Properties

Label 1225.4.a.r.1.2
Level $1225$
Weight $4$
Character 1225.1
Self dual yes
Analytic conductor $72.277$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,4,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 175)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.70156\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.70156 q^{2} +0.701562 q^{3} -0.701562 q^{4} +1.89531 q^{6} -23.5078 q^{8} -26.5078 q^{9} +4.01562 q^{11} -0.492189 q^{12} +51.6125 q^{13} -57.8953 q^{16} -67.5078 q^{17} -71.6125 q^{18} +50.9109 q^{19} +10.8485 q^{22} -0.507811 q^{23} -16.4922 q^{24} +139.434 q^{26} -37.5391 q^{27} -120.058 q^{29} +292.303 q^{31} +31.6547 q^{32} +2.81721 q^{33} -182.377 q^{34} +18.5969 q^{36} +144.989 q^{37} +137.539 q^{38} +36.2094 q^{39} +57.2047 q^{41} +283.020 q^{43} -2.81721 q^{44} -1.37188 q^{46} -233.769 q^{47} -40.6172 q^{48} -47.3609 q^{51} -36.2094 q^{52} +406.334 q^{53} -101.414 q^{54} +35.7172 q^{57} -324.344 q^{58} +577.328 q^{59} -322.116 q^{61} +789.675 q^{62} +548.680 q^{64} +7.61086 q^{66} -985.459 q^{67} +47.3609 q^{68} -0.356261 q^{69} +1033.57 q^{71} +623.141 q^{72} +692.720 q^{73} +391.697 q^{74} -35.7172 q^{76} +97.8219 q^{78} -428.236 q^{79} +689.375 q^{81} +154.542 q^{82} -537.592 q^{83} +764.597 q^{86} -84.2280 q^{87} -94.3985 q^{88} +802.073 q^{89} +0.356261 q^{92} +205.069 q^{93} -631.541 q^{94} +22.2077 q^{96} +1752.82 q^{97} -106.445 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 5 q^{3} + 5 q^{4} + 23 q^{6} - 15 q^{8} - 21 q^{9} - 56 q^{11} - 33 q^{12} + 52 q^{13} - 135 q^{16} - 103 q^{17} - 92 q^{18} + 57 q^{19} + 233 q^{22} + 31 q^{23} - 65 q^{24} + 138 q^{26}+ \cdots - 437 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.70156 0.955146 0.477573 0.878592i \(-0.341517\pi\)
0.477573 + 0.878592i \(0.341517\pi\)
\(3\) 0.701562 0.135016 0.0675078 0.997719i \(-0.478495\pi\)
0.0675078 + 0.997719i \(0.478495\pi\)
\(4\) −0.701562 −0.0876953
\(5\) 0 0
\(6\) 1.89531 0.128960
\(7\) 0 0
\(8\) −23.5078 −1.03891
\(9\) −26.5078 −0.981771
\(10\) 0 0
\(11\) 4.01562 0.110069 0.0550343 0.998484i \(-0.482473\pi\)
0.0550343 + 0.998484i \(0.482473\pi\)
\(12\) −0.492189 −0.0118402
\(13\) 51.6125 1.10113 0.550567 0.834791i \(-0.314412\pi\)
0.550567 + 0.834791i \(0.314412\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −57.8953 −0.904614
\(17\) −67.5078 −0.963121 −0.481560 0.876413i \(-0.659930\pi\)
−0.481560 + 0.876413i \(0.659930\pi\)
\(18\) −71.6125 −0.937735
\(19\) 50.9109 0.614725 0.307362 0.951593i \(-0.400554\pi\)
0.307362 + 0.951593i \(0.400554\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 10.8485 0.105132
\(23\) −0.507811 −0.00460373 −0.00230187 0.999997i \(-0.500733\pi\)
−0.00230187 + 0.999997i \(0.500733\pi\)
\(24\) −16.4922 −0.140269
\(25\) 0 0
\(26\) 139.434 1.05174
\(27\) −37.5391 −0.267570
\(28\) 0 0
\(29\) −120.058 −0.768765 −0.384382 0.923174i \(-0.625586\pi\)
−0.384382 + 0.923174i \(0.625586\pi\)
\(30\) 0 0
\(31\) 292.303 1.69352 0.846761 0.531973i \(-0.178549\pi\)
0.846761 + 0.531973i \(0.178549\pi\)
\(32\) 31.6547 0.174869
\(33\) 2.81721 0.0148610
\(34\) −182.377 −0.919921
\(35\) 0 0
\(36\) 18.5969 0.0860966
\(37\) 144.989 0.644218 0.322109 0.946703i \(-0.395608\pi\)
0.322109 + 0.946703i \(0.395608\pi\)
\(38\) 137.539 0.587152
\(39\) 36.2094 0.148670
\(40\) 0 0
\(41\) 57.2047 0.217899 0.108950 0.994047i \(-0.465251\pi\)
0.108950 + 0.994047i \(0.465251\pi\)
\(42\) 0 0
\(43\) 283.020 1.00373 0.501863 0.864947i \(-0.332648\pi\)
0.501863 + 0.864947i \(0.332648\pi\)
\(44\) −2.81721 −0.00965250
\(45\) 0 0
\(46\) −1.37188 −0.00439724
\(47\) −233.769 −0.725504 −0.362752 0.931886i \(-0.618163\pi\)
−0.362752 + 0.931886i \(0.618163\pi\)
\(48\) −40.6172 −0.122137
\(49\) 0 0
\(50\) 0 0
\(51\) −47.3609 −0.130036
\(52\) −36.2094 −0.0965642
\(53\) 406.334 1.05310 0.526550 0.850144i \(-0.323485\pi\)
0.526550 + 0.850144i \(0.323485\pi\)
\(54\) −101.414 −0.255569
\(55\) 0 0
\(56\) 0 0
\(57\) 35.7172 0.0829975
\(58\) −324.344 −0.734283
\(59\) 577.328 1.27393 0.636964 0.770894i \(-0.280190\pi\)
0.636964 + 0.770894i \(0.280190\pi\)
\(60\) 0 0
\(61\) −322.116 −0.676110 −0.338055 0.941126i \(-0.609769\pi\)
−0.338055 + 0.941126i \(0.609769\pi\)
\(62\) 789.675 1.61756
\(63\) 0 0
\(64\) 548.680 1.07164
\(65\) 0 0
\(66\) 7.61086 0.0141944
\(67\) −985.459 −1.79691 −0.898455 0.439065i \(-0.855310\pi\)
