Properties

Label 175.4.b.d.99.2
Level $175$
Weight $4$
Character 175.99
Analytic conductor $10.325$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{41})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 21x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.2
Root \(-2.70156i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.4.b.d.99.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.70156i q^{2} -0.701562i q^{3} +0.701562 q^{4} -1.89531 q^{6} +7.00000i q^{7} -23.5078i q^{8} +26.5078 q^{9} +4.01562 q^{11} -0.492189i q^{12} -51.6125i q^{13} +18.9109 q^{14} -57.8953 q^{16} -67.5078i q^{17} -71.6125i q^{18} +50.9109 q^{19} +4.91093 q^{21} -10.8485i q^{22} -0.507811i q^{23} -16.4922 q^{24} -139.434 q^{26} -37.5391i q^{27} +4.91093i q^{28} +120.058 q^{29} -292.303 q^{31} -31.6547i q^{32} -2.81721i q^{33} -182.377 q^{34} +18.5969 q^{36} -144.989i q^{37} -137.539i q^{38} -36.2094 q^{39} -57.2047 q^{41} -13.2672i q^{42} +283.020i q^{43} +2.81721 q^{44} -1.37188 q^{46} -233.769i q^{47} +40.6172i q^{48} -49.0000 q^{49} -47.3609 q^{51} -36.2094i q^{52} +406.334i q^{53} -101.414 q^{54} +164.555 q^{56} -35.7172i q^{57} -324.344i q^{58} +577.328 q^{59} +322.116 q^{61} +789.675i q^{62} +185.555i q^{63} -548.680 q^{64} -7.61086 q^{66} +985.459i q^{67} -47.3609i q^{68} -0.356261 q^{69} +1033.57 q^{71} -623.141i q^{72} -692.720i q^{73} -391.697 q^{74} +35.7172 q^{76} +28.1093i q^{77} +97.8219i q^{78} +428.236 q^{79} +689.375 q^{81} +154.542i q^{82} +537.592i q^{83} +3.44533 q^{84} +764.597 q^{86} -84.2280i q^{87} -94.3985i q^{88} +802.073 q^{89} +361.287 q^{91} -0.356261i q^{92} +205.069i q^{93} -631.541 q^{94} -22.2077 q^{96} +1752.82i q^{97} +132.377i q^{98} +106.445 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{4} - 46 q^{6} + 42 q^{9} - 112 q^{11} - 14 q^{14} - 270 q^{16} + 114 q^{19} - 70 q^{21} - 130 q^{24} - 276 q^{26} + 826 q^{29} - 324 q^{31} - 102 q^{34} + 100 q^{36} - 68 q^{39} - 1010 q^{41}+ \cdots + 874 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.70156i − 0.955146i −0.878592 0.477573i \(-0.841517\pi\)
0.878592 0.477573i \(-0.158483\pi\)
\(3\) − 0.701562i − 0.135016i −0.997719 0.0675078i \(-0.978495\pi\)
0.997719 0.0675078i \(-0.0215048\pi\)
\(4\) 0.701562 0.0876953
\(5\) 0 0
\(6\) −1.89531 −0.128960
\(7\) 7.00000i 0.377964i
\(8\) − 23.5078i − 1.03891i
\(9\) 26.5078 0.981771
\(10\) 0 0
\(11\) 4.01562 0.110069 0.0550343 0.998484i \(-0.482473\pi\)
0.0550343 + 0.998484i \(0.482473\pi\)
\(12\) − 0.492189i − 0.0118402i
\(13\) − 51.6125i − 1.10113i −0.834791 0.550567i \(-0.814412\pi\)
0.834791 0.550567i \(-0.185588\pi\)
\(14\) 18.9109 0.361011
\(15\) 0 0
\(16\) −57.8953 −0.904614
\(17\) − 67.5078i − 0.963121i −0.876413 0.481560i \(-0.840070\pi\)
0.876413 0.481560i \(-0.159930\pi\)
\(18\) − 71.6125i − 0.937735i
\(19\) 50.9109 0.614725 0.307362 0.951593i \(-0.400554\pi\)
0.307362 + 0.951593i \(0.400554\pi\)
\(20\) 0 0
\(21\) 4.91093 0.0510311
\(22\) − 10.8485i − 0.105132i
\(23\) − 0.507811i − 0.00460373i −0.999997 0.00230187i \(-0.999267\pi\)
0.999997 0.00230187i \(-0.000732707\pi\)
\(24\) −16.4922 −0.140269
\(25\) 0 0
\(26\) −139.434 −1.05174
\(27\) − 37.5391i − 0.267570i
\(28\) 4.91093i 0.0331457i
\(29\) 120.058 0.768765 0.384382 0.923174i \(-0.374414\pi\)
0.384382 + 0.923174i \(0.374414\pi\)
\(30\) 0 0
\(31\) −292.303 −1.69352 −0.846761 0.531973i \(-0.821451\pi\)
−0.846761 + 0.531973i \(0.821451\pi\)
\(32\) − 31.6547i − 0.174869i
\(33\) − 2.81721i − 0.0148610i
\(34\) −182.377 −0.919921
\(35\) 0 0
\(36\) 18.5969 0.0860966
\(37\) − 144.989i − 0.644218i −0.946703 0.322109i \(-0.895608\pi\)
0.946703 0.322109i \(-0.104392\pi\)
\(38\) − 137.539i − 0.587152i
\(39\) −36.2094 −0.148670
\(40\) 0 0
\(41\) −57.2047 −0.217899 −0.108950 0.994047i \(-0.534749\pi\)
−0.108950 + 0.994047i \(0.534749\pi\)
\(42\) − 13.2672i − 0.0487422i
\(43\) 283.020i 1.00373i 0.864947 + 0.501863i \(0.167352\pi\)
−0.864947 + 0.501863i \(0.832648\pi\)
\(44\) 2.81721 0.00965250
\(45\) 0 0
\(46\) −1.37188 −0.00439724
\(47\) − 233.769i − 0.725504i −0.931886 0.362752i \(-0.881837\pi\)
0.931886 0.362752i \(-0.118163\pi\)
\(48\) 40.6172i 0.122137i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −47.3609 −0.130036
\(52\) − 36.2094i − 0.0965642i
\(53\) 406.334i 1.05310i 0.850144 + 0.526550i \(0.176515\pi\)
−0.850144 + 0.526550i \(0.823485\pi\)
\(54\) −101.414 −0.255569
\(55\) 0 0
\(56\) 164.555 0.392670
\(57\) − 35.7172i − 0.0829975i
\(58\) − 324.344i − 0.734283i
\(59\) 577.328 1.27393 0.636964 0.770894i \(-0.280190\pi\)
0.636964 + 0.770894i \(0.280190\pi\)
\(60\) 0 0
\(61\) 322.116 0.676110 0.338055 0.941126i \(-0.390231\pi\)
0.338055 + 0.941126i \(0.390231\pi\)
\(62\) 789.675i 1.61756i
\(63\) 185.555i 0.371074i
\(64\) −548.680 −1.07164
\(65\) 0 0
\(66\) −7.61086 −0.0141944
\(67\) 985.459i 1.79691i 0.439065 + 0.898455i \(0.355310\pi\)
−0.439065 + 0.898455i \(0.644690\pi\)
\(68\) − 47.3609i − 0.0844611i
\(69\) −0.356261 −0.000621576 0
\(70\) 0 0
