 −0.245820
\(401\) −3.47203e11 −0.670555 −0.335277 0.942119i \(-0.608830\pi\)
−0.335277 + 0.942119i \(0.608830\pi\)
\(402\) 0 0
\(403\) −1.10971e12 −2.09573
\(404\) −2.86093e10 −0.0534307
\(405\) 0 0
\(406\) 2.49514e11 0.455750
\(407\) −2.34892e10 −0.0424320
\(408\) 0 0
\(409\) −1.06690e12 −1.88524 −0.942621 0.333866i \(-0.891647\pi\)
−0.942621 + 0.333866i \(0.891647\pi\)
\(410\) 4.98393e10 0.0871053
\(411\) 0 0
\(412\) 9.37337e10 0.160272
\(413\) 3.85563e11 0.652110
\(414\) 0 0
\(415\) −1.00898e11 −0.166980
\(416\) 4.98041e11 0.815352
\(417\) 0 0
\(418\) 2.39435e10 0.0383614
\(419\) −8.89018e11 −1.40912 −0.704559 0.709645i \(-0.748855\pi\)
−0.704559 + 0.709645i \(0.748855\pi\)
\(420\) 0 0
\(421\) 9.18431e11 1.42488 0.712438 0.701735i \(-0.247591\pi\)
0.712438 + 0.701735i \(0.247591\pi\)
\(422\) −7.15929e11 −1.09891
\(423\) 0 0
\(424\) 3.54773e11 0.533094
\(425\) 7.34144e9 0.0109152
\(426\) 0 0
\(427\) −3.58442e11 −0.521788
\(428\) 4.30975e11 0.620805
\(429\) 0 0
\(430\) −2.64698e11 −0.373372
\(431\) 7.15695e11 0.999034 0.499517 0.866304i \(-0.333511\pi\)
0.499517 + 0.866304i \(0.333511\pi\)
\(432\) 0 0
\(433\) −1.30709e12 −1.78694 −0.893472 0.449119i \(-0.851738\pi\)
−0.893472 + 0.449119i \(0.851738\pi\)
\(434\) −5.68896e11 −0.769713
\(435\) 0 0
\(436\) 4.10954e10 0.0544633
\(437\) −7.10493e11 −0.931952
\(438\) 0 0
\(439\) −8.08851e11 −1.03939 −0.519695 0.854352i \(-0.673954\pi\)
−0.519695 + 0.854352i \(0.673954\pi\)
\(440\) 1.22009e10 0.0155186
\(441\) 0 0
\(442\) −6.10854e10 −0.0761267
\(443\) −2.49522e11 −0.307816 −0.153908 0.988085i \(-0.549186\pi\)
−0.153908 + 0.988085i \(0.549186\pi\)
\(444\) 0 0
\(445\) 6.26955e11 0.757907
\(446\) −6.98995e9 −0.00836503
\(447\) 0 0
\(448\) −1.40763e11 −0.165097
\(449\) −1.12524e12 −1.30658 −0.653291 0.757107i \(-0.726612\pi\)
−0.653291 + 0.757107i \(0.726612\pi\)
\(450\) 0 0
\(451\) −6.79699e9 −0.00773610
\(452\) 5.34715e11 0.602558
\(453\) 0 0
\(454\) 7.70835e11 0.851550
\(455\) −1.85146e11 −0.202518
\(456\) 0 0
\(457\) 7.92565e11 0.849987 0.424993 0.905196i \(-0.360276\pi\)
0.424993 + 0.905196i \(0.360276\pi\)
\(458\) −1.03618e12 −1.10038
\(459\) 0 0
\(460\) 1.99642e11 0.207894
\(461\) −8.54573e11 −0.881241 −0.440621 0.897693i \(-0.645242\pi\)
−0.440621 + 0.897693i \(0.645242\pi\)
\(462\) 0 0
\(463\) −1.55057e12 −1.56811 −0.784056 0.620690i \(-0.786852\pi\)
−0.784056 + 0.620690i \(0.786852\pi\)
\(464\) 1.27103e12 1.27299
\(465\) 0 0
\(466\) −1.06160e12 −1.04285
\(467\) 1.54154e11 0.149979 0.0749893 0.997184i \(-0.476108\pi\)
0.0749893 + 0.997184i \(0.476108\pi\)
\(468\) 0 0
\(469\) −1.23095e11 −0.117480
\(470\) −6.54566e11 −0.618747
\(471\) 0 0