−0.898455 + 0.439065i \(0.855310\pi\)
\(68\) 47.3609 0.0844611
\(69\) −0.356261 −0.000621576 0
\(70\) 0 0
\(71\) 1033.57 1.72764 0.863821 0.503799i \(-0.168065\pi\)
0.863821 + 0.503799i \(0.168065\pi\)
\(72\) 623.141 1.01997
\(73\) 692.720 1.11064 0.555320 0.831637i \(-0.312596\pi\)
0.555320 + 0.831637i \(0.312596\pi\)
\(74\) 391.697 0.615322
\(75\) 0 0
\(76\) −35.7172 −0.0539084
\(77\) 0 0
\(78\) 97.8219 0.142002
\(79\) −428.236 −0.609877 −0.304939 0.952372i \(-0.598636\pi\)
−0.304939 + 0.952372i \(0.598636\pi\)
\(80\) 0 0
\(81\) 689.375 0.945645
\(82\) 154.542 0.208126
\(83\) −537.592 −0.710945 −0.355472 0.934687i \(-0.615680\pi\)
−0.355472 + 0.934687i \(0.615680\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 764.597 0.958705
\(87\) −84.2280 −0.103795
\(88\) −94.3985 −0.114351
\(89\) 802.073 0.955277 0.477638 0.878557i \(-0.341493\pi\)
0.477638 + 0.878557i \(0.341493\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.356261 0.000403725 0
\(93\) 205.069 0.228652
\(94\) −631.541 −0.692962
\(95\) 0 0
\(96\) 22.2077 0.0236101
\(97\) 1752.82 1.83477 0.917384 0.398004i \(-0.130297\pi\)
0.917384 + 0.398004i \(0.130297\pi\)
\(98\) 0 0
\(99\) −106.445 −0.108062
\(100\) 0 0
\(101\) 1987.85 1.95840 0.979200 0.202896i \(-0.0650354\pi\)
0.979200 + 0.202896i \(0.0650354\pi\)
\(102\) −127.948 −0.124204
\(103\) −389.122 −0.372246 −0.186123 0.982526i \(-0.559592\pi\)
−0.186123 + 0.982526i \(0.559592\pi\)
\(104\) −1213.30 −1.14398
\(105\) 0 0
\(106\) 1097.74 1.00586
\(107\) 508.595 0.459512 0.229756 0.973248i \(-0.426207\pi\)
0.229756 + 0.973248i \(0.426207\pi\)
\(108\) 26.3360 0.0234646
\(109\) 344.130 0.302400 0.151200 0.988503i \(-0.451686\pi\)
0.151200 + 0.988503i \(0.451686\pi\)
\(110\) 0 0
\(111\) 101.719 0.0869795
\(112\) 0 0
\(113\) 1218.12 1.01408 0.507040 0.861923i \(-0.330740\pi\)
0.507040 + 0.861923i \(0.330740\pi\)
\(114\) 96.4922 0.0792748
\(115\) 0 0
\(116\) 84.2280 0.0674170
\(117\) −1368.13 −1.08106
\(118\) 1559.69 1.21679
\(119\) 0 0
\(120\) 0 0
\(121\) −1314.87 −0.987885
\(122\) −870.215 −0.645784
\(123\) 40.1327 0.0294198
\(124\) −205.069 −0.148514
\(125\) 0 0
\(126\) 0 0
\(127\) 281.652 0.196792 0.0983958 0.995147i \(-0.468629\pi\)
0.0983958 + 0.995147i \(0.468629\pi\)
\(128\) 1229.05 0.848704
\(129\) 198.556 0.135519
\(130\) 0 0
\(131\) 699.706 0.466669 0.233334 0.972397i \(-0.425036\pi\)
0.233334 + 0.972397i \(0.425036\pi\)
\(132\) −1.97645 −0.00130324
\(133\) 0 0
\(134\) −2662.28 −1.71631
\(135\) 0 0
\(136\) 1586.96 1.00059
\(137\) −1588.77 −0.990789 −0.495394 0.868668i \(-0.664976\pi\)
−0.495394 + 0.868668i \(0.664976\pi\)
\(138\) −0.962460 −0.000593696 0
\(139\) −2564.09 −1.56463 −0.782315 0.622884i \(-0.785961\pi\)
−0.782315 + 0.622884i \(0.785961\pi\)
\(140\) 0 0
\(141\) −164.003 −0.0979544
\(142\) 2792.26 1.65015
\(143\) 207.256 0.121200
\(144\) 1534.68 0.888124
\(145\) 0 0
\(146\) 1871.43 1.06082
\(147\) 0 0
\(148\) −101.719 −0.0564948
\(149\) −3386.03 −1.86171 −0.930854 0.365390i \(-0.880935\pi\)
−0.930854 + 0.365390i \(0.880935\pi\)
\(150\) 0 0
\(151\) −2301.98 −1.24061 −0.620306 0.784360i \(-0.712992\pi\)
−0.620306 + 0.784360i \(0.712992\pi\)
\(152\) −1196.80 −0.638643
\(153\) 1789.48 0.945564
\(154\) 0 0
\(155\) 0 0
\(156\) −25.4031 −0.0130377
\(157\) 587.325 0.298558 0.149279 0.988795i \(-0.452305\pi\)
0.149279 + 0.988795i \(0.452305\pi\)
\(158\) −1156.91 −0.582522
\(159\) 285.069 0.142185
\(160\) 0 0
\(161\) 0 0
\(162\) 1862.39 0.903229
\(163\) −914.189 −0.439293 −0.219647 0.975579i \(-0.570490\pi\)
−0.219647 + 0.975579i \(0.570490\pi\)
\(164\) −40.1327 −0.0191087
\(165\) 0 0
\(166\) −1452.34 −0.679056
\(167\) 3316.66 1.53683 0.768416 0.639951i \(-0.221045\pi\)
0.768416 + 0.639951i \(0.221045\pi\)
\(168\) 0 0
\(169\) 466.850 0.212494
\(170\) 0 0
\(171\) −1349.54 −0.603519
\(172\) −198.556 −0.0880220
\(173\) 1542.16 0.677737 0.338868 0.940834i \(-0.389956\pi\)
0.338868 + 0.940834i \(0.389956\pi\)
\(174\) −227.547 −0.0991397
\(175\) 0 0
\(176\) −232.486 −0.0995697
\(177\) 405.031 0.172000
\(178\) 2166.85 0.912429
\(179\) −550.755 −0.229974 −0.114987 0.993367i \(-0.536683\pi\)
−0.114987 + 0.993367i \(0.536683\pi\)
\(180\) 0 0
\(181\) 3562.15 1.46283 0.731416 0.681931i \(-0.238860\pi\)
0.731416 + 0.681931i \(0.238860\pi\)
\(182\) 0 0
\(183\) −225.984 −0.0912854
\(184\) 11.9375 0.00478285