\(71\) 1033.57 1.72764 0.863821 0.503799i \(-0.168065\pi\)
0.863821 + 0.503799i \(0.168065\pi\)
\(72\) − 623.141i − 1.01997i
\(73\) − 692.720i − 1.11064i −0.831637 0.555320i \(-0.812596\pi\)
0.831637 0.555320i \(-0.187404\pi\)
\(74\) −391.697 −0.615322
\(75\) 0 0
\(76\) 35.7172 0.0539084
\(77\) 28.1093i 0.0416020i
\(78\) 97.8219i 0.142002i
\(79\) 428.236 0.609877 0.304939 0.952372i \(-0.401364\pi\)
0.304939 + 0.952372i \(0.401364\pi\)
\(80\) 0 0
\(81\) 689.375 0.945645
\(82\) 154.542i 0.208126i
\(83\) 537.592i 0.710945i 0.934687 + 0.355472i \(0.115680\pi\)
−0.934687 + 0.355472i \(0.884320\pi\)
\(84\) 3.44533 0.00447519
\(85\) 0 0
\(86\) 764.597 0.958705
\(87\) − 84.2280i − 0.103795i
\(88\) − 94.3985i − 0.114351i
\(89\) 802.073 0.955277 0.477638 0.878557i \(-0.341493\pi\)
0.477638 + 0.878557i \(0.341493\pi\)
\(90\) 0 0
\(91\) 361.287 0.416189
\(92\) − 0.356261i 0 0.000403725i
\(93\) 205.069i 0.228652i
\(94\) −631.541 −0.692962
\(95\) 0 0
\(96\) −22.2077 −0.0236101
\(97\) 1752.82i 1.83477i 0.398004 + 0.917384i \(0.369703\pi\)
−0.398004 + 0.917384i \(0.630297\pi\)
\(98\) 132.377i 0.136449i
\(99\) 106.445 0.108062
\(100\) 0 0
\(101\) −1987.85 −1.95840 −0.979200 0.202896i \(-0.934965\pi\)
−0.979200 + 0.202896i \(0.934965\pi\)
\(102\) 127.948i 0.124204i
\(103\) 389.122i 0.372246i 0.982526 + 0.186123i \(0.0595923\pi\)
−0.982526 + 0.186123i \(0.940408\pi\)
\(104\) −1213.30 −1.14398
\(105\) 0 0
\(106\) 1097.74 1.00586
\(107\) − 508.595i − 0.459512i −0.973248 0.229756i \(-0.926207\pi\)
0.973248 0.229756i \(-0.0737928\pi\)
\(108\) − 26.3360i − 0.0234646i
\(109\) −344.130 −0.302400 −0.151200 0.988503i \(-0.548314\pi\)
−0.151200 + 0.988503i \(0.548314\pi\)
\(110\) 0 0
\(111\) −101.719 −0.0869795
\(112\) − 405.267i − 0.341912i
\(113\) 1218.12i 1.01408i 0.861923 + 0.507040i \(0.169260\pi\)
−0.861923 + 0.507040i \(0.830740\pi\)
\(114\) −96.4922 −0.0792748
\(115\) 0 0
\(116\) 84.2280 0.0674170
\(117\) − 1368.13i − 1.08106i
\(118\) − 1559.69i − 1.21679i
\(119\) 472.555 0.364025
\(120\) 0 0
\(121\) −1314.87 −0.987885
\(122\) − 870.215i − 0.645784i
\(123\) 40.1327i 0.0294198i
\(124\) −205.069 −0.148514
\(125\) 0 0
\(126\) 501.287 0.354430
\(127\) − 281.652i − 0.196792i −0.995147 0.0983958i \(-0.968629\pi\)
0.995147 0.0983958i \(-0.0313711\pi\)
\(128\) 1229.05i 0.848704i
\(129\) 198.556 0.135519
\(130\) 0 0
\(131\) −699.706 −0.466669 −0.233334 0.972397i \(-0.574964\pi\)
−0.233334 + 0.972397i \(0.574964\pi\)
\(132\) − 1.97645i − 0.00130324i
\(133\) 356.377i 0.232344i
\(134\) 2662.28 1.71631
\(135\) 0 0
\(136\) −1586.96 −1.00059
\(137\) 1588.77i 0.990789i 0.868668 + 0.495394i \(0.164976\pi\)
−0.868668 + 0.495394i \(0.835024\pi\)
\(138\) 0.962460i 0 0.000593696i
\(139\) −2564.09 −1.56463 −0.782315 0.622884i \(-0.785961\pi\)
−0.782315 + 0.622884i \(0.785961\pi\)
\(140\) 0 0
\(141\) −164.003 −0.0979544
\(142\) − 2792.26i − 1.65015i
\(143\) − 207.256i − 0.121200i
\(144\) −1534.68 −0.888124
\(145\) 0 0
\(146\) −1871.43 −1.06082
\(147\) 34.3765i 0.0192880i
\(148\) − 101.719i − 0.0564948i
\(149\) 3386.03 1.86171 0.930854 0.365390i \(-0.119065\pi\)
0.930854 + 0.365390i \(0.119065\pi\)
\(150\) 0 0
\(151\) −2301.98 −1.24061 −0.620306 0.784360i \(-0.712992\pi\)
−0.620306 + 0.784360i \(0.712992\pi\)
\(152\) − 1196.80i − 0.638643i
\(153\) − 1789.48i − 0.945564i
\(154\) 75.9392 0.0397360
\(155\) 0 0
\(156\) −25.4031 −0.0130377
\(157\) 587.325i 0.298558i 0.988795 + 0.149279i \(0.0476953\pi\)
−0.988795 + 0.149279i \(0.952305\pi\)
\(158\) − 1156.91i − 0.582522i
\(159\) 285.069 0.142185
\(160\) 0 0
\(161\) 3.55467 0.00174005
\(162\) − 1862.39i − 0.903229i
\(163\) − 914.189i − 0.439293i −0.975579 0.219647i \(-0.929510\pi\)
0.975579 0.219647i \(-0.0704905\pi\)
\(164\) −40.1327 −0.0191087
\(165\) 0 0
\(166\) 1452.34 0.679056
\(167\) 3316.66i 1.53683i 0.639951 + 0.768416i \(0.278955\pi\)
−0.639951 + 0.768416i \(0.721045\pi\)
\(168\) − 115.445i − 0.0530167i
\(169\) −466.850 −0.212494
\(170\) 0 0
\(171\) 1349.54 0.603519
\(172\) 198.556i 0.0880220i
\(173\) − 1542.16i − 0.677737i −0.940834 0.338868i \(-0.889956\pi\)
0.940834 0.338868i \(-0.110044\pi\)
\(174\) −227.547 −0.0991397
\(175\) 0 0
\(176\) −232.486 −0.0995697
\(177\) − 405.031i − 0.172000i
\(178\) − 2166.85i − 0.912429i
\(179\) 550.755 0.229974 0.114987 0.993367i \(-0.463317\pi\)
0.114987 + 0.993367i \(0.463317\pi\)
\(180\) 0 0
\(181\) −3562.15 −1.46283 −0.731416 0.681931i \(-0.761140\pi\)
−0.731416 + 0.681931i \(0.761140\pi\)
\(182\) − 976.041i − 0.397522i
\(183\) − 225.984i − 0.0912854i
\(184\) −11.9375 −0.00478285
\(185\) 0 0
\(186\) 554.006 0.218396
\(187\) − 271.086i − 0.106009i
\(188\) − 164.003i − 0.0636232i
\(189\) 262.773 0.101132
\(190\) 0 0
\(191\) 3436.00 1.30168 0.650838 0.759217i \(-0.274418\pi\)
0.650838 + 0.759217i \(0.274418\pi\)
\(192\) 384.933i 0.144688i
\(193\) − 1047.12i − 0.390534i −0.980750 0.195267i \(-0.937443\pi\)
0.980750 0.195267i \(-0.0625573\pi\)
\(194\) 4735.37 1.75247
\(195\) 0 0
\(196\) −34.3765 −0.0125279