\(472\) 1.39610e12 1.29472
\(473\) 3.60990e10 0.0331604
\(474\) 0 0
\(475\) 1.58116e11 0.142513
\(476\) −8.21186e9 −0.00733179
\(477\) 0 0
\(478\) −9.32614e11 −0.817102
\(479\) 1.96197e12 1.70287 0.851437 0.524457i \(-0.175732\pi\)
0.851437 + 0.524457i \(0.175732\pi\)
\(480\) 0 0
\(481\) 1.29066e12 1.09941
\(482\) 9.02868e10 0.0761926
\(483\) 0 0
\(484\) −4.28186e11 −0.354673
\(485\) 1.80728e11 0.148316
\(486\) 0 0
\(487\) 8.97598e11 0.723106 0.361553 0.932352i \(-0.382247\pi\)
0.361553 + 0.932352i \(0.382247\pi\)
\(488\) −1.29789e12 −1.03598
\(489\) 0 0
\(490\) −9.49158e10 −0.0743800
\(491\) −4.80068e11 −0.372766 −0.186383 0.982477i \(-0.559676\pi\)
−0.186383 + 0.982477i \(0.559676\pi\)
\(492\) 0 0
\(493\) −7.41395e10 −0.0565247
\(494\) −1.31562e12 −0.993939
\(495\) 0 0
\(496\) −2.89797e12 −2.14994
\(497\) −8.05205e11 −0.591974
\(498\) 0 0
\(499\) −1.81750e12 −1.31227 −0.656133 0.754646i \(-0.727809\pi\)
−0.656133 + 0.754646i \(0.727809\pi\)
\(500\) −4.44291e10 −0.0317909
\(501\) 0 0
\(502\) 1.71214e12 1.20329
\(503\) −9.78467e11 −0.681538 −0.340769 0.940147i \(-0.610687\pi\)
−0.340769 + 0.940147i \(0.610687\pi\)
\(504\) 0 0
\(505\) 9.82561e10 0.0672277
\(506\) −1.03829e11 −0.0704109
\(507\) 0 0
\(508\) 5.61675e11 0.374195
\(509\) −9.49400e11 −0.626930 −0.313465 0.949600i \(-0.601490\pi\)
−0.313465 + 0.949600i \(0.601490\pi\)
\(510\) 0 0
\(511\) −3.24839e11 −0.210753
\(512\) −1.33578e11 −0.0859056
\(513\) 0 0
\(514\) −2.03308e12 −1.28475
\(515\) −3.21920e11 −0.201658
\(516\) 0 0
\(517\) 8.92685e10 0.0549529
\(518\) 6.61662e11 0.403787
\(519\) 0 0
\(520\) −6.70400e11 −0.402086
\(521\) −3.20965e12 −1.90848 −0.954240 0.299042i \(-0.903333\pi\)
−0.954240 + 0.299042i \(0.903333\pi\)
\(522\) 0 0
\(523\) −2.27961e12 −1.33230 −0.666152 0.745816i \(-0.732060\pi\)
−0.666152 + 0.745816i \(0.732060\pi\)
\(524\) 4.38317e11 0.253979
\(525\) 0 0
\(526\) −1.40188e12 −0.798501
\(527\) 1.69039e11 0.0954642
\(528\) 0 0
\(529\) 1.27983e12 0.710564
\(530\) 6.71880e11 0.369871
\(531\) 0 0
\(532\) −1.76862e11 −0.0957265
\(533\) 3.73473e11 0.200441
\(534\) 0 0
\(535\) −1.48015e12 −0.781111
\(536\) −4.45719e11 −0.233249
\(537\) 0 0
\(538\) −5.67226e11 −0.291901
\(539\) 1.29444e10 0.00660592
\(540\) 0 0
\(541\) 2.51926e12 1.26440 0.632201 0.774804i \(-0.282152\pi\)
0.632201 + 0.774804i \(0.282152\pi\)
\(542\) 1.26726e12 0.630769
\(543\) 0 0
\(544\) −7.58656e10 −0.0371407
\(545\) −1.41138e11 −0.0685269
\(546\) 0 0
\(547\) −2.15157e12 −1.02757 −0.513787 0.857918i \(-0.671758\pi\)
−0.513787 + 0.857918i \(0.671758\pi\)
\(548\) −9.96272e11 −0.471917
\(549\) 0 0
\(550\) 2.31064e10 0.0107671
\(551\) −1.59677e12 −0.738008
\(552\) 0 0