\(185\) 0 0
\(186\) 554.006 0.218396
\(187\) −271.086 −0.106009
\(188\) 164.003 0.0636232
\(189\) 0 0
\(190\) 0 0
\(191\) 3436.00 1.30168 0.650838 0.759217i \(-0.274418\pi\)
0.650838 + 0.759217i \(0.274418\pi\)
\(192\) 384.933 0.144688
\(193\) −1047.12 −0.390534 −0.195267 0.980750i \(-0.562557\pi\)
−0.195267 + 0.980750i \(0.562557\pi\)
\(194\) 4735.37 1.75247
\(195\) 0 0
\(196\) 0 0
\(197\) 3205.61 1.15934 0.579670 0.814851i \(-0.303181\pi\)
0.579670 + 0.814851i \(0.303181\pi\)
\(198\) −287.569 −0.103215
\(199\) −22.0532 −0.00785581 −0.00392791 0.999992i \(-0.501250\pi\)
−0.00392791 + 0.999992i \(0.501250\pi\)
\(200\) 0 0
\(201\) −691.361 −0.242611
\(202\) 5370.30 1.87056
\(203\) 0 0
\(204\) 33.2266 0.0114036
\(205\) 0 0
\(206\) −1051.24 −0.355549
\(207\) 13.4609 0.00451981
\(208\) −2988.12 −0.996101
\(209\) 204.439 0.0676619
\(210\) 0 0
\(211\) 2362.52 0.770819 0.385410 0.922746i \(-0.374060\pi\)
0.385410 + 0.922746i \(0.374060\pi\)
\(212\) −285.069 −0.0923519
\(213\) 725.116 0.233259
\(214\) 1374.00 0.438901
\(215\) 0 0
\(216\) 882.461 0.277981
\(217\) 0 0
\(218\) 929.688 0.288837
\(219\) 485.986 0.149954
\(220\) 0 0
\(221\) −3484.25 −1.06052
\(222\) 274.800 0.0830781
\(223\) −1428.67 −0.429016 −0.214508 0.976722i \(-0.568815\pi\)
−0.214508 + 0.976722i \(0.568815\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3290.82 0.968594
\(227\) 5979.38 1.74831 0.874153 0.485651i \(-0.161418\pi\)
0.874153 + 0.485651i \(0.161418\pi\)
\(228\) −25.0578 −0.00727849
\(229\) −6377.77 −1.84042 −0.920208 0.391430i \(-0.871980\pi\)
−0.920208 + 0.391430i \(0.871980\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2822.30 0.798676
\(233\) 4947.18 1.39099 0.695495 0.718531i \(-0.255185\pi\)
0.695495 + 0.718531i \(0.255185\pi\)
\(234\) −3696.10 −1.03257
\(235\) 0 0
\(236\) −405.031 −0.111717
\(237\) −300.434 −0.0823430
\(238\) 0 0
\(239\) −348.213 −0.0942427 −0.0471213 0.998889i \(-0.515005\pi\)
−0.0471213 + 0.998889i \(0.515005\pi\)
\(240\) 0 0
\(241\) −4702.23 −1.25683 −0.628417 0.777876i \(-0.716297\pi\)
−0.628417 + 0.777876i \(0.716297\pi\)
\(242\) −3552.22 −0.943575
\(243\) 1497.19 0.395247
\(244\) 225.984 0.0592916
\(245\) 0 0
\(246\) 108.421 0.0281003
\(247\) 2627.64 0.676894
\(248\) −6871.41 −1.75941
\(249\) −377.154 −0.0959887
\(250\) 0 0
\(251\) 2431.64 0.611489 0.305745 0.952114i \(-0.401095\pi\)
0.305745 + 0.952114i \(0.401095\pi\)
\(252\) 0 0
\(253\) −2.03917 −0.000506727 0
\(254\) 760.899 0.187965
\(255\) 0 0
\(256\) −1069.07 −0.261003
\(257\) −1631.76 −0.396055 −0.198028 0.980196i \(-0.563454\pi\)
−0.198028 + 0.980196i \(0.563454\pi\)
\(258\) 536.412 0.129440
\(259\) 0 0
\(260\) 0 0
\(261\) 3182.47 0.754751
\(262\) 1890.30 0.445737
\(263\) 3563.67 0.835534 0.417767 0.908554i \(-0.362813\pi\)
0.417767 + 0.908554i \(0.362813\pi\)
\(264\) −66.2264 −0.0154392
\(265\) 0 0
\(266\) 0 0
\(267\) 562.704 0.128977
\(268\) 691.361 0.157581
\(269\) −791.631 −0.179430 −0.0897149 0.995967i \(-0.528596\pi\)
−0.0897149 + 0.995967i \(0.528596\pi\)
\(270\) 0 0
\(271\) −7823.17 −1.75359 −0.876796 0.480862i \(-0.840324\pi\)
−0.876796 + 0.480862i \(0.840324\pi\)
\(272\) 3908.39 0.871253
\(273\) 0 0
\(274\) −4292.17 −0.946348
\(275\) 0 0
\(276\) 0.249939 5.45093e−5 0
\(277\) 1554.16 0.337114 0.168557 0.985692i \(-0.446089\pi\)
0.168557 + 0.985692i \(0.446089\pi\)
\(278\) −6927.05 −1.49445
\(279\) −7748.32 −1.66265
\(280\) 0 0
\(281\) −5043.72 −1.07076 −0.535379 0.844612i \(-0.679831\pi\)
−0.535379 + 0.844612i \(0.679831\pi\)
\(282\) −443.065 −0.0935608
\(283\) −5897.15 −1.23869 −0.619345 0.785119i \(-0.712602\pi\)
−0.619345 + 0.785119i \(0.712602\pi\)
\(284\) −725.116 −0.151506
\(285\) 0 0
\(286\) 559.916 0.115764
\(287\) 0 0
\(288\) −839.097 −0.171681
\(289\) −355.696 −0.0723988
\(290\) 0 0
\(291\) 1229.72 0.247722
\(292\) −485.986 −0.0973979
\(293\) 8592.25 1.71319 0.856595 0.515990i \(-0.172576\pi\)
0.856595 + 0.515990i \(0.172576\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −3408.37 −0.669283
\(297\) −150.743 −0.0294511
\(298\) −9147.58 −1.77820
\(299\) −26.2094 −0.00506932
\(300\) 0 0
\(301\) 0 0
\(302\) −6218.94 −1.18497
\(303\) 1394.60 0.264415
\(304\) −2947.50 −0.556089
\(305\) 0 0
\(306\) 4834.40 0.903152
\(307\) −3682.20 −0.684542 −0.342271 0.939601i \(-0.611196\pi\)
−0.342271 + 0.939601i \(0.611196\pi\)
\(308\) 0 0