\(197\) − 3205.61i − 1.15934i −0.814851 0.579670i \(-0.803181\pi\)
0.814851 0.579670i \(-0.196819\pi\)
\(198\) − 287.569i − 0.103215i
\(199\) −22.0532 −0.00785581 −0.00392791 0.999992i \(-0.501250\pi\)
−0.00392791 + 0.999992i \(0.501250\pi\)
\(200\) 0 0
\(201\) 691.361 0.242611
\(202\) 5370.30i 1.87056i
\(203\) 840.405i 0.290566i
\(204\) −33.2266 −0.0114036
\(205\) 0 0
\(206\) 1051.24 0.355549
\(207\) − 13.4609i − 0.00451981i
\(208\) 2988.12i 0.996101i
\(209\) 204.439 0.0676619
\(210\) 0 0
\(211\) 2362.52 0.770819 0.385410 0.922746i \(-0.374060\pi\)
0.385410 + 0.922746i \(0.374060\pi\)
\(212\) 285.069i 0.0923519i
\(213\) − 725.116i − 0.233259i
\(214\) −1374.00 −0.438901
\(215\) 0 0
\(216\) −882.461 −0.277981
\(217\) − 2046.12i − 0.640091i
\(218\) 929.688i 0.288837i
\(219\) −485.986 −0.149954
\(220\) 0 0
\(221\) −3484.25 −1.06052
\(222\) 274.800i 0.0830781i
\(223\) 1428.67i 0.429016i 0.976722 + 0.214508i \(0.0688148\pi\)
−0.976722 + 0.214508i \(0.931185\pi\)
\(224\) 221.583 0.0660943
\(225\) 0 0
\(226\) 3290.82 0.968594
\(227\) 5979.38i 1.74831i 0.485651 + 0.874153i \(0.338582\pi\)
−0.485651 + 0.874153i \(0.661418\pi\)
\(228\) − 25.0578i − 0.00727849i
\(229\) −6377.77 −1.84042 −0.920208 0.391430i \(-0.871980\pi\)
−0.920208 + 0.391430i \(0.871980\pi\)
\(230\) 0 0
\(231\) 19.7205 0.00561693
\(232\) − 2822.30i − 0.798676i
\(233\) 4947.18i 1.39099i 0.718531 + 0.695495i \(0.244815\pi\)
−0.718531 + 0.695495i \(0.755185\pi\)
\(234\) −3696.10 −1.03257
\(235\) 0 0
\(236\) 405.031 0.111717
\(237\) − 300.434i − 0.0823430i
\(238\) − 1276.64i − 0.347698i
\(239\) 348.213 0.0942427 0.0471213 0.998889i \(-0.484995\pi\)
0.0471213 + 0.998889i \(0.484995\pi\)
\(240\) 0 0
\(241\) 4702.23 1.25683 0.628417 0.777876i \(-0.283703\pi\)
0.628417 + 0.777876i \(0.283703\pi\)
\(242\) 3552.22i 0.943575i
\(243\) − 1497.19i − 0.395247i
\(244\) 225.984 0.0592916
\(245\) 0 0
\(246\) 108.421 0.0281003
\(247\) − 2627.64i − 0.676894i
\(248\) 6871.41i 1.75941i
\(249\) 377.154 0.0959887
\(250\) 0 0
\(251\) −2431.64 −0.611489 −0.305745 0.952114i \(-0.598905\pi\)
−0.305745 + 0.952114i \(0.598905\pi\)
\(252\) 130.178i 0.0325415i
\(253\) − 2.03917i 0 0.000506727i
\(254\) −760.899 −0.187965
\(255\) 0 0
\(256\) −1069.07 −0.261003
\(257\) − 1631.76i − 0.396055i −0.980196 0.198028i \(-0.936546\pi\)
0.980196 0.198028i \(-0.0634535\pi\)
\(258\) − 536.412i − 0.129440i
\(259\) 1014.92 0.243491
\(260\) 0 0
\(261\) 3182.47 0.754751
\(262\) 1890.30i 0.445737i
\(263\) 3563.67i 0.835534i 0.908554 + 0.417767i \(0.137187\pi\)
−0.908554 + 0.417767i \(0.862813\pi\)
\(264\) −66.2264 −0.0154392
\(265\) 0 0
\(266\) 962.773 0.221923
\(267\) − 562.704i − 0.128977i
\(268\) 691.361i 0.157581i
\(269\) −791.631 −0.179430 −0.0897149 0.995967i \(-0.528596\pi\)
−0.0897149 + 0.995967i \(0.528596\pi\)
\(270\) 0 0
\(271\) 7823.17 1.75359 0.876796 0.480862i \(-0.159676\pi\)
0.876796 + 0.480862i \(0.159676\pi\)
\(272\) 3908.39i 0.871253i
\(273\) − 253.466i − 0.0561921i
\(274\) 4292.17 0.946348
\(275\) 0 0
\(276\) −0.249939 −5.45093e−5 0
\(277\) − 1554.16i − 0.337114i −0.985692 0.168557i \(-0.946089\pi\)
0.985692 0.168557i \(-0.0539107\pi\)
\(278\) 6927.05i 1.49445i
\(279\) −7748.32 −1.66265
\(280\) 0 0
\(281\) −5043.72 −1.07076 −0.535379 0.844612i \(-0.679831\pi\)
−0.535379 + 0.844612i \(0.679831\pi\)
\(282\) 443.065i 0.0935608i
\(283\) 5897.15i 1.23869i 0.785119 + 0.619345i \(0.212602\pi\)
−0.785119 + 0.619345i \(0.787398\pi\)
\(284\) 725.116 0.151506
\(285\) 0 0
\(286\) −559.916 −0.115764
\(287\) − 400.433i − 0.0823582i
\(288\) − 839.097i − 0.171681i
\(289\) 355.696 0.0723988
\(290\) 0 0
\(291\) 1229.72 0.247722
\(292\) − 485.986i − 0.0973979i
\(293\) − 8592.25i − 1.71319i −0.515990 0.856595i \(-0.672576\pi\)
0.515990 0.856595i \(-0.327424\pi\)
\(294\) 92.8704 0.0184228
\(295\) 0 0
\(296\) −3408.37 −0.669283
\(297\) − 150.743i − 0.0294511i
\(298\) − 9147.58i − 1.77820i
\(299\) −26.2094 −0.00506932
\(300\) 0 0
\(301\) −1981.14 −0.379373
\(302\) 6218.94i 1.18497i
\(303\) 1394.60i 0.264415i
\(304\) −2947.50 −0.556089
\(305\) 0 0
\(306\) −4834.40 −0.903152
\(307\) − 3682.20i − 0.684542i −0.939601 0.342271i \(-0.888804\pi\)
0.939601 0.342271i \(-0.111196\pi\)
\(308\) 19.7205i 0.00364830i
\(309\) 272.993 0.0502590
\(310\) 0 0
\(311\) 6866.18 1.25191 0.625957 0.779858i \(-0.284709\pi\)
0.625957 + 0.779858i \(0.284709\pi\)
\(312\) 851.203i 0.154455i
\(313\) − 2958.60i − 0.534281i −0.963658 0.267140i \(-0.913921\pi\)
0.963658 0.267140i \(-0.0860788\pi\)
\(314\) 1586.69 0.285167
\(315\) 0 0
\(316\) 300.434 0.0534834
\(317\) 1585.21i 0.280866i 0.990090 + 0.140433i \(0.0448494\pi\)
−0.990090 + 0.140433i \(0.955151\pi\)
\(318\) − 770.131i − 0.135808i
\(319\) 482.107 0.0846169
\(320\) 0 0
\(321\) −356.811 −0.0620413
\(322\) − 9.60317i − 0.00166200i
\(323\) − 3436.89i − 0.592054i
\(324\) 483.639 0.0829286
\(325\) 0 0
\(326\) −2469.74 −0.419589
\(327\) 241.428i 0.0408288i
\(328\) 1344.76i 0.226377i
\(329\) 1636.38 0.274215