\(553\) −3.97043e11 −0.180540
\(554\) 1.73887e12 0.784282
\(555\) 0 0
\(556\) 1.65403e11 0.0734016
\(557\) 2.27895e12 1.00320 0.501600 0.865100i \(-0.332745\pi\)
0.501600 + 0.865100i \(0.332745\pi\)
\(558\) 0 0
\(559\) −1.98353e12 −0.859181
\(560\) −4.83503e11 −0.207756
\(561\) 0 0
\(562\) −1.92605e12 −0.814431
\(563\) −3.82145e12 −1.60303 −0.801513 0.597978i \(-0.795971\pi\)
−0.801513 + 0.597978i \(0.795971\pi\)
\(564\) 0 0
\(565\) −1.83643e12 −0.758152
\(566\) 3.48508e12 1.42738
\(567\) 0 0
\(568\) −2.91559e12 −1.17533
\(569\) 2.94845e12 1.17920 0.589601 0.807695i \(-0.299285\pi\)
0.589601 + 0.807695i \(0.299285\pi\)
\(570\) 0 0
\(571\) 2.99642e12 1.17962 0.589808 0.807544i \(-0.299203\pi\)
0.589808 + 0.807544i \(0.299203\pi\)
\(572\) −5.04160e10 −0.0196918
\(573\) 0 0
\(574\) 1.91463e11 0.0736174
\(575\) −6.85654e11 −0.261577
\(576\) 0 0
\(577\) −1.87283e12 −0.703407 −0.351703 0.936111i \(-0.614397\pi\)
−0.351703 + 0.936111i \(0.614397\pi\)
\(578\) −3.11472e12 −1.16076
\(579\) 0 0
\(580\) 4.48679e11 0.164630
\(581\) −3.87609e11 −0.141124
\(582\) 0 0
\(583\) −9.16297e10 −0.0328494
\(584\) −1.17622e12 −0.418438
\(585\) 0 0
\(586\) 1.05525e12 0.369673
\(587\) 1.94572e12 0.676410 0.338205 0.941073i \(-0.390180\pi\)
0.338205 + 0.941073i \(0.390180\pi\)
\(588\) 0 0
\(589\) 3.64067e12 1.24642
\(590\) 2.64398e12 0.898305
\(591\) 0 0
\(592\) 3.37052e12 1.12784
\(593\) −8.61235e11 −0.286006 −0.143003 0.989722i \(-0.545676\pi\)
−0.143003 + 0.989722i \(0.545676\pi\)
\(594\) 0 0
\(595\) 2.82029e10 0.00922502
\(596\) −1.09204e12 −0.354510
\(597\) 0 0
\(598\) 5.70507e12 1.82434
\(599\) −2.81546e12 −0.893570 −0.446785 0.894641i \(-0.647431\pi\)
−0.446785 + 0.894641i \(0.647431\pi\)
\(600\) 0 0
\(601\) 4.79484e12 1.49913 0.749565 0.661931i \(-0.230263\pi\)
0.749565 + 0.661931i \(0.230263\pi\)
\(602\) −1.01686e12 −0.315557
\(603\) 0 0
\(604\) 9.74312e11 0.297873
\(605\) 1.47057e12 0.446257
\(606\) 0 0
\(607\) 7.43279e11 0.222230 0.111115 0.993808i \(-0.464558\pi\)
0.111115 + 0.993808i \(0.464558\pi\)
\(608\) −1.63395e12 −0.484922
\(609\) 0 0
\(610\) −2.45800e12 −0.718782
\(611\) −4.90503e12 −1.42382
\(612\) 0 0
\(613\) 6.45388e11 0.184607 0.0923036 0.995731i \(-0.470577\pi\)
0.0923036 + 0.995731i \(0.470577\pi\)
\(614\) 9.53213e11 0.270665
\(615\) 0 0
\(616\) 4.68708e10 0.0131156
\(617\) −4.66543e12 −1.29601 −0.648005 0.761636i \(-0.724396\pi\)
−0.648005 + 0.761636i \(0.724396\pi\)
\(618\) 0 0
\(619\) −2.49665e12 −0.683519 −0.341759 0.939787i \(-0.611023\pi\)
−0.341759 + 0.939787i \(0.611023\pi\)
\(620\) −1.02300e12 −0.278043
\(621\) 0 0
\(622\) −4.16338e12 −1.11530
\(623\) 2.40851e12 0.640549