\(309\) −272.993 −0.0502590
\(310\) 0 0
\(311\) −6866.18 −1.25191 −0.625957 0.779858i \(-0.715291\pi\)
−0.625957 + 0.779858i \(0.715291\pi\)
\(312\) −851.203 −0.154455
\(313\) 2958.60 0.534281 0.267140 0.963658i \(-0.413921\pi\)
0.267140 + 0.963658i \(0.413921\pi\)
\(314\) 1586.69 0.285167
\(315\) 0 0
\(316\) 300.434 0.0534834
\(317\) −1585.21 −0.280866 −0.140433 0.990090i \(-0.544849\pi\)
−0.140433 + 0.990090i \(0.544849\pi\)
\(318\) 770.131 0.135808
\(319\) −482.107 −0.0846169
\(320\) 0 0
\(321\) 356.811 0.0620413
\(322\) 0 0
\(323\) −3436.89 −0.592054
\(324\) −483.639 −0.0829286
\(325\) 0 0
\(326\) −2469.74 −0.419589
\(327\) 241.428 0.0408288
\(328\) −1344.76 −0.226377
\(329\) 0 0
\(330\) 0 0
\(331\) 6045.84 1.00396 0.501978 0.864880i \(-0.332606\pi\)
0.501978 + 0.864880i \(0.332606\pi\)
\(332\) 377.154 0.0623465
\(333\) −3843.34 −0.632474
\(334\) 8960.16 1.46790
\(335\) 0 0
\(336\) 0 0
\(337\) 9205.64 1.48802 0.744010 0.668168i \(-0.232921\pi\)
0.744010 + 0.668168i \(0.232921\pi\)
\(338\) 1261.22 0.202963
\(339\) 854.586 0.136917
\(340\) 0 0
\(341\) 1173.78 0.186404
\(342\) −3645.86 −0.576449
\(343\) 0 0
\(344\) −6653.19 −1.04278
\(345\) 0 0
\(346\) 4166.25 0.647338
\(347\) 3092.28 0.478393 0.239196 0.970971i \(-0.423116\pi\)
0.239196 + 0.970971i \(0.423116\pi\)
\(348\) 59.0912 0.00910236
\(349\) 5231.61 0.802412 0.401206 0.915988i \(-0.368591\pi\)
0.401206 + 0.915988i \(0.368591\pi\)
\(350\) 0 0
\(351\) −1937.48 −0.294630
\(352\) 127.113 0.0192476
\(353\) 9013.71 1.35907 0.679534 0.733644i \(-0.262182\pi\)
0.679534 + 0.733644i \(0.262182\pi\)
\(354\) 1094.22 0.164285
\(355\) 0 0
\(356\) −562.704 −0.0837732
\(357\) 0 0
\(358\) −1487.90 −0.219659
\(359\) −4779.38 −0.702635 −0.351317 0.936256i \(-0.614266\pi\)
−0.351317 + 0.936256i \(0.614266\pi\)
\(360\) 0 0
\(361\) −4267.08 −0.622114
\(362\) 9623.38 1.39722
\(363\) −922.466 −0.133380
\(364\) 0 0
\(365\) 0 0
\(366\) −610.510 −0.0871909
\(367\) 175.769 0.0250001 0.0125001 0.999922i \(-0.496021\pi\)
0.0125001 + 0.999922i \(0.496021\pi\)
\(368\) 29.3999 0.00416460
\(369\) −1516.37 −0.213927
\(370\) 0 0
\(371\) 0 0
\(372\) −143.868 −0.0200517
\(373\) −7982.98 −1.10816 −0.554079 0.832464i \(-0.686930\pi\)
−0.554079 + 0.832464i \(0.686930\pi\)
\(374\) −732.355 −0.101254
\(375\) 0 0
\(376\) 5495.39 0.753732
\(377\) −6196.48 −0.846512
\(378\) 0 0
\(379\) 12663.1 1.71626 0.858129 0.513434i \(-0.171627\pi\)
0.858129 + 0.513434i \(0.171627\pi\)
\(380\) 0 0
\(381\) 197.596 0.0265700
\(382\) 9282.56 1.24329
\(383\) 4678.68 0.624202 0.312101 0.950049i \(-0.398967\pi\)
0.312101 + 0.950049i \(0.398967\pi\)
\(384\) 862.258 0.114588
\(385\) 0 0
\(386\) −2828.85 −0.373017
\(387\) −7502.25 −0.985428
\(388\) −1229.72 −0.160900
\(389\) −50.2546 −0.00655015 −0.00327508 0.999995i \(-0.501042\pi\)
−0.00327508 + 0.999995i \(0.501042\pi\)
\(390\) 0 0
\(391\) 34.2812 0.00443395
\(392\) 0 0
\(393\) 490.887 0.0630076
\(394\) 8660.15 1.10734
\(395\) 0 0
\(396\) 74.6780 0.00947654
\(397\) −11059.9 −1.39819 −0.699095 0.715029i \(-0.746413\pi\)
−0.699095 + 0.715029i \(0.746413\pi\)
\(398\) −59.5780 −0.00750345
\(399\) 0 0
\(400\) 0 0
\(401\) −13667.8 −1.70209 −0.851046 0.525092i \(-0.824031\pi\)
−0.851046 + 0.525092i \(0.824031\pi\)
\(402\) −1867.75 −0.231729
\(403\) 15086.5 1.86479
\(404\) −1394.60 −0.171742
\(405\) 0 0
\(406\) 0 0
\(407\) 582.221 0.0709082
\(408\) 1113.35 0.135096
\(409\) 10990.5 1.32872 0.664359 0.747414i \(-0.268705\pi\)
0.664359 + 0.747414i \(0.268705\pi\)
\(410\) 0 0
\(411\) −1114.62 −0.133772
\(412\) 272.993 0.0326442
\(413\) 0 0
\(414\) 36.3656 0.00431708
\(415\) 0 0
\(416\) 1633.78 0.192554
\(417\) −1798.87 −0.211249
\(418\) 552.305 0.0646271
\(419\) −1115.39 −0.130049 −0.0650246 0.997884i \(-0.520713\pi\)
−0.0650246 + 0.997884i \(0.520713\pi\)
\(420\) 0 0
\(421\) −2395.26 −0.277287 −0.138643 0.990342i \(-0.544274\pi\)
−0.138643 + 0.990342i \(0.544274\pi\)
\(422\) 6382.50 0.736245
\(423\) 6196.70 0.712278
\(424\) −9552.03 −1.09407
\(425\) 0 0
\(426\) 1958.95 0.222796
\(427\) 0 0
\(428\) −356.811 −0.0402970
\(429\) 145.403 0.0163639
\(430\) 0 0
\(431\) 1684.62 0.188272 0.0941360 0.995559i \(-0.469991\pi\)
0.0941360 + 0.995559i \(0.469991\pi\)
\(432\) 2173.34 0.242048
\(433\) −13355.7 −1.48230 −0.741150 0.671340i \(-0.765719\pi\)
−0.741150 + 0.671340i \(0.765719\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −241.428 −0.0265191
