Properties

Label 245.4.a.k
Level $245$
Weight $4$
Character orbit 245.a
Self dual yes
Analytic conductor $14.455$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 4) q^{2} + (4 \beta - 1) q^{3} + (8 \beta + 10) q^{4} + 5 q^{5} + (15 \beta + 4) q^{6} + (34 \beta + 24) q^{8} + ( - 8 \beta + 6) q^{9} + (5 \beta + 20) q^{10} + ( - 32 \beta - 7) q^{11} + (32 \beta + 54) q^{12}+ \cdots + ( - 136 \beta + 470) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 2 q^{3} + 20 q^{4} + 10 q^{5} + 8 q^{6} + 48 q^{8} + 12 q^{9} + 40 q^{10} - 14 q^{11} + 108 q^{12} - 50 q^{13} - 10 q^{15} + 168 q^{16} + 50 q^{17} + 16 q^{18} - 36 q^{19} + 100 q^{20} - 184 q^{22}+ \cdots + 940 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
2.58579 −6.65685 −1.31371 5.00000 −17.2132 0 −24.0833 17.3137 12.9289
1.2 5.41421 4.65685 21.3137 5.00000 25.2132 0 72.0833 −5.31371 27.0711
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.4.a.k 2
3.b odd 2 1 2205.4.a.u 2
5.b even 2 1 1225.4.a.m 2
7.b odd 2 1 35.4.a.b 2
7.c even 3 2 245.4.e.i 4
7.d odd 6 2 245.4.e.h 4
21.c even 2 1 315.4.a.f 2
28.d even 2 1 560.4.a.r 2
35.c odd 2 1 175.4.a.c 2
35.f even 4 2 175.4.b.c 4
56.e even 2 1 2240.4.a.bo 2
56.h odd 2 1 2240.4.a.bn 2
105.g even 2 1 1575.4.a.z 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.4.a.b 2 7.b odd 2 1
175.4.a.c 2 35.c odd 2 1
175.4.b.c 4 35.f even 4 2
245.4.a.k 2 1.a even 1 1 trivial
245.4.e.h 4 7.d odd 6 2
245.4.e.i 4 7.c even 3 2
315.4.a.f 2 21.c even 2 1
560.4.a.r 2 28.d even 2 1
1225.4.a.m 2 5.b even 2 1
1575.4.a.z 2 105.g even 2 1
2205.4.a.u 2 3.b odd 2 1
2240.4.a.bn 2 56.h odd 2 1
2240.4.a.bo 2 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(245))\):

\( T_{2}^{2} - 8T_{2} + 14 \) Copy content Toggle raw display
\( T_{3}^{2} + 2T_{3} - 31 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 8T + 14 \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 31 \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 14T - 1999 \) Copy content Toggle raw display
$13$ \( T^{2} + 50T + 593 \) Copy content Toggle raw display
$17$ \( T^{2} - 50T - 3247 \) Copy content Toggle raw display
$19$ \( T^{2} + 36T - 3548 \) Copy content Toggle raw display
$23$ \( T^{2} - 244T + 5636 \) Copy content Toggle raw display
$29$ \( T^{2} + 26T - 983 \) Copy content Toggle raw display
$31$ \( T^{2} - 120T - 61200 \) Copy content Toggle raw display
$37$ \( T^{2} - 564T + 72324 \) Copy content Toggle raw display
$41$ \( T^{2} - 328T - 3856 \) Copy content Toggle raw display
$43$ \( T^{2} + 260T + 7652 \) Copy content Toggle raw display
$47$ \( T^{2} - 350T - 4223 \) Copy content Toggle raw display
$53$ \( T^{2} + 56T - 31984 \) Copy content Toggle raw display
$59$ \( (T - 616)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 336T + 4896 \) Copy content Toggle raw display
$67$ \( T^{2} + 152T - 2416 \) Copy content Toggle raw display
$71$ \( (T + 952)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 676T - 122428 \) Copy content Toggle raw display
$79$ \( T^{2} - 1014 T + 134041 \) Copy content Toggle raw display
$83$ \( T^{2} - 376T - 684656 \) Copy content Toggle raw display
$89$ \( T^{2} - 216T + 7792 \) Copy content Toggle raw display
$97$ \( T^{2} + 2742 T + 1782841 \) Copy content Toggle raw display
show more
show less