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) 4.69215e12 1.22120
\(627\) 0 0
\(628\) −5.55509e10 −0.0142519
\(629\) −1.96604e11 −0.0500799
\(630\) 0 0
\(631\) 2.92442e12 0.734357 0.367179 0.930150i \(-0.380324\pi\)
0.367179 + 0.930150i \(0.380324\pi\)
\(632\) −1.43766e12 −0.358451
\(633\) 0 0
\(634\) −9.87678e11 −0.242781
\(635\) −1.92902e12 −0.470821
\(636\) 0 0
\(637\) −7.11256e11 −0.171159
\(638\) −2.33346e11 −0.0557581
\(639\) 0 0
\(640\) −2.25701e12 −0.531770
\(641\) 4.23039e12 0.989736 0.494868 0.868968i \(-0.335216\pi\)
0.494868 + 0.868968i \(0.335216\pi\)
\(642\) 0 0
\(643\) 1.95718e12 0.451524 0.225762 0.974183i \(-0.427513\pi\)
0.225762 + 0.974183i \(0.427513\pi\)
\(644\) 7.66946e11 0.175703
\(645\) 0 0
\(646\) 2.00406e11 0.0452756
\(647\) 4.71751e12 1.05838 0.529192 0.848502i \(-0.322495\pi\)
0.529192 + 0.848502i \(0.322495\pi\)
\(648\) 0 0
\(649\) −3.60580e11 −0.0797813
\(650\) −1.26963e12 −0.278975
\(651\) 0 0
\(652\) 1.73561e12 0.376130
\(653\) −5.50754e12 −1.18536 −0.592678 0.805440i \(-0.701929\pi\)
−0.592678 + 0.805440i \(0.701929\pi\)
\(654\) 0 0
\(655\) −1.50536e12 −0.319562
\(656\) 9.75315e11 0.205626
\(657\) 0 0
\(658\) −2.51458e12 −0.522937
\(659\) 4.05044e12 0.836599 0.418300 0.908309i \(-0.362626\pi\)
0.418300 + 0.908309i \(0.362626\pi\)
\(660\) 0 0
\(661\) −2.16897e12 −0.441923 −0.220962 0.975283i \(-0.570920\pi\)
−0.220962 + 0.975283i \(0.570920\pi\)
\(662\) 2.85545e12 0.577848
\(663\) 0 0
\(664\) −1.40350e12 −0.280193
\(665\) 6.07417e11 0.120445
\(666\) 0 0
\(667\) 6.92425e12 1.35459
\(668\) 1.38257e12 0.268653
\(669\) 0 0
\(670\) −8.44117e11 −0.161833
\(671\) 3.35217e11 0.0638373
\(672\) 0 0
\(673\) −7.79666e12 −1.46501 −0.732505 0.680761i \(-0.761649\pi\)
−0.732505 + 0.680761i \(0.761649\pi\)
\(674\) 9.29959e12 1.73578
\(675\) 0 0
\(676\) 8.40378e11 0.154780
\(677\) 3.98612e12 0.729293 0.364646 0.931146i \(-0.381190\pi\)
0.364646 + 0.931146i \(0.381190\pi\)
\(678\) 0 0
\(679\) 6.94284e11 0.125350
\(680\) 1.02121e11 0.0183157
\(681\) 0 0
\(682\) 5.32034e11 0.0941693
\(683\) 7.20461e12 1.26683 0.633413 0.773814i \(-0.281653\pi\)
0.633413 + 0.773814i \(0.281653\pi\)
\(684\) 0 0
\(685\) 3.42161e12 0.593776
\(686\) −3.64628e11 −0.0628625
\(687\) 0 0
\(688\) −5.17992e12 −0.881405
\(689\) 5.03477e12 0.851125
\(690\) 0 0
\(691\) 7.66976e12 1.27977 0.639883 0.768472i \(-0.278983\pi\)
0.639883 + 0.768472i \(0.278983\pi\)
\(692\) 2.93183e12 0.486028
\(693\) 0 0
\(694\) 1.20711e13 1.97529
\(695\) −5.68061e11 −0.0923555
\(696\) 0 0
\(697\) −5.68904e10 −0.00913044
\(698\) 1.25814e13 2.00622
\(699\) 0 0
\(700\) −1.70679e11 −0.0268682
\(701\) 6.76464e11 0.105807 0.0529034 0.998600i \(-0.483152\pi\)