\(437\) −25.8531 −0.00283003
\(438\) 1312.92 0.143228
\(439\) −13817.4 −1.50220 −0.751101 0.660188i \(-0.770477\pi\)
−0.751101 + 0.660188i \(0.770477\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −9412.91 −1.01296
\(443\) −6305.19 −0.676227 −0.338114 0.941105i \(-0.609789\pi\)
−0.338114 + 0.941105i \(0.609789\pi\)
\(444\) −71.3621 −0.00762769
\(445\) 0 0
\(446\) −3859.63 −0.409773
\(447\) −2375.51 −0.251360
\(448\) 0 0
\(449\) 5446.85 0.572501 0.286250 0.958155i \(-0.407591\pi\)
0.286250 + 0.958155i \(0.407591\pi\)
\(450\) 0 0
\(451\) 229.712 0.0239839
\(452\) −854.586 −0.0889300
\(453\) −1614.98 −0.167502
\(454\) 16153.7 1.66989
\(455\) 0 0
\(456\) −839.633 −0.0862268
\(457\) −1221.02 −0.124982 −0.0624910 0.998046i \(-0.519904\pi\)
−0.0624910 + 0.998046i \(0.519904\pi\)
\(458\) −17230.0 −1.75787
\(459\) 2534.18 0.257702
\(460\) 0 0
\(461\) −9967.46 −1.00701 −0.503504 0.863993i \(-0.667956\pi\)
−0.503504 + 0.863993i \(0.667956\pi\)
\(462\) 0 0
\(463\) 6309.54 0.633324 0.316662 0.948538i \(-0.397438\pi\)
0.316662 + 0.948538i \(0.397438\pi\)
\(464\) 6950.79 0.695436
\(465\) 0 0
\(466\) 13365.1 1.32860
\(467\) 7784.79 0.771386 0.385693 0.922627i \(-0.373962\pi\)
0.385693 + 0.922627i \(0.373962\pi\)
\(468\) 959.831 0.0948039
\(469\) 0 0
\(470\) 0 0
\(471\) 412.045 0.0403100
\(472\) −13571.7 −1.32349
\(473\) 1136.50 0.110479
\(474\) −811.641 −0.0786496
\(475\) 0 0
\(476\) 0 0
\(477\) −10771.0 −1.03390
\(478\) −940.718 −0.0900156
\(479\) 4425.28 0.422122 0.211061 0.977473i \(-0.432308\pi\)
0.211061 + 0.977473i \(0.432308\pi\)
\(480\) 0 0
\(481\) 7483.25 0.709369
\(482\) −12703.4 −1.20046
\(483\) 0 0
\(484\) 922.466 0.0866328
\(485\) 0 0
\(486\) 4044.76 0.377519
\(487\) −13075.3 −1.21663 −0.608315 0.793695i \(-0.708154\pi\)
−0.608315 + 0.793695i \(0.708154\pi\)
\(488\) 7572.23 0.702416
\(489\) −641.360 −0.0593115
\(490\) 0 0
\(491\) 11455.7 1.05293 0.526463 0.850198i \(-0.323518\pi\)
0.526463 + 0.850198i \(0.323518\pi\)
\(492\) −28.1556 −0.00257998
\(493\) 8104.84 0.740413
\(494\) 7098.73 0.646533
\(495\) 0 0
\(496\) −16923.0 −1.53198
\(497\) 0 0
\(498\) −1018.91 −0.0916833
\(499\) 5521.10 0.495307 0.247654 0.968849i \(-0.420340\pi\)
0.247654 + 0.968849i \(0.420340\pi\)
\(500\) 0 0
\(501\) 2326.84 0.207496
\(502\) 6569.23 0.584062
\(503\) −11491.6 −1.01866 −0.509328 0.860573i \(-0.670106\pi\)
−0.509328 + 0.860573i \(0.670106\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −5.50896 −0.000483998 0
\(507\) 327.524 0.0286901
\(508\) −197.596 −0.0172577
\(509\) 9207.84 0.801828 0.400914 0.916116i \(-0.368693\pi\)
0.400914 + 0.916116i \(0.368693\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −12720.6 −1.09800
\(513\) −1911.15 −0.164482
\(514\) −4408.29 −0.378291
\(515\) 0 0
\(516\) −139.300 −0.0118843
\(517\) −938.727 −0.0798552
\(518\) 0 0
\(519\) 1081.92 0.0915051
\(520\) 0 0
\(521\) 11598.0 0.975271 0.487636 0.873047i \(-0.337859\pi\)
0.487636 + 0.873047i \(0.337859\pi\)
\(522\) 8597.64 0.720898
\(523\) 4596.93 0.384340 0.192170 0.981362i \(-0.438448\pi\)
0.192170 + 0.981362i \(0.438448\pi\)
\(524\) −490.887 −0.0409246
\(525\) 0 0
\(526\) 9627.49 0.798058
\(527\) −19732.7 −1.63107
\(528\) −163.103 −0.0134435
\(529\) −12166.7 −0.999979
\(530\) 0 0
\(531\) −15303.7 −1.25070
\(532\) 0 0
\(533\) 2952.48 0.239936
\(534\) 1520.18 0.123192
\(535\) 0 0
\(536\) 23166.0 1.86683
\(537\) −386.389 −0.0310501
\(538\) −2138.64 −0.171382
\(539\) 0 0
\(540\) 0 0
\(541\) −8427.65 −0.669747 −0.334874 0.942263i \(-0.608694\pi\)
−0.334874 + 0.942263i \(0.608694\pi\)
\(542\) −21134.8 −1.67494
\(543\) 2499.07 0.197505
\(544\) −2136.94 −0.168420
\(545\) 0 0
\(546\) 0 0
\(547\) −12864.6 −1.00557 −0.502787 0.864410i \(-0.667692\pi\)
−0.502787 + 0.864410i \(0.667692\pi\)
\(548\) 1114.62 0.0868875
\(549\) 8538.58 0.663785
\(550\) 0 0
\(551\) −6112.26 −0.472579
\(552\) 8.37491 0.000645760 0
\(553\) 0 0
\(554\) 4198.67 0.321993
\(555\) 0 0
\(556\) 1798.87 0.137211
\(557\) 19219.4 1.46203 0.731016 0.682360i \(-0.239046\pi\)
0.731016 + 0.682360i \(0.239046\pi\)
\(558\) −20932.6 −1.58807
\(559\) 14607.4 1.10524
\(560\) 0 0
\(561\) −190.184 −0.0143129
\(562\) −13625.9 −1.02273
\(563\) 17253.3 1.29155 0.645774 0.763529i \(-0.276535\pi\)
0.645774 + 0.763529i \(0.276535\pi\)
\(564\) 115.058 0.00859013
\(565\) 0 0