\(330\) 0 0
\(331\) 6045.84 1.00396 0.501978 0.864880i \(-0.332606\pi\)
0.501978 + 0.864880i \(0.332606\pi\)
\(332\) 377.154i 0.0623465i
\(333\) − 3843.34i − 0.632474i
\(334\) 8960.16 1.46790
\(335\) 0 0
\(336\) −284.320 −0.0461635
\(337\) − 9205.64i − 1.48802i −0.668168 0.744010i \(-0.732921\pi\)
0.668168 0.744010i \(-0.267079\pi\)
\(338\) 1261.22i 0.202963i
\(339\) 854.586 0.136917
\(340\) 0 0
\(341\) −1173.78 −0.186404
\(342\) − 3645.86i − 0.576449i
\(343\) − 343.000i − 0.0539949i
\(344\) 6653.19 1.04278
\(345\) 0 0
\(346\) −4166.25 −0.647338
\(347\) − 3092.28i − 0.478393i −0.970971 0.239196i \(-0.923116\pi\)
0.970971 0.239196i \(-0.0768839\pi\)
\(348\) − 59.0912i − 0.00910236i
\(349\) 5231.61 0.802412 0.401206 0.915988i \(-0.368591\pi\)
0.401206 + 0.915988i \(0.368591\pi\)
\(350\) 0 0
\(351\) −1937.48 −0.294630
\(352\) − 127.113i − 0.0192476i
\(353\) − 9013.71i − 1.35907i −0.733644 0.679534i \(-0.762182\pi\)
0.733644 0.679534i \(-0.237818\pi\)
\(354\) −1094.22 −0.164285
\(355\) 0 0
\(356\) 562.704 0.0837732
\(357\) − 331.526i − 0.0491491i
\(358\) − 1487.90i − 0.219659i
\(359\) 4779.38 0.702635 0.351317 0.936256i \(-0.385734\pi\)
0.351317 + 0.936256i \(0.385734\pi\)
\(360\) 0 0
\(361\) −4267.08 −0.622114
\(362\) 9623.38i 1.39722i
\(363\) 922.466i 0.133380i
\(364\) 253.466 0.0364978
\(365\) 0 0
\(366\) −610.510 −0.0871909
\(367\) 175.769i 0.0250001i 0.999922 + 0.0125001i \(0.00397900\pi\)
−0.999922 + 0.0125001i \(0.996021\pi\)
\(368\) 29.3999i 0.00416460i
\(369\) −1516.37 −0.213927
\(370\) 0 0
\(371\) −2844.34 −0.398034
\(372\) 143.868i 0.0200517i
\(373\) − 7982.98i − 1.10816i −0.832464 0.554079i \(-0.813070\pi\)
0.832464 0.554079i \(-0.186930\pi\)
\(374\) −732.355 −0.101254
\(375\) 0 0
\(376\) −5495.39 −0.753732
\(377\) − 6196.48i − 0.846512i
\(378\) − 709.899i − 0.0965959i
\(379\) −12663.1 −1.71626 −0.858129 0.513434i \(-0.828373\pi\)
−0.858129 + 0.513434i \(0.828373\pi\)
\(380\) 0 0
\(381\) −197.596 −0.0265700
\(382\) − 9282.56i − 1.24329i
\(383\) − 4678.68i − 0.624202i −0.950049 0.312101i \(-0.898967\pi\)
0.950049 0.312101i \(-0.101033\pi\)
\(384\) 862.258 0.114588
\(385\) 0 0
\(386\) −2828.85 −0.373017
\(387\) 7502.25i 0.985428i
\(388\) 1229.72i 0.160900i
\(389\) 50.2546 0.00655015 0.00327508 0.999995i \(-0.498958\pi\)
0.00327508 + 0.999995i \(0.498958\pi\)
\(390\) 0 0
\(391\) −34.2812 −0.00443395
\(392\) 1151.88i 0.148415i
\(393\) 490.887i 0.0630076i
\(394\) −8660.15 −1.10734
\(395\) 0 0
\(396\) 74.6780 0.00947654
\(397\) − 11059.9i − 1.39819i −0.715029 0.699095i \(-0.753587\pi\)
0.715029 0.699095i \(-0.246413\pi\)
\(398\) 59.5780i 0.00750345i
\(399\) 250.020 0.0313701
\(400\) 0 0
\(401\) −13667.8 −1.70209 −0.851046 0.525092i \(-0.824031\pi\)
−0.851046 + 0.525092i \(0.824031\pi\)
\(402\) − 1867.75i − 0.231729i
\(403\) 15086.5i 1.86479i
\(404\) −1394.60 −0.171742
\(405\) 0 0
\(406\) 2270.41 0.277533
\(407\) − 582.221i − 0.0709082i
\(408\) 1113.35i 0.135096i
\(409\) 10990.5 1.32872 0.664359 0.747414i \(-0.268705\pi\)
0.664359 + 0.747414i \(0.268705\pi\)
\(410\) 0 0
\(411\) 1114.62 0.133772
\(412\) 272.993i 0.0326442i
\(413\) 4041.30i 0.481499i
\(414\) −36.3656 −0.00431708
\(415\) 0 0
\(416\) −1633.78 −0.192554
\(417\) 1798.87i 0.211249i
\(418\) − 552.305i − 0.0646271i
\(419\) −1115.39 −0.130049 −0.0650246 0.997884i \(-0.520713\pi\)
−0.0650246 + 0.997884i \(0.520713\pi\)
\(420\) 0 0
\(421\) −2395.26 −0.277287 −0.138643 0.990342i \(-0.544274\pi\)
−0.138643 + 0.990342i \(0.544274\pi\)
\(422\) − 6382.50i − 0.736245i
\(423\) − 6196.70i − 0.712278i
\(424\) 9552.03 1.09407
\(425\) 0 0
\(426\) −1958.95 −0.222796
\(427\) 2254.81i 0.255545i
\(428\) − 356.811i − 0.0402970i
\(429\) −145.403 −0.0163639
\(430\) 0 0
\(431\) 1684.62 0.188272 0.0941360 0.995559i \(-0.469991\pi\)
0.0941360 + 0.995559i \(0.469991\pi\)
\(432\) 2173.34i 0.242048i
\(433\) 13355.7i 1.48230i 0.671340 + 0.741150i \(0.265719\pi\)
−0.671340 + 0.741150i \(0.734281\pi\)
\(434\) −5527.72 −0.611381
\(435\) 0 0
\(436\) −241.428 −0.0265191
\(437\) − 25.8531i − 0.00283003i
\(438\) 1312.92i 0.143228i
\(439\) −13817.4 −1.50220 −0.751101 0.660188i \(-0.770477\pi\)
−0.751101 + 0.660188i \(0.770477\pi\)
\(440\) 0 0
\(441\) −1298.88 −0.140253
\(442\) 9412.91i 1.01296i
\(443\) − 6305.19i − 0.676227i −0.941105 0.338114i \(-0.890211\pi\)
0.941105 0.338114i \(-0.109789\pi\)
\(444\) −71.3621 −0.00762769
\(445\) 0 0
\(446\) 3859.63 0.409773
\(447\) − 2375.51i − 0.251360i
\(448\) − 3840.76i − 0.405042i
\(449\) −5446.85 −0.572501 −0.286250 0.958155i \(-0.592409\pi\)
−0.286250 + 0.958155i \(0.592409\pi\)
\(450\) 0 0
\(451\) −229.712 −0.0239839
\(452\) 854.586i 0.0889300i
\(453\) 1614.98i 0.167502i
\(454\) 16153.7 1.66989
\(455\) 0 0
\(456\) −839.633 −0.0862268
\(457\) 1221.02i 0.124982i 0.998046 + 0.0624910i \(0.0199045\pi\)
−0.998046 + 0.0624910i \(0.980096\pi\)
\(458\) 17230.0i 1.75787i
\(459\) −2534.18 −0.257702
\(460\) 0 0
\(461\) 9967.46 1.00701 0.503504 0.863993i \(-0.332044\pi\)