0.0529034 + 0.998600i \(0.483152\pi\)
\(702\) 0 0
\(703\) −4.23433e12 −0.653861
\(704\) 1.31642e11 0.0201985
\(705\) 0 0
\(706\) −1.08822e13 −1.64852
\(707\) 3.77461e11 0.0568178
\(708\) 0 0
\(709\) 1.19764e13 1.77999 0.889995 0.455970i \(-0.150708\pi\)
0.889995 + 0.455970i \(0.150708\pi\)
\(710\) −5.52164e12 −0.815465
\(711\) 0 0
\(712\) 8.72104e12 1.27177
\(713\) −1.57874e13 −2.28775
\(714\) 0 0
\(715\) 1.73149e11 0.0247767
\(716\) −1.07475e12 −0.152827
\(717\) 0 0
\(718\) 4.83547e12 0.679014
\(719\) 9.56848e12 1.33525 0.667626 0.744497i \(-0.267311\pi\)
0.667626 + 0.744497i \(0.267311\pi\)
\(720\) 0 0
\(721\) −1.23669e12 −0.170432
\(722\) −4.18451e12 −0.573096
\(723\) 0 0
\(724\) −8.31721e11 −0.112500
\(725\) −1.54095e12 −0.207141
\(726\) 0 0
\(727\) 1.05787e13 1.40451 0.702257 0.711924i \(-0.252176\pi\)
0.702257 + 0.711924i \(0.252176\pi\)
\(728\) −2.57541e12 −0.339825
\(729\) 0 0
\(730\) −2.22757e12 −0.290320
\(731\) 3.02147e11 0.0391372
\(732\) 0 0
\(733\) −5.59263e12 −0.715563 −0.357782 0.933805i \(-0.616467\pi\)
−0.357782 + 0.933805i \(0.616467\pi\)
\(734\) −4.02754e12 −0.512162
\(735\) 0 0
\(736\) 7.08546e12 0.890057
\(737\) 1.15119e11 0.0143729
\(738\) 0 0
\(739\) −7.75052e11 −0.0955941 −0.0477970 0.998857i \(-0.515220\pi\)
−0.0477970 + 0.998857i \(0.515220\pi\)
\(740\) 1.18981e12 0.145859
\(741\) 0 0
\(742\) 2.58110e12 0.312598
\(743\) −2.61033e12 −0.314228 −0.157114 0.987580i \(-0.550219\pi\)
−0.157114 + 0.987580i \(0.550219\pi\)
\(744\) 0 0
\(745\) 3.75050e12 0.446052
\(746\) 1.03948e13 1.22883
\(747\) 0 0
\(748\) 7.67976e9 0.000896996 0
\(749\) −5.68613e12 −0.660159
\(750\) 0 0
\(751\) 1.00388e13 1.15160 0.575801 0.817590i \(-0.304690\pi\)
0.575801 + 0.817590i \(0.304690\pi\)
\(752\) −1.28093e13 −1.46065
\(753\) 0 0
\(754\) 1.28217e13 1.44468
\(755\) −3.34619e12 −0.374791
\(756\) 0 0
\(757\) −1.40463e12 −0.155464 −0.0777320 0.996974i \(-0.524768\pi\)
−0.0777320 + 0.996974i \(0.524768\pi\)
\(758\) 1.91363e13 2.10545
\(759\) 0 0
\(760\) 2.19941e12 0.239136
\(761\) 1.42436e13 1.53954 0.769769 0.638323i \(-0.220372\pi\)
0.769769 + 0.638323i \(0.220372\pi\)
\(762\) 0 0
\(763\) −5.42197e11 −0.0579158
\(764\) −1.97669e12 −0.209903
\(765\) 0 0
\(766\) 1.51195e13 1.58675
\(767\) 1.98128e13 2.06712
\(768\) 0 0
\(769\) −1.29105e12 −0.133129 −0.0665647 0.997782i \(-0.521204\pi\)
−0.0665647 + 0.997782i \(0.521204\pi\)
\(770\) 8.87656e10 0.00909990
\(771\) 0 0
\(772\) 6.42578e12 0.651101
\(773\) 8.58124e12 0.864455 0.432227 0.901765i \(-0.357728\pi\)
0.432227 + 0.901765i \(0.357728\pi\)
\(774\) 0 0
\(775\) 3.51339e12 0.349840
\(776\) 2.51395e12 0.248874
\(777\) 0 0