\(566\) −15931.5 −1.18313
\(567\) 0 0
\(568\) −24297.0 −1.79486
\(569\) −6242.80 −0.459950 −0.229975 0.973197i \(-0.573864\pi\)
−0.229975 + 0.973197i \(0.573864\pi\)
\(570\) 0 0
\(571\) 5904.17 0.432718 0.216359 0.976314i \(-0.430582\pi\)
0.216359 + 0.976314i \(0.430582\pi\)
\(572\) −145.403 −0.0106287
\(573\) 2410.57 0.175747
\(574\) 0 0
\(575\) 0 0
\(576\) −14544.3 −1.05210
\(577\) 11390.2 0.821806 0.410903 0.911679i \(-0.365214\pi\)
0.410903 + 0.911679i \(0.365214\pi\)
\(578\) −960.934 −0.0691515
\(579\) −734.617 −0.0527282
\(580\) 0 0
\(581\) 0 0
\(582\) 3322.15 0.236611
\(583\) 1631.68 0.115913
\(584\) −16284.3 −1.15385
\(585\) 0 0
\(586\) 23212.5 1.63635
\(587\) −20459.5 −1.43859 −0.719295 0.694704i \(-0.755535\pi\)
−0.719295 + 0.694704i \(0.755535\pi\)
\(588\) 0 0
\(589\) 14881.4 1.04105
\(590\) 0 0
\(591\) 2248.93 0.156529
\(592\) −8394.19 −0.582768
\(593\) 20051.1 1.38853 0.694266 0.719719i \(-0.255729\pi\)
0.694266 + 0.719719i \(0.255729\pi\)
\(594\) −407.241 −0.0281301
\(595\) 0 0
\(596\) 2375.51 0.163263
\(597\) −15.4717 −0.00106066
\(598\) −70.8062 −0.00484194
\(599\) 10578.4 0.721572 0.360786 0.932649i \(-0.382508\pi\)
0.360786 + 0.932649i \(0.382508\pi\)
\(600\) 0 0
\(601\) 4619.46 0.313530 0.156765 0.987636i \(-0.449893\pi\)
0.156765 + 0.987636i \(0.449893\pi\)
\(602\) 0 0
\(603\) 26122.4 1.76415
\(604\) 1614.98 0.108796
\(605\) 0 0
\(606\) 3767.60 0.252555
\(607\) 5724.50 0.382785 0.191392 0.981514i \(-0.438700\pi\)
0.191392 + 0.981514i \(0.438700\pi\)
\(608\) 1611.57 0.107496
\(609\) 0 0
\(610\) 0 0
\(611\) −12065.4 −0.798876
\(612\) −1255.43 −0.0829214
\(613\) 19286.4 1.27075 0.635375 0.772204i \(-0.280846\pi\)
0.635375 + 0.772204i \(0.280846\pi\)
\(614\) −9947.70 −0.653838
\(615\) 0 0
\(616\) 0 0
\(617\) −6864.84 −0.447922 −0.223961 0.974598i \(-0.571899\pi\)
−0.223961 + 0.974598i \(0.571899\pi\)
\(618\) −737.508 −0.0480047
\(619\) 17559.4 1.14018 0.570090 0.821582i \(-0.306908\pi\)
0.570090 + 0.821582i \(0.306908\pi\)
\(620\) 0 0
\(621\) 19.0627 0.00123182
\(622\) −18549.4 −1.19576
\(623\) 0 0
\(624\) −2096.35 −0.134489
\(625\) 0 0
\(626\) 7992.84 0.510317
\(627\) 143.427 0.00913542
\(628\) −412.045 −0.0261821
\(629\) −9787.89 −0.620459
\(630\) 0 0
\(631\) −24780.6 −1.56339 −0.781694 0.623662i \(-0.785644\pi\)
−0.781694 + 0.623662i \(0.785644\pi\)
\(632\) 10066.9 0.633607
\(633\) 1657.46 0.104073
\(634\) −4282.55 −0.268268
\(635\) 0 0
\(636\) −199.993 −0.0124690
\(637\) 0 0
\(638\) −1302.44 −0.0808215
\(639\) −27397.8 −1.69615
\(640\) 0 0
\(641\) −21724.3 −1.33863 −0.669313 0.742980i \(-0.733412\pi\)
−0.669313 + 0.742980i \(0.733412\pi\)
\(642\) 963.947 0.0592585
\(643\) −18736.1 −1.14911 −0.574555 0.818466i \(-0.694825\pi\)
−0.574555 + 0.818466i \(0.694825\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −9284.96 −0.565498
\(647\) −25687.8 −1.56088 −0.780442 0.625228i \(-0.785006\pi\)
−0.780442 + 0.625228i \(0.785006\pi\)
\(648\) −16205.7 −0.982438
\(649\) 2318.33 0.140219
\(650\) 0 0
\(651\) 0 0
\(652\) 641.360 0.0385239
\(653\) −15450.7 −0.925929 −0.462964 0.886377i \(-0.653214\pi\)
−0.462964 + 0.886377i \(0.653214\pi\)
\(654\) 652.234 0.0389975
\(655\) 0 0
\(656\) −3311.88 −0.197115
\(657\) −18362.5 −1.09039
\(658\) 0 0
\(659\) −1402.85 −0.0829246 −0.0414623 0.999140i \(-0.513202\pi\)
−0.0414623 + 0.999140i \(0.513202\pi\)
\(660\) 0 0
\(661\) −6896.75 −0.405828 −0.202914 0.979197i \(-0.565041\pi\)
−0.202914 + 0.979197i \(0.565041\pi\)
\(662\) 16333.2 0.958926
\(663\) −2444.42 −0.143187
\(664\) 12637.6 0.738606
\(665\) 0 0
\(666\) −10383.0 −0.604105
\(667\) 60.9666 0.00353919
\(668\) −2326.84 −0.134773
\(669\) −1002.30 −0.0579239
\(670\) 0 0
\(671\) −1293.49 −0.0744185
\(672\) 0 0
\(673\) 3869.29 0.221620 0.110810 0.993842i \(-0.464656\pi\)
0.110810 + 0.993842i \(0.464656\pi\)
\(674\) 24869.6 1.42128
\(675\) 0 0
\(676\) −327.524 −0.0186347
\(677\) 711.604 0.0403976 0.0201988 0.999796i \(-0.493570\pi\)
0.0201988 + 0.999796i \(0.493570\pi\)
\(678\) 2308.72 0.130775
\(679\) 0 0
\(680\) 0 0
\(681\) 4194.91 0.236049
\(682\) 3171.04 0.178043
\(683\) 13112.0 0.734577 0.367288 0.930107i \(-0.380286\pi\)
0.367288 + 0.930107i \(0.380286\pi\)
\(684\) 946.784 0.0529257
\(685\) 0 0
\(686\) 0 0
\(687\) −4474.40 −0.248485
\(688\) −16385.5 −0.907984
\(689\) 20971.9 1.15960
\(690\) 0 0
