Properties

Label 175.4.a.c
Level 175175
Weight 44
Character orbit 175.a
Self dual yes
Analytic conductor 10.32510.325
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 10.325334251010.3253342510
Analytic rank: 11
Dimension: 22
Coefficient field: Q(2)\Q(\sqrt{2})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x22 x^{2} - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 35)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2\beta = \sqrt{2}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4)q2+(4β1)q3+(8β+10)q4+(15β4)q6+7q7+(34β24)q8+(8β+6)q9+(32β7)q11+(32β+54)q12++(136β+470)q99+O(q100) q + (\beta - 4) q^{2} + ( - 4 \beta - 1) q^{3} + ( - 8 \beta + 10) q^{4} + (15 \beta - 4) q^{6} + 7 q^{7} + (34 \beta - 24) q^{8} + (8 \beta + 6) q^{9} + (32 \beta - 7) q^{11} + ( - 32 \beta + 54) q^{12}+ \cdots + (136 \beta + 470) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q22q3+20q48q6+14q748q8+12q914q11+108q1250q1356q14+168q16+50q1716q18+36q1914q21+184q22244q23++940q99+O(q100) 2 q - 8 q^{2} - 2 q^{3} + 20 q^{4} - 8 q^{6} + 14 q^{7} - 48 q^{8} + 12 q^{9} - 14 q^{11} + 108 q^{12} - 50 q^{13} - 56 q^{14} + 168 q^{16} + 50 q^{17} - 16 q^{18} + 36 q^{19} - 14 q^{21} + 184 q^{22} - 244 q^{23}+ \cdots + 940 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.41421
1.41421
−5.41421 4.65685 21.3137 0 −25.2132 7.00000 −72.0833 −5.31371 0
1.2 −2.58579 −6.65685 −1.31371 0 17.2132 7.00000 24.0833 17.3137 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.4.a.c 2
3.b odd 2 1 1575.4.a.z 2
5.b even 2 1 35.4.a.b 2
5.c odd 4 2 175.4.b.c 4
7.b odd 2 1 1225.4.a.m 2
15.d odd 2 1 315.4.a.f 2
20.d odd 2 1 560.4.a.r 2
35.c odd 2 1 245.4.a.k 2
35.i odd 6 2 245.4.e.i 4
35.j even 6 2 245.4.e.h 4
40.e odd 2 1 2240.4.a.bo 2
40.f even 2 1 2240.4.a.bn 2
105.g even 2 1 2205.4.a.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.4.a.b 2 5.b even 2 1
175.4.a.c 2 1.a even 1 1 trivial
175.4.b.c 4 5.c odd 4 2
245.4.a.k 2 35.c odd 2 1
245.4.e.h 4 35.j even 6 2
245.4.e.i 4 35.i odd 6 2
315.4.a.f 2 15.d odd 2 1
560.4.a.r 2 20.d odd 2 1
1225.4.a.m 2 7.b odd 2 1
1575.4.a.z 2 3.b odd 2 1
2205.4.a.u 2 105.g even 2 1
2240.4.a.bn 2 40.f even 2 1
2240.4.a.bo 2 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+8T2+14 T_{2}^{2} + 8T_{2} + 14 acting on S4new(Γ0(175))S_{4}^{\mathrm{new}}(\Gamma_0(175)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+8T+14 T^{2} + 8T + 14 Copy content Toggle raw display
33 T2+2T31 T^{2} + 2T - 31 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T7)2 (T - 7)^{2} Copy content Toggle raw display
1111 T2+14T1999 T^{2} + 14T - 1999 Copy content Toggle raw display
1313 T2+50T+593 T^{2} + 50T + 593 Copy content Toggle raw display
1717 T250T3247 T^{2} - 50T - 3247 Copy content Toggle raw display
1919 T236T3548 T^{2} - 36T - 3548 Copy content Toggle raw display
2323 T2+244T+5636 T^{2} + 244T + 5636 Copy content Toggle raw display
2929 T2+26T983 T^{2} + 26T - 983 Copy content Toggle raw display
3131 T2+120T61200 T^{2} + 120T - 61200 Copy content Toggle raw display
3737 T2+564T+72324 T^{2} + 564T + 72324 Copy content Toggle raw display
4141 T2+328T3856 T^{2} + 328T - 3856 Copy content Toggle raw display
4343 T2260T+7652 T^{2} - 260T + 7652 Copy content Toggle raw display
4747 T2350T4223 T^{2} - 350T - 4223 Copy content Toggle raw display
5353 T256T31984 T^{2} - 56T - 31984 Copy content Toggle raw display
5959 (T+616)2 (T + 616)^{2} Copy content Toggle raw display
6161 T2336T+4896 T^{2} - 336T + 4896 Copy content Toggle raw display
6767 T2152T2416 T^{2} - 152T - 2416 Copy content Toggle raw display
7171 (T+952)2 (T + 952)^{2} Copy content Toggle raw display
7373 T2+676T122428 T^{2} + 676T - 122428 Copy content Toggle raw display
7979 T21014T+134041 T^{2} - 1014 T + 134041 Copy content Toggle raw display
8383 T2376T684656 T^{2} - 376T - 684656 Copy content Toggle raw display
8989 T2+216T+7792 T^{2} + 216T + 7792 Copy content Toggle raw display
9797 T2+2742T+1782841 T^{2} + 2742 T + 1782841 Copy content Toggle raw display
show more
show less