\(778\) −5.98908e12 −0.586073
\(779\) −1.22527e12 −0.119210
\(780\) 0 0
\(781\) 7.53031e11 0.0724241
\(782\) −8.69041e11 −0.0831017
\(783\) 0 0
\(784\) −1.85743e12 −0.175586
\(785\) 1.90785e11 0.0179321
\(786\) 0 0
\(787\) −3.12167e11 −0.0290068 −0.0145034 0.999895i \(-0.504617\pi\)
−0.0145034 + 0.999895i \(0.504617\pi\)
\(788\) 2.45108e12 0.226459
\(789\) 0 0
\(790\) −2.72269e12 −0.248701
\(791\) −7.05483e12 −0.640756
\(792\) 0 0
\(793\) −1.84191e13 −1.65402
\(794\) −2.38048e13 −2.12555
\(795\) 0 0
\(796\) −4.34855e12 −0.383916
\(797\) 8.61341e12 0.756159 0.378079 0.925773i \(-0.376585\pi\)
0.378079 + 0.925773i \(0.376585\pi\)
\(798\) 0 0
\(799\) 7.47173e11 0.0648576
\(800\) −1.57682e12 −0.136106
\(801\) 0 0
\(802\) −9.14656e12 −0.780680
\(803\) 3.03791e11 0.0257843
\(804\) 0 0
\(805\) −2.63401e12 −0.221073
\(806\) −2.92336e13 −2.43992
\(807\) 0 0
\(808\) 1.36676e12 0.112808
\(809\) 2.01016e13 1.64992 0.824958 0.565193i \(-0.191198\pi\)
0.824958 + 0.565193i \(0.191198\pi\)
\(810\) 0 0
\(811\) −1.62455e13 −1.31868 −0.659340 0.751845i \(-0.729164\pi\)
−0.659340 + 0.751845i \(0.729164\pi\)
\(812\) 1.72365e12 0.139138
\(813\) 0 0
\(814\) −6.18789e11 −0.0494006
\(815\) −5.96081e12 −0.473256
\(816\) 0 0
\(817\) 6.50745e12 0.510989
\(818\) −2.81058e13 −2.19486
\(819\) 0 0
\(820\) 3.44291e11 0.0265927
\(821\) 8.24254e11 0.0633165 0.0316583 0.999499i \(-0.489921\pi\)
0.0316583 + 0.999499i \(0.489921\pi\)
\(822\) 0 0
\(823\) 2.59567e13 1.97220 0.986099 0.166159i \(-0.0531364\pi\)
0.986099 + 0.166159i \(0.0531364\pi\)
\(824\) −4.47796e12 −0.338382
\(825\) 0 0
\(826\) 1.01571e13 0.759206
\(827\) 1.31498e13 0.977560 0.488780 0.872407i \(-0.337442\pi\)
0.488780 + 0.872407i \(0.337442\pi\)
\(828\) 0 0
\(829\) 1.78218e13 1.31056 0.655279 0.755387i \(-0.272551\pi\)
0.655279 + 0.755387i \(0.272551\pi\)
\(830\) −2.65800e12 −0.194404
\(831\) 0 0
\(832\) −7.23334e12 −0.523340
\(833\) 1.08344e11 0.00779657
\(834\) 0 0
\(835\) −4.74830e12 −0.338025
\(836\) 1.65402e11 0.0117115
\(837\) 0 0
\(838\) −2.34199e13 −1.64054
\(839\) −1.79273e13 −1.24906 −0.624532 0.780999i \(-0.714710\pi\)
−0.624532 + 0.780999i \(0.714710\pi\)
\(840\) 0 0
\(841\) 1.05452e12 0.0726898
\(842\) 2.41947e13 1.65888
\(843\) 0 0
\(844\) −4.94565e12 −0.335492
\(845\) −2.88620e12 −0.194747
\(846\) 0 0
\(847\) 5.64933e12 0.377156
\(848\) 1.31482e13 0.873140
\(849\) 0 0
\(850\) 1.93400e11 0.0127078
\(851\) 1.83618e13 1.20014
\(852\) 0 0
\(853\) 1.65652e13 1.07134 0.535668 0.844429i \(-0.320060\pi\)
0.535668 + 0.844429i \(0.320060\pi\)
\(854\) −9.44264e12 −0.607481
\(855\) 0 0
\(856\) −2.05891e13 −1.31070
\(857\) 1.00056e13 0.633619 0.316810 0.948489i \(-0.397388\pi\)