\(691\) 12573.5 0.692211 0.346105 0.938196i \(-0.387504\pi\)
0.346105 + 0.938196i \(0.387504\pi\)
\(692\) −1081.92 −0.0594343
\(693\) 0 0
\(694\) 8353.98 0.456935
\(695\) 0 0
\(696\) 1980.02 0.107834
\(697\) −3861.76 −0.209863
\(698\) 14133.5 0.766421
\(699\) 3470.75 0.187805
\(700\) 0 0
\(701\) −7489.24 −0.403516 −0.201758 0.979435i \(-0.564665\pi\)
−0.201758 + 0.979435i \(0.564665\pi\)
\(702\) −5234.23 −0.281415
\(703\) 7381.53 0.396016
\(704\) 2203.29 0.117954
\(705\) 0 0
\(706\) 24351.1 1.29811
\(707\) 0 0
\(708\) −284.155 −0.0150836
\(709\) 20869.6 1.10547 0.552733 0.833358i \(-0.313585\pi\)
0.552733 + 0.833358i \(0.313585\pi\)
\(710\) 0 0
\(711\) 11351.6 0.598760
\(712\) −18855.0 −0.992445
\(713\) −148.435 −0.00779652
\(714\) 0 0
\(715\) 0 0
\(716\) 386.389 0.0201676
\(717\) −244.293 −0.0127242
\(718\) −12911.8 −0.671119
\(719\) 5889.90 0.305503 0.152751 0.988265i \(-0.451187\pi\)
0.152751 + 0.988265i \(0.451187\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −11527.8 −0.594210
\(723\) −3298.91 −0.169692
\(724\) −2499.07 −0.128284
\(725\) 0 0
\(726\) −2492.10 −0.127397
\(727\) 24760.2 1.26314 0.631571 0.775318i \(-0.282411\pi\)
0.631571 + 0.775318i \(0.282411\pi\)
\(728\) 0 0
\(729\) −17562.7 −0.892280
\(730\) 0 0
\(731\) −19106.1 −0.966708
\(732\) 158.542 0.00800530
\(733\) −4537.53 −0.228646 −0.114323 0.993444i \(-0.536470\pi\)
−0.114323 + 0.993444i \(0.536470\pi\)
\(734\) 474.850 0.0238788
\(735\) 0 0
\(736\) −16.0746 −0.000805051 0
\(737\) −3957.23 −0.197784
\(738\) −4096.57 −0.204332
\(739\) −24010.0 −1.19516 −0.597579 0.801810i \(-0.703870\pi\)
−0.597579 + 0.801810i \(0.703870\pi\)
\(740\) 0 0
\(741\) 1843.45 0.0913913
\(742\) 0 0
\(743\) −25175.4 −1.24306 −0.621532 0.783389i \(-0.713489\pi\)
−0.621532 + 0.783389i \(0.713489\pi\)
\(744\) −4820.72 −0.237549
\(745\) 0 0
\(746\) −21566.5 −1.05845
\(747\) 14250.4 0.697985
\(748\) 190.184 0.00929652
\(749\) 0 0
\(750\) 0 0
\(751\) 24920.0 1.21085 0.605423 0.795904i \(-0.293004\pi\)
0.605423 + 0.795904i \(0.293004\pi\)
\(752\) 13534.1 0.656301
\(753\) 1705.95 0.0825607
\(754\) −16740.2 −0.808543
\(755\) 0 0
\(756\) 0 0
\(757\) 28274.4 1.35753 0.678765 0.734356i \(-0.262516\pi\)
0.678765 + 0.734356i \(0.262516\pi\)
\(758\) 34210.3 1.63928
\(759\) −1.43061 −6.84160e−5 0
\(760\) 0 0
\(761\) −12377.9 −0.589616 −0.294808 0.955557i \(-0.595256\pi\)
−0.294808 + 0.955557i \(0.595256\pi\)
\(762\) 533.818 0.0253782
\(763\) 0 0
\(764\) −2410.57 −0.114151
\(765\) 0 0
\(766\) 12639.7 0.596204
\(767\) 29797.3 1.40276
\(768\) −750.019 −0.0352396
\(769\) 31845.7 1.49335 0.746674 0.665190i \(-0.231650\pi\)
0.746674 + 0.665190i \(0.231650\pi\)
\(770\) 0 0
\(771\) −1144.78 −0.0534736
\(772\) 734.617 0.0342480
\(773\) 7342.21 0.341631 0.170816 0.985303i \(-0.445360\pi\)
0.170816 + 0.985303i \(0.445360\pi\)
\(774\) −20267.8 −0.941228
\(775\) 0 0
\(776\) −41205.1 −1.90615
\(777\) 0 0
\(778\) −135.766 −0.00625636
\(779\) 2912.35 0.133948
\(780\) 0 0
\(781\) 4150.44 0.190159
\(782\) 92.6127 0.00423507
\(783\) 4506.86 0.205699
\(784\) 0 0
\(785\) 0 0
\(786\) 1326.16 0.0601815
\(787\) 36457.4 1.65129 0.825646 0.564188i \(-0.190811\pi\)
0.825646 + 0.564188i \(0.190811\pi\)
\(788\) −2248.93 −0.101669
\(789\) 2500.14 0.112810
\(790\) 0 0
\(791\) 0 0
\(792\) 2502.30 0.112267
\(793\) −16625.2 −0.744487
\(794\) −29879.0 −1.33548
\(795\) 0 0
\(796\) 15.4717 0.000688918 0
\(797\) −9358.08 −0.415910 −0.207955 0.978138i \(-0.566681\pi\)
−0.207955 + 0.978138i \(0.566681\pi\)
\(798\) 0 0
\(799\) 15781.2 0.698747
\(800\) 0 0
\(801\) −21261.2 −0.937863
\(802\) −36924.5 −1.62575
\(803\) 2781.70 0.122247
\(804\) 485.033 0.0212758
\(805\) 0 0
\(806\) 40757.1 1.78115
\(807\) −555.378 −0.0242258
\(808\) −46730.0 −2.03460
\(809\) 28189.6 1.22509 0.612543 0.790437i \(-0.290147\pi\)
0.612543 + 0.790437i \(0.290147\pi\)
\(810\) 0 0
\(811\) 22909.7 0.991946 0.495973 0.868338i \(-0.334811\pi\)
0.495973 + 0.868338i \(0.334811\pi\)
\(812\) 0 0
\(813\) −5488.44 −0.236763
\(814\) 1572.91 0.0677277
\(815\) 0 0
\(816\) 2741.98 0.117633
\(817\) 14408.8 0.617015
\(818\) 29691.5 1.26912
\(819\) 0 0
\(820\) 0 0
\(821\) 20512.6 0.871980 0.435990 0.899952i \(-0.356398\pi\)
0.435990 + 0.899952i \(0.356398\pi\)
\(822\) −3011.22 −0.127772
\(823\) −7882.78 −0.333872 −0.166936 0.985968i \(-0.553387\pi\)
−0.166936 + 0.985968i \(0.553387\pi\)
\(824\) 9147.40 0.386729