0.503504 + 0.863993i \(0.332044\pi\)
\(462\) − 53.2760i − 0.00536499i
\(463\) 6309.54i 0.633324i 0.948538 + 0.316662i \(0.102562\pi\)
−0.948538 + 0.316662i \(0.897438\pi\)
\(464\) −6950.79 −0.695436
\(465\) 0 0
\(466\) 13365.1 1.32860
\(467\) 7784.79i 0.771386i 0.922627 + 0.385693i \(0.126038\pi\)
−0.922627 + 0.385693i \(0.873962\pi\)
\(468\) − 959.831i − 0.0948039i
\(469\) −6898.22 −0.679168
\(470\) 0 0
\(471\) 412.045 0.0403100
\(472\) − 13571.7i − 1.32349i
\(473\) 1136.50i 0.110479i
\(474\) −811.641 −0.0786496
\(475\) 0 0
\(476\) 331.526 0.0319233
\(477\) 10771.0i 1.03390i
\(478\) − 940.718i − 0.0900156i
\(479\) 4425.28 0.422122 0.211061 0.977473i \(-0.432308\pi\)
0.211061 + 0.977473i \(0.432308\pi\)
\(480\) 0 0
\(481\) −7483.25 −0.709369
\(482\) − 12703.4i − 1.20046i
\(483\) − 2.49382i 0 0.000234934i
\(484\) −922.466 −0.0866328
\(485\) 0 0
\(486\) −4044.76 −0.377519
\(487\) 13075.3i 1.21663i 0.793695 + 0.608315i \(0.208154\pi\)
−0.793695 + 0.608315i \(0.791846\pi\)
\(488\) − 7572.23i − 0.702416i
\(489\) −641.360 −0.0593115
\(490\) 0 0
\(491\) 11455.7 1.05293 0.526463 0.850198i \(-0.323518\pi\)
0.526463 + 0.850198i \(0.323518\pi\)
\(492\) 28.1556i 0.00257998i
\(493\) − 8104.84i − 0.740413i
\(494\) −7098.73 −0.646533
\(495\) 0 0
\(496\) 16923.0 1.53198
\(497\) 7235.01i 0.652987i
\(498\) − 1018.91i − 0.0916833i
\(499\) −5521.10 −0.495307 −0.247654 0.968849i \(-0.579660\pi\)
−0.247654 + 0.968849i \(0.579660\pi\)
\(500\) 0 0
\(501\) 2326.84 0.207496
\(502\) 6569.23i 0.584062i
\(503\) 11491.6i 1.01866i 0.860573 + 0.509328i \(0.170106\pi\)
−0.860573 + 0.509328i \(0.829894\pi\)
\(504\) 4361.98 0.385512
\(505\) 0 0
\(506\) −5.50896 −0.000483998 0
\(507\) 327.524i 0.0286901i
\(508\) − 197.596i − 0.0172577i
\(509\) 9207.84 0.801828 0.400914 0.916116i \(-0.368693\pi\)
0.400914 + 0.916116i \(0.368693\pi\)
\(510\) 0 0
\(511\) 4849.04 0.419783
\(512\) 12720.6i 1.09800i
\(513\) − 1911.15i − 0.164482i
\(514\) −4408.29 −0.378291
\(515\) 0 0
\(516\) 139.300 0.0118843
\(517\) − 938.727i − 0.0798552i
\(518\) − 2741.88i − 0.232570i
\(519\) −1081.92 −0.0915051
\(520\) 0 0
\(521\) −11598.0 −0.975271 −0.487636 0.873047i \(-0.662141\pi\)
−0.487636 + 0.873047i \(0.662141\pi\)
\(522\) − 8597.64i − 0.720898i
\(523\) − 4596.93i − 0.384340i −0.981362 0.192170i \(-0.938448\pi\)
0.981362 0.192170i \(-0.0615525\pi\)
\(524\) −490.887 −0.0409246
\(525\) 0 0
\(526\) 9627.49 0.798058
\(527\) 19732.7i 1.63107i
\(528\) 163.103i 0.0134435i
\(529\) 12166.7 0.999979
\(530\) 0 0
\(531\) 15303.7 1.25070
\(532\) 250.020i 0.0203755i
\(533\) 2952.48i 0.239936i
\(534\) −1520.18 −0.123192
\(535\) 0 0
\(536\) 23166.0 1.86683
\(537\) − 386.389i − 0.0310501i
\(538\) 2138.64i 0.171382i
\(539\) −196.765 −0.0157241
\(540\) 0 0
\(541\) −8427.65 −0.669747 −0.334874 0.942263i \(-0.608694\pi\)
−0.334874 + 0.942263i \(0.608694\pi\)
\(542\) − 21134.8i − 1.67494i
\(543\) 2499.07i 0.197505i
\(544\) −2136.94 −0.168420
\(545\) 0 0
\(546\) −684.753 −0.0536717
\(547\) 12864.6i 1.00557i 0.864410 + 0.502787i \(0.167692\pi\)
−0.864410 + 0.502787i \(0.832308\pi\)
\(548\) 1114.62i 0.0868875i
\(549\) 8538.58 0.663785
\(550\) 0 0
\(551\) 6112.26 0.472579
\(552\) 8.37491i 0 0.000645760i
\(553\) 2997.65i 0.230512i
\(554\) −4198.67 −0.321993
\(555\) 0 0
\(556\) −1798.87 −0.137211
\(557\) − 19219.4i − 1.46203i −0.682360 0.731016i \(-0.739046\pi\)
0.682360 0.731016i \(-0.260954\pi\)
\(558\) 20932.6i 1.58807i
\(559\) 14607.4 1.10524
\(560\) 0 0
\(561\) −190.184 −0.0143129
\(562\) 13625.9i 1.02273i
\(563\) − 17253.3i − 1.29155i −0.763529 0.645774i \(-0.776535\pi\)
0.763529 0.645774i \(-0.223465\pi\)
\(564\) −115.058 −0.00859013
\(565\) 0 0
\(566\) 15931.5 1.18313
\(567\) 4825.62i 0.357420i
\(568\) − 24297.0i − 1.79486i
\(569\) 6242.80 0.459950 0.229975 0.973197i \(-0.426136\pi\)
0.229975 + 0.973197i \(0.426136\pi\)
\(570\) 0 0
\(571\) 5904.17 0.432718 0.216359 0.976314i \(-0.430582\pi\)
0.216359 + 0.976314i \(0.430582\pi\)
\(572\) − 145.403i − 0.0106287i
\(573\) − 2410.57i − 0.175747i
\(574\) −1081.79 −0.0786642
\(575\) 0 0
\(576\) −14544.3 −1.05210
\(577\) 11390.2i 0.821806i 0.911679 + 0.410903i \(0.134786\pi\)
−0.911679 + 0.410903i \(0.865214\pi\)
\(578\) − 960.934i − 0.0691515i
\(579\) −734.617 −0.0527282
\(580\) 0 0
\(581\) −3763.15 −0.268712
\(582\) − 3322.15i − 0.236611i
\(583\) 1631.68i 0.115913i
\(584\) −16284.3 −1.15385
\(585\) 0 0
\(586\) −23212.5 −1.63635
\(587\) − 20459.5i − 1.43859i −0.694704 0.719295i \(-0.744465\pi\)
0.694704 0.719295i \(-0.255535\pi\)
\(588\) 24.1173i 0.00169146i
\(589\) −14881.4 −1.04105
\(590\) 0 0
\(591\) −2248.93 −0.156529
\(592\) 8394.19i 0.582768i
\(593\) − 20051.1i − 1.38853i −0.719719 0.694266i \(-0.755729\pi\)
0.719719 0.694266i \(-0.244271\pi\)
\(594\) −407.241 −0.0281301
\(595\) 0 0
\(596\) 2375.51 0.163263
\(597\) 15.4717i 0.00106066i
\(598\) 70.8062i 0.00484194i
\(599\) −10578.4 −0.721572 −0.360786 0.932649i \(-0.617492\pi\)
−0.360786 + 0.932649i \(0.617492\pi\)
\(600\) 0 0