0.316810 + 0.948489i \(0.397388\pi\)
\(858\) 0 0
\(859\) 4.82691e12 0.302482 0.151241 0.988497i \(-0.451673\pi\)
0.151241 + 0.988497i \(0.451673\pi\)
\(860\) −1.82854e12 −0.113988
\(861\) 0 0
\(862\) 1.88539e13 1.16311
\(863\) −2.92326e12 −0.179398 −0.0896992 0.995969i \(-0.528591\pi\)
−0.0896992 + 0.995969i \(0.528591\pi\)
\(864\) 0 0
\(865\) −1.00691e13 −0.611531
\(866\) −3.44334e13 −2.08042
\(867\) 0 0
\(868\) −3.92994e12 −0.234989
\(869\) 3.71316e11 0.0220879
\(870\) 0 0
\(871\) −6.32544e12 −0.372399
\(872\) −1.96326e12 −0.114988
\(873\) 0 0
\(874\) −1.87169e13 −1.08501
\(875\) 5.86182e11 0.0338062
\(876\) 0 0
\(877\) −9.67239e12 −0.552123 −0.276061 0.961140i \(-0.589029\pi\)
−0.276061 + 0.961140i \(0.589029\pi\)
\(878\) −2.13080e13 −1.21009
\(879\) 0 0
\(880\) 4.52174e11 0.0254176
\(881\) −1.87103e12 −0.104638 −0.0523191 0.998630i \(-0.516661\pi\)
−0.0523191 + 0.998630i \(0.516661\pi\)
\(882\) 0 0
\(883\) 8.57451e12 0.474664 0.237332 0.971429i \(-0.423727\pi\)
0.237332 + 0.971429i \(0.423727\pi\)
\(884\) −4.21979e11 −0.0232411
\(885\) 0 0
\(886\) −6.57328e12 −0.358369
\(887\) 1.80022e13 0.976494 0.488247 0.872705i \(-0.337636\pi\)
0.488247 + 0.872705i \(0.337636\pi\)
\(888\) 0 0
\(889\) −7.41053e12 −0.397916
\(890\) 1.65162e13 0.882379
\(891\) 0 0
\(892\) −4.82867e10 −0.00255379
\(893\) 1.60922e13 0.846804
\(894\) 0 0
\(895\) 3.69115e12 0.192290
\(896\) −8.67053e12 −0.449427
\(897\) 0 0
\(898\) −2.96428e13 −1.52116
\(899\) −3.54809e13 −1.81166
\(900\) 0 0
\(901\) −7.66937e11 −0.0387702
\(902\) −1.79057e11 −0.00900660
\(903\) 0 0
\(904\) −2.55450e13 −1.27218
\(905\) 2.85647e12 0.141551
\(906\) 0 0
\(907\) 2.53756e13 1.24504 0.622520 0.782604i \(-0.286109\pi\)
0.622520 + 0.782604i \(0.286109\pi\)
\(908\) 5.32495e12 0.259973
\(909\) 0 0
\(910\) −4.87740e12 −0.235777
\(911\) −1.84038e13 −0.885268 −0.442634 0.896702i \(-0.645956\pi\)
−0.442634 + 0.896702i \(0.645956\pi\)
\(912\) 0 0
\(913\) 3.62494e11 0.0172656
\(914\) 2.08790e13 0.989581
\(915\) 0 0
\(916\) −7.15798e12 −0.335939
\(917\) −5.78299e12 −0.270079
\(918\) 0 0
\(919\) 7.61943e12 0.352373 0.176186 0.984357i \(-0.443624\pi\)
0.176186 + 0.984357i \(0.443624\pi\)
\(920\) −9.53755e12 −0.438926
\(921\) 0 0
\(922\) −2.25125e13 −1.02597
\(923\) −4.13767e13 −1.87650
\(924\) 0 0
\(925\) −4.08630e12 −0.183524
\(926\) −4.08475e13 −1.82564
\(927\) 0 0
\(928\) 1.59240e13 0.704832
\(929\) 3.02391e12 0.133198 0.0665991 0.997780i \(-0.478785\pi\)
0.0665991 + 0.997780i \(0.478785\pi\)
\(930\) 0 0
\(931\) 2.33345e12 0.101795
\(932\) −7.33355e12 −0.318378
\(933\) 0 0
\(934\) 4.06097e12 0.174610
\(935\) −2.63755e10 −0.00112862
\(936\) 0 0
\(937\) −1.00516e13 −0.425999 −0.212999 0.977052i \(-0.568323\pi\)
−0.212999 + 0.977052i \(0.568323\pi\)
\(938\) −3.24276e12 −0.136774
\(939\) 0 0
\(940\) −4.52176e12 −0.188900
\(941\) 1.52744e13 0.635053 0.317526 0.948249i \(-0.397148\pi\)
0.317526 + 0.948249i \(0.397148\pi\)
\(942\) 0 0
\(943\) 5.31328e12 0.218806
\(944\) 5.17405e13 2.12059
\(945\) 0 0
\(946\) 9.50974e11 0.0386063
\(947\) −4.29774e13 −1.73646 −0.868230 0.496162i \(-0.834742\pi\)
−0.868230 + 0.496162i \(0.834742\pi\)
\(948\) 0 0
\(949\) −1.66924e13 −0.668068
\(950\) 4.16533e12 0.165918
\(951\) 0 0
\(952\) 3.92307e11 0.0154796
\(953\) −1.01121e13 −0.397120 −0.198560 0.980089i \(-0.563627\pi\)
−0.198560 + 0.980089i \(0.563627\pi\)
\(954\) 0 0
\(955\) 6.78876e12 0.264104
\(956\) −6.44251e12 −0.249457
\(957\) 0 0
\(958\) 5.16852e13 1.98254
\(959\) 1.31445e13 0.501833
\(960\) 0 0
\(961\) 5.44575e13 2.05969
\(962\) 3.40005e13 1.27996
\(963\) 0 0
\(964\) 6.23703e11 0.0232612
\(965\) −2.20688e13 −0.819229
\(966\) 0 0
\(967\) 4.14688e13 1.52511 0.762556 0.646922i \(-0.223944\pi\)
0.762556 + 0.646922i \(0.223944\pi\)
\(968\) 2.04558e13 0.748820
\(969\) 0 0
\(970\) 4.76101e12 0.172674
\(971\) −3.67205e12 −0.132563 −0.0662814 0.997801i \(-0.521114\pi\)
−0.0662814 + 0.997801i \(0.521114\pi\)
\(972\) 0 0
\(973\) −2.18226e12 −0.0780547
\(974\) 2.36459e13 0.841862
\(975\) 0 0
\(976\) −4.81010e13 −1.69680
\(977\) −8.95608e10 −0.00314480 −0.00157240 0.999999i \(-0.500501\pi\)
−0.00157240 + 0.999999i \(0.500501\pi\)
\(978\) 0 0
\(979\) −2.25245e12 −0.0783669
\(980\) −6.55680e11 −0.0227078
\(981\) 0 0
\(982\) −1.26467e13 −0.433985
\(983\) 4.67974e13 1.59857 0.799284 0.600953i \(-0.205212\pi\)
0.799284 + 0.600953i \(0.205212\pi\)
\(984\) 0 0
\(985\) −8.41802e12 −0.284936
\(986\) −1.95310e12 −0.0658078
\(987\) 0 0
\(988\) −9.08834e12 −0.303444
\(989\) −2.82190e13 −0.937902
\(990\) 0 0
\(991\) −1.94121e12 −0.0639353 −0.0319677 0.999489i \(-0.510177\pi\)
−0.0319677 + 0.999489i \(0.510177\pi\)
\(992\) −3.63070e13 −1.19038
\(993\) 0 0
\(994\) −2.12119e13 −0.689194
\(995\) 1.49347e13 0.483051
\(996\) 0 0
\(997\) 2.62275e13 0.840677 0.420338 0.907367i \(-0.361911\pi\)
0.420338 + 0.907367i \(0.361911\pi\)
\(998\) −4.78793e13 −1.52778
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.l.1.5 6
3.2 odd 2 35.10.a.e.1.2 6
15.2 even 4 175.10.b.g.99.4 12
15.8 even 4 175.10.b.g.99.9 12
15.14 odd 2 175.10.a.g.1.5 6
21.20 even 2 245.10.a.g.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.e.1.2 6 3.2 odd 2
175.10.a.g.1.5 6 15.14 odd 2
175.10.b.g.99.4 12 15.2 even 4
175.10.b.g.99.9 12 15.8 even 4
245.10.a.g.1.2 6 21.20 even 2
315.10.a.l.1.5 6 1.1 even 1 trivial