\(601\) −4619.46 −0.313530 −0.156765 0.987636i \(-0.550107\pi\)
−0.156765 + 0.987636i \(0.550107\pi\)
\(602\) 5352.18i 0.362356i
\(603\) 26122.4i 1.76415i
\(604\) −1614.98 −0.108796
\(605\) 0 0
\(606\) 3767.60 0.252555
\(607\) 5724.50i 0.382785i 0.981514 + 0.191392i \(0.0613003\pi\)
−0.981514 + 0.191392i \(0.938700\pi\)
\(608\) − 1611.57i − 0.107496i
\(609\) 589.596 0.0392309
\(610\) 0 0
\(611\) −12065.4 −0.798876
\(612\) − 1255.43i − 0.0829214i
\(613\) 19286.4i 1.27075i 0.772204 + 0.635375i \(0.219154\pi\)
−0.772204 + 0.635375i \(0.780846\pi\)
\(614\) −9947.70 −0.653838
\(615\) 0 0
\(616\) 660.789 0.0432207
\(617\) 6864.84i 0.447922i 0.974598 + 0.223961i \(0.0718989\pi\)
−0.974598 + 0.223961i \(0.928101\pi\)
\(618\) − 737.508i − 0.0480047i
\(619\) 17559.4 1.14018 0.570090 0.821582i \(-0.306908\pi\)
0.570090 + 0.821582i \(0.306908\pi\)
\(620\) 0 0
\(621\) −19.0627 −0.00123182
\(622\) − 18549.4i − 1.19576i
\(623\) 5614.51i 0.361061i
\(624\) 2096.35 0.134489
\(625\) 0 0
\(626\) −7992.84 −0.510317
\(627\) − 143.427i − 0.00913542i
\(628\) 412.045i 0.0261821i
\(629\) −9787.89 −0.620459
\(630\) 0 0
\(631\) −24780.6 −1.56339 −0.781694 0.623662i \(-0.785644\pi\)
−0.781694 + 0.623662i \(0.785644\pi\)
\(632\) − 10066.9i − 0.633607i
\(633\) − 1657.46i − 0.104073i
\(634\) 4282.55 0.268268
\(635\) 0 0
\(636\) 199.993 0.0124690
\(637\) 2529.01i 0.157305i
\(638\) − 1302.44i − 0.0808215i
\(639\) 27397.8 1.69615
\(640\) 0 0
\(641\) −21724.3 −1.33863 −0.669313 0.742980i \(-0.733412\pi\)
−0.669313 + 0.742980i \(0.733412\pi\)
\(642\) 963.947i 0.0592585i
\(643\) 18736.1i 1.14911i 0.818466 + 0.574555i \(0.194825\pi\)
−0.818466 + 0.574555i \(0.805175\pi\)
\(644\) 2.49382 0.000152594 0
\(645\) 0 0
\(646\) −9284.96 −0.565498
\(647\) − 25687.8i − 1.56088i −0.625228 0.780442i \(-0.714994\pi\)
0.625228 0.780442i \(-0.285006\pi\)
\(648\) − 16205.7i − 0.982438i
\(649\) 2318.33 0.140219
\(650\) 0 0
\(651\) −1435.48 −0.0864224
\(652\) − 641.360i − 0.0385239i
\(653\) − 15450.7i − 0.925929i −0.886377 0.462964i \(-0.846786\pi\)
0.886377 0.462964i \(-0.153214\pi\)
\(654\) 652.234 0.0389975
\(655\) 0 0
\(656\) 3311.88 0.197115
\(657\) − 18362.5i − 1.09039i
\(658\) − 4420.78i − 0.261915i
\(659\) 1402.85 0.0829246 0.0414623 0.999140i \(-0.486798\pi\)
0.0414623 + 0.999140i \(0.486798\pi\)
\(660\) 0 0
\(661\) 6896.75 0.405828 0.202914 0.979197i \(-0.434959\pi\)
0.202914 + 0.979197i \(0.434959\pi\)
\(662\) − 16333.2i − 0.958926i
\(663\) 2444.42i 0.143187i
\(664\) 12637.6 0.738606
\(665\) 0 0
\(666\) −10383.0 −0.604105
\(667\) − 60.9666i − 0.00353919i
\(668\) 2326.84i 0.134773i
\(669\) 1002.30 0.0579239
\(670\) 0 0
\(671\) 1293.49 0.0744185
\(672\) − 155.454i − 0.00892377i
\(673\) 3869.29i 0.221620i 0.993842 + 0.110810i \(0.0353445\pi\)
−0.993842 + 0.110810i \(0.964656\pi\)
\(674\) −24869.6 −1.42128
\(675\) 0 0
\(676\) −327.524 −0.0186347
\(677\) 711.604i 0.0403976i 0.999796 + 0.0201988i \(0.00642991\pi\)
−0.999796 + 0.0201988i \(0.993570\pi\)
\(678\) − 2308.72i − 0.130775i
\(679\) −12269.8 −0.693477
\(680\) 0 0
\(681\) 4194.91 0.236049
\(682\) 3171.04i 0.178043i
\(683\) 13112.0i 0.734577i 0.930107 + 0.367288i \(0.119714\pi\)
−0.930107 + 0.367288i \(0.880286\pi\)
\(684\) 946.784 0.0529257
\(685\) 0 0
\(686\) −926.636 −0.0515731
\(687\) 4474.40i 0.248485i
\(688\) − 16385.5i − 0.907984i
\(689\) 20971.9 1.15960
\(690\) 0 0
\(691\) −12573.5 −0.692211 −0.346105 0.938196i \(-0.612496\pi\)
−0.346105 + 0.938196i \(0.612496\pi\)
\(692\) − 1081.92i − 0.0594343i
\(693\) 745.117i 0.0408437i
\(694\) −8353.98 −0.456935
\(695\) 0 0
\(696\) −1980.02 −0.107834
\(697\) 3861.76i 0.209863i
\(698\) − 14133.5i − 0.766421i
\(699\) 3470.75 0.187805
\(700\) 0 0
\(701\) −7489.24 −0.403516 −0.201758 0.979435i \(-0.564665\pi\)
−0.201758 + 0.979435i \(0.564665\pi\)
\(702\) 5234.23i 0.281415i
\(703\) − 7381.53i − 0.396016i
\(704\) −2203.29 −0.117954
\(705\) 0 0
\(706\) −24351.1 −1.29811
\(707\) − 13914.9i − 0.740206i
\(708\) − 284.155i − 0.0150836i
\(709\) −20869.6 −1.10547 −0.552733 0.833358i \(-0.686415\pi\)
−0.552733 + 0.833358i \(0.686415\pi\)
\(710\) 0 0
\(711\) 11351.6 0.598760
\(712\) − 18855.0i − 0.992445i
\(713\) 148.435i 0.00779652i
\(714\) −895.639 −0.0469446
\(715\) 0 0
\(716\) 386.389 0.0201676
\(717\) − 244.293i − 0.0127242i
\(718\) − 12911.8i − 0.671119i
\(719\) 5889.90 0.305503 0.152751 0.988265i \(-0.451187\pi\)
0.152751 + 0.988265i \(0.451187\pi\)
\(720\) 0 0
\(721\) −2723.85 −0.140696
\(722\) 11527.8i 0.594210i
\(723\) − 3298.91i − 0.169692i
\(724\) −2499.07 −0.128284
\(725\) 0 0
\(726\) 2492.10 0.127397
\(727\) 24760.2i 1.26314i 0.775318 + 0.631571i \(0.217589\pi\)
−0.775318 + 0.631571i \(0.782411\pi\)
\(728\) − 8493.08i − 0.432382i
\(729\) 17562.7 0.892280
\(730\) 0 0
\(731\) 19106.1 0.966708
\(732\) − 158.542i − 0.00800530i
\(733\) 4537.53i 0.228646i 0.993444 + 0.114323i \(0.0364699\pi\)
−0.993444 + 0.114323i \(0.963530\pi\)
\(734\) 474.850 0.0238788
\(735\) 0 0
\(736\) −16.0746 −0.000805051 0
\(737\) 3957.23i 0.197784i
\(738\) 4096.57i 0.204332i
\(739\) 24010.0 1.19516 0.597579 0.801810i \(-0.296130\pi\)
0.597579 + 0.801810i \(0.296130\pi\)
\(740\) 0 0
\(741\) −1843.45 −0.0913913
\(742\) 7684.16i 0.380181i
\(743\) − 25175.4i − 1.24306i −0.783389 0.621532i \(-0.786511\pi\)
0.783389 0.621532i \(-0.213489\pi\)
\(744\) 4820.72 0.237549
\(745\) 0 0
\(746\) −21566.5 −1.05845
\(747\) 14250.4i 0.697985i
\(748\) − 190.184i − 0.00929652i
\(749\) 3560.17 0.173679
\(750\) 0 0
\(751\) 24920.0 1.21085 0.605423 0.795904i \(-0.293004\pi\)
0.605423 + 0.795904i \(0.293004\pi\)
\(752\) 13534.1i 0.656301i
\(753\) 1705.95i 0.0825607i
\(754\) −16740.2 −0.808543
\(755\) 0 0
\(756\) 184.352 0.00886880
\(757\) − 28274.4i − 1.35753i −0.734356 0.678765i \(-0.762516\pi\)
0.734356 0.678765i \(-0.237484\pi\)
\(758\) 34210.3i 1.63928i
\(759\) −1.43061 −6.84160e−5 0
\(760\) 0 0
\(761\) 12377.9 0.589616 0.294808 0.955557i \(-0.404744\pi\)
0.294808 + 0.955557i \(0.404744\pi\)
\(762\) 533.818i 0.0253782i
\(763\) − 2408.91i − 0.114297i
\(764\) 2410.57 0.114151
\(765\) 0 0
\(766\) −12639.7 −0.596204
\(767\) − 29797.3i − 1.40276i
\(768\) 750.019i 0.0352396i
\(769\) 31845.7 1.49335 0.746674 0.665190i \(-0.231650\pi\)
0.746674 + 0.665190i \(0.231650\pi\)
\(770\) 0 0
\(771\) −1144.78 −0.0534736
\(772\) − 734.617i − 0.0342480i
\(773\) − 7342.21i − 0.341631i −0.985303 0.170816i \(-0.945360\pi\)
0.985303 0.170816i \(-0.0546403\pi\)
\(774\) 20267.8 0.941228
\(775\) 0 0
\(776\) 41205.1 1.90615
\(777\) − 712.032i − 0.0328752i
\(778\) − 135.766i − 0.00625636i
\(779\) −2912.35 −0.133948
\(780\) 0 0
\(781\) 4150.44 0.190159
\(782\) 92.6127i 0.00423507i
\(783\) − 4506.86i − 0.205699i
\(784\) 2836.87 0.129231
\(785\) 0 0
\(786\) 1326.16 0.0601815
\(787\) 36457.4i 1.65129i 0.564188 + 0.825646i \(0.309189\pi\)
−0.564188 + 0.825646i \(0.690811\pi\)
\(788\) − 2248.93i − 0.101669i
\(789\) 2500.14 0.112810
\(790\) 0 0
\(791\) −8526.83 −0.383286
\(792\) − 2502.30i − 0.112267i
\(793\) − 16625.2i − 0.744487i
\(794\) −29879.0 −1.33548
\(795\) 0 0
\(796\) −15.4717 −0.000688918 0
\(797\) − 9358.08i − 0.415910i −0.978138 0.207955i \(-0.933319\pi\)
0.978138 0.207955i \(-0.0666808\pi\)
\(798\) − 675.445i − 0.0299630i
\(799\) −15781.2 −0.698747
\(800\) 0 0
\(801\) 21261.2 0.937863
\(802\) 36924.5i 1.62575i
\(803\) − 2781.70i − 0.122247i
\(804\) 485.033 0.0212758
\(805\) 0 0
\(806\) 40757.1 1.78115
\(807\) 555.378i 0.0242258i
\(808\) 46730.0i 2.03460i
\(809\) −28189.6 −1.22509 −0.612543 0.790437i \(-0.709853\pi\)
−0.612543 + 0.790437i \(0.709853\pi\)
\(810\) 0 0
\(811\) −22909.7 −0.991946 −0.495973 0.868338i \(-0.665189\pi\)
−0.495973 + 0.868338i \(0.665189\pi\)
\(812\) 589.596i 0.0254812i
\(813\) − 5488.44i − 0.236763i
\(814\) −1572.91 −0.0677277
\(815\) 0 0
\(816\) 2741.98 0.117633
\(817\) 14408.8i 0.617015i
\(818\) − 29691.5i − 1.26912i
\(819\) 9576.94 0.408602
\(820\) 0 0
\(821\) 20512.6 0.871980 0.435990 0.899952i \(-0.356398\pi\)
0.435990 + 0.899952i \(0.356398\pi\)
\(822\) − 3011.22i − 0.127772i
\(823\) − 7882.78i − 0.333872i −0.985968 0.166936i \(-0.946613\pi\)
0.985968 0.166936i \(-0.0533873\pi\)
\(824\) 9147.40 0.386729
\(825\) 0 0
\(826\) 10917.8 0.459902
\(827\) − 19276.5i − 0.810531i −0.914199 0.405265i \(-0.867179\pi\)
0.914199 0.405265i \(-0.132821\pi\)
\(828\) − 9.44369i 0 0.000396366i
\(829\) −13771.7 −0.576972 −0.288486 0.957484i \(-0.593152\pi\)
−0.288486 + 0.957484i \(0.593152\pi\)
\(830\) 0 0
\(831\) −1090.34 −0.0455157
\(832\) 28318.7i 1.18002i
\(833\) 3307.88i 0.137589i
\(834\) 4859.76 0.201774
\(835\) 0 0
\(836\) 143.427 0.00593363
\(837\) 10972.8i 0.453136i
\(838\) 3013.31i 0.124216i
\(839\) −23175.4 −0.953640 −0.476820 0.879001i \(-0.658211\pi\)
−0.476820 + 0.879001i \(0.658211\pi\)
\(840\) 0 0
\(841\) −9975.12 −0.409001
\(842\) 6470.94i 0.264849i
\(843\) 3538.48i 0.144569i
\(844\) 1657.46 0.0675972
\(845\) 0 0
\(846\) −16740.8 −0.680330
\(847\) − 9204.12i − 0.373385i
\(848\) − 23524.9i − 0.952650i
\(849\) 4137.22 0.167243
\(850\) 0 0
\(851\) −73.6270 −0.00296581
\(852\) − 508.714i − 0.0204557i
\(853\) 31431.7i 1.26166i 0.775920 + 0.630832i \(0.217286\pi\)
−0.775920 + 0.630832i \(0.782714\pi\)
\(854\) 6091.51 0.244083
\(855\) 0 0
\(856\) −11956.0 −0.477391
\(857\) 3992.52i 0.159139i 0.996829 + 0.0795693i \(0.0253545\pi\)
−0.996829 + 0.0795693i \(0.974646\pi\)
\(858\) 392.816i 0.0156300i
\(859\) −12909.8 −0.512778 −0.256389 0.966574i \(-0.582533\pi\)
−0.256389 + 0.966574i \(0.582533\pi\)
\(860\) 0 0
\(861\) −280.929 −0.0111197
\(862\) − 4551.10i − 0.179827i
\(863\) 40128.5i 1.58284i 0.611274 + 0.791419i \(0.290657\pi\)
−0.611274 + 0.791419i \(0.709343\pi\)
\(864\) −1188.29 −0.0467898
\(865\) 0 0
\(866\) 36081.3 1.41581
\(867\) − 249.542i − 0.00977498i
\(868\) − 1435.48i − 0.0561330i
\(869\) 1719.63 0.0671284
\(870\) 0 0
\(871\) 50862.0 1.97864
\(872\) 8089.73i 0.314166i
\(873\) 46463.6i 1.80132i
\(874\) −69.8438 −0.00270309
\(875\) 0 0
\(876\) −340.950 −0.0131502
\(877\) 3222.42i 0.124074i 0.998074 + 0.0620372i \(0.0197598\pi\)
−0.998074 + 0.0620372i \(0.980240\pi\)
\(878\) 37328.4i 1.43482i
\(879\) −6028.00 −0.231307
\(880\) 0 0
\(881\) −18712.4 −0.715591 −0.357795 0.933800i \(-0.616471\pi\)
−0.357795 + 0.933800i \(0.616471\pi\)
\(882\) 3509.01i 0.133962i
\(883\) 17924.0i 0.683114i 0.939861 + 0.341557i \(0.110954\pi\)
−0.939861 + 0.341557i \(0.889046\pi\)
\(884\) −2444.42 −0.0930029
\(885\) 0 0
\(886\) −17033.9 −0.645896
\(887\) 9873.21i 0.373743i 0.982384 + 0.186871i \(0.0598348\pi\)
−0.982384 + 0.186871i \(0.940165\pi\)
\(888\) 2391.19i 0.0903637i
\(889\) 1971.56 0.0743803
\(890\) 0 0
\(891\) 2768.27 0.104086
\(892\) 1002.30i 0.0376226i
\(893\) − 11901.4i − 0.445985i
\(894\) −6417.59 −0.240086
\(895\) 0 0
\(896\) −8603.38 −0.320780
\(897\) 18.3875i 0 0.000684438i
\(898\) 14715.0i 0.546822i
\(899\) −35093.3 −1.30192
\(900\) 0 0
\(901\) 27430.7 1.01426
\(902\) 620.582i 0.0229081i
\(903\) 1389.89i 0.0512212i
\(904\) 28635.3 1.05354
\(905\) 0 0
\(906\) 4362.97 0.159989
\(907\) − 30129.2i − 1.10300i −0.834174 0.551502i \(-0.814055\pi\)
0.834174 0.551502i \(-0.185945\pi\)
\(908\) 4194.91i 0.153318i
\(909\) −52693.5 −1.92270
\(910\) 0 0
\(911\) −37831.8 −1.37588 −0.687938 0.725769i \(-0.741484\pi\)
−0.687938 + 0.725769i \(0.741484\pi\)
\(912\) 2067.86i 0.0750807i
\(913\) 2158.77i 0.0782527i
\(914\) 3298.65 0.119376
\(915\) 0 0
\(916\) −4474.40 −0.161396
\(917\) − 4897.94i − 0.176384i
\(918\) 6846.24i 0.246143i
\(919\) −4771.81 −0.171281 −0.0856407 0.996326i \(-0.527294\pi\)
−0.0856407 + 0.996326i \(0.527294\pi\)
\(920\) 0 0
\(921\) −2583.30 −0.0924240
\(922\) − 26927.7i − 0.961841i
\(923\) − 53345.3i − 1.90236i
\(924\) 13.8351 0.000492578 0
\(925\) 0 0
\(926\) 17045.6 0.604917
\(927\) 10314.8i 0.365460i
\(928\) − 3800.39i − 0.134433i
\(929\) 45138.3 1.59412 0.797061 0.603899i \(-0.206387\pi\)
0.797061 + 0.603899i \(0.206387\pi\)
\(930\) 0 0
\(931\) −2494.64 −0.0878178
\(932\) 3470.75i 0.121983i
\(933\) − 4817.05i − 0.169028i
\(934\) 21031.1 0.736786
\(935\) 0 0
\(936\) −32161.8 −1.12312
\(937\) 22634.7i 0.789161i 0.918861 + 0.394580i \(0.129110\pi\)
−0.918861 + 0.394580i \(0.870890\pi\)
\(938\) 18636.0i 0.648705i
\(939\) −2075.64 −0.0721363
\(940\) 0 0
\(941\) 11695.3 0.405160 0.202580 0.979266i \(-0.435067\pi\)
0.202580 + 0.979266i \(0.435067\pi\)
\(942\) − 1113.16i − 0.0385020i
\(943\) 29.0492i 0.00100315i
\(944\) −33424.6 −1.15241
\(945\) 0 0
\(946\) 3070.33 0.105523
\(947\) − 45429.1i − 1.55887i −0.626485 0.779434i \(-0.715507\pi\)
0.626485 0.779434i \(-0.284493\pi\)
\(948\) − 210.773i − 0.00722109i
\(949\) −35753.0 −1.22296
\(950\) 0 0
\(951\) 1112.13 0.0379213
\(952\) − 11108.7i − 0.378189i
\(953\) 39025.9i 1.32652i 0.748390 + 0.663259i \(0.230827\pi\)
−0.748390 + 0.663259i \(0.769173\pi\)
\(954\) 29098.6 0.987529
\(955\) 0 0
\(956\) 244.293 0.00826464
\(957\) − 338.228i − 0.0114246i
\(958\) − 11955.2i − 0.403188i
\(959\) −11121.4 −0.374483
\(960\) 0 0
\(961\) 55650.1 1.86802
\(962\) 20216.5i 0.677552i
\(963\) − 13481.7i − 0.451135i
\(964\) 3298.91 0.110218
\(965\) 0 0
\(966\) −6.73722 −0.000224396 0
\(967\) − 12986.1i − 0.431857i −0.976409 0.215929i \(-0.930722\pi\)
0.976409 0.215929i \(-0.0692779\pi\)
\(968\) 30909.8i 1.02632i
\(969\) −2411.19 −0.0799366
\(970\) 0 0
\(971\) −15044.2 −0.497210 −0.248605 0.968605i \(-0.579972\pi\)
−0.248605 + 0.968605i \(0.579972\pi\)
\(972\) − 1050.37i − 0.0346613i
\(973\) − 17948.6i − 0.591374i
\(974\) 35323.8 1.16206
\(975\) 0 0
\(976\) −18649.0 −0.611618
\(977\) 26593.4i 0.870828i 0.900230 + 0.435414i \(0.143398\pi\)
−0.900230 + 0.435414i \(0.856602\pi\)
\(978\) 1732.68i 0.0566512i
\(979\) 3220.82 0.105146
\(980\) 0 0
\(981\) −9122.12 −0.296888
\(982\) − 30948.2i − 1.00570i
\(983\) − 36050.3i − 1.16971i −0.811137 0.584856i \(-0.801151\pi\)
0.811137 0.584856i \(-0.198849\pi\)
\(984\) 943.431 0.0305645
\(985\) 0 0
\(986\) −21895.7 −0.707203
\(987\) − 1148.02i − 0.0370233i
\(988\) − 1843.45i − 0.0593604i
\(989\) 143.721 0.00462088
\(990\) 0 0
\(991\) −54789.8 −1.75626 −0.878131 0.478420i \(-0.841210\pi\)
−0.878131 + 0.478420i \(0.841210\pi\)
\(992\) 9252.77i 0.296145i
\(993\) − 4241.53i − 0.135550i
\(994\) 19545.8 0.623699
\(995\) 0 0
\(996\) 264.597 0.00841775
\(997\) 23309.0i 0.740426i 0.928947 + 0.370213i \(0.120715\pi\)
−0.928947 + 0.370213i \(0.879285\pi\)
\(998\) 14915.6i 0.473091i
\(999\) −5442.75 −0.172373
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.b.d.99.2 4
5.2 odd 4 175.4.a.d.1.2 2
5.3 odd 4 175.4.a.e.1.1 yes 2
5.4 even 2 inner 175.4.b.d.99.3 4
15.2 even 4 1575.4.a.v.1.1 2
15.8 even 4 1575.4.a.s.1.2 2
35.13 even 4 1225.4.a.t.1.1 2
35.27 even 4 1225.4.a.r.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.d.1.2 2 5.2 odd 4
175.4.a.e.1.1 yes 2 5.3 odd 4
175.4.b.d.99.2 4 1.1 even 1 trivial
175.4.b.d.99.3 4 5.4 even 2 inner
1225.4.a.r.1.2 2 35.27 even 4
1225.4.a.t.1.1 2 35.13 even 4
1575.4.a.s.1.2 2 15.8 even 4
1575.4.a.v.1.1 2 15.2 even 4