\(825\) 0 0
\(826\) 0 0
\(827\) 19276.5 0.810531 0.405265 0.914199i \(-0.367179\pi\)
0.405265 + 0.914199i \(0.367179\pi\)
\(828\) −9.44369 −0.000396366 0
\(829\) −13771.7 −0.576972 −0.288486 0.957484i \(-0.593152\pi\)
−0.288486 + 0.957484i \(0.593152\pi\)
\(830\) 0 0
\(831\) 1090.34 0.0455157
\(832\) 28318.7 1.18002
\(833\) 0 0
\(834\) −4859.76 −0.201774
\(835\) 0 0
\(836\) −143.427 −0.00593363
\(837\) −10972.8 −0.453136
\(838\) −3013.31 −0.124216
\(839\) −23175.4 −0.953640 −0.476820 0.879001i \(-0.658211\pi\)
−0.476820 + 0.879001i \(0.658211\pi\)
\(840\) 0 0
\(841\) −9975.12 −0.409001
\(842\) −6470.94 −0.264849
\(843\) −3538.48 −0.144569
\(844\) −1657.46 −0.0675972
\(845\) 0 0
\(846\) 16740.8 0.680330
\(847\) 0 0
\(848\) −23524.9 −0.952650
\(849\) −4137.22 −0.167243
\(850\) 0 0
\(851\) −73.6270 −0.00296581
\(852\) −508.714 −0.0204557
\(853\) −31431.7 −1.26166 −0.630832 0.775920i \(-0.717286\pi\)
−0.630832 + 0.775920i \(0.717286\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −11956.0 −0.477391
\(857\) 3992.52 0.159139 0.0795693 0.996829i \(-0.474646\pi\)
0.0795693 + 0.996829i \(0.474646\pi\)
\(858\) 392.816 0.0156300
\(859\) −12909.8 −0.512778 −0.256389 0.966574i \(-0.582533\pi\)
−0.256389 + 0.966574i \(0.582533\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 4551.10 0.179827
\(863\) 40128.5 1.58284 0.791419 0.611274i \(-0.209343\pi\)
0.791419 + 0.611274i \(0.209343\pi\)
\(864\) −1188.29 −0.0467898
\(865\) 0 0
\(866\) −36081.3 −1.41581
\(867\) −249.542 −0.00977498
\(868\) 0 0
\(869\) −1719.63 −0.0671284
\(870\) 0 0
\(871\) −50862.0 −1.97864
\(872\) −8089.73 −0.314166
\(873\) −46463.6 −1.80132
\(874\) −69.8438 −0.00270309
\(875\) 0 0
\(876\) −340.950 −0.0131502
\(877\) −3222.42 −0.124074 −0.0620372 0.998074i \(-0.519760\pi\)
−0.0620372 + 0.998074i \(0.519760\pi\)
\(878\) −37328.4 −1.43482
\(879\) 6028.00 0.231307
\(880\) 0 0
\(881\) 18712.4 0.715591 0.357795 0.933800i \(-0.383529\pi\)
0.357795 + 0.933800i \(0.383529\pi\)
\(882\) 0 0
\(883\) 17924.0 0.683114 0.341557 0.939861i \(-0.389046\pi\)
0.341557 + 0.939861i \(0.389046\pi\)
\(884\) 2444.42 0.0930029
\(885\) 0 0
\(886\) −17033.9 −0.645896
\(887\) 9873.21 0.373743 0.186871 0.982384i \(-0.440165\pi\)
0.186871 + 0.982384i \(0.440165\pi\)
\(888\) −2391.19 −0.0903637
\(889\) 0 0
\(890\) 0 0
\(891\) 2768.27 0.104086
\(892\) 1002.30 0.0376226
\(893\) −11901.4 −0.445985
\(894\) −6417.59 −0.240086
\(895\) 0 0
\(896\) 0 0
\(897\) −18.3875 −0.000684438 0
\(898\) 14715.0 0.546822
\(899\) −35093.3 −1.30192
\(900\) 0 0
\(901\) −27430.7 −1.01426
\(902\) 620.582 0.0229081
\(903\) 0 0
\(904\) −28635.3 −1.05354
\(905\) 0 0
\(906\) −4362.97 −0.159989
\(907\) 30129.2 1.10300 0.551502 0.834174i \(-0.314055\pi\)
0.551502 + 0.834174i \(0.314055\pi\)
\(908\) −4194.91 −0.153318
\(909\) −52693.5 −1.92270
\(910\) 0 0
\(911\) −37831.8 −1.37588 −0.687938 0.725769i \(-0.741484\pi\)
−0.687938 + 0.725769i \(0.741484\pi\)
\(912\) −2067.86 −0.0750807
\(913\) −2158.77 −0.0782527
\(914\) −3298.65 −0.119376
\(915\) 0 0
\(916\) 4474.40 0.161396
\(917\) 0 0
\(918\) 6846.24 0.246143
\(919\) 4771.81 0.171281 0.0856407 0.996326i \(-0.472706\pi\)
0.0856407 + 0.996326i \(0.472706\pi\)
\(920\) 0 0
\(921\) −2583.30 −0.0924240
\(922\) −26927.7 −0.961841
\(923\) 53345.3 1.90236
\(924\) 0 0
\(925\) 0 0
\(926\) 17045.6 0.604917
\(927\) 10314.8 0.365460
\(928\) −3800.39 −0.134433
\(929\) 45138.3 1.59412 0.797061 0.603899i \(-0.206387\pi\)
0.797061 + 0.603899i \(0.206387\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −3470.75 −0.121983
\(933\) −4817.05 −0.169028
\(934\) 21031.1 0.736786
\(935\) 0 0
\(936\) 32161.8 1.12312
\(937\) 22634.7 0.789161 0.394580 0.918861i \(-0.370890\pi\)
0.394580 + 0.918861i \(0.370890\pi\)
\(938\) 0 0
\(939\) 2075.64 0.0721363
\(940\) 0 0
\(941\) −11695.3 −0.405160 −0.202580 0.979266i \(-0.564933\pi\)
−0.202580 + 0.979266i \(0.564933\pi\)
\(942\) 1113.16 0.0385020
\(943\) −29.0492 −0.00100315
\(944\) −33424.6 −1.15241
\(945\) 0 0
\(946\) 3070.33 0.105523
\(947\) 45429.1 1.55887 0.779434 0.626485i \(-0.215507\pi\)
0.779434 + 0.626485i \(0.215507\pi\)
\(948\) 210.773 0.00722109
\(949\) 35753.0 1.22296
\(950\) 0 0
\(951\) −1112.13 −0.0379213
\(952\) 0 0
\(953\) 39025.9 1.32652 0.663259 0.748390i \(-0.269173\pi\)
0.663259 + 0.748390i \(0.269173\pi\)
\(954\) −29098.6 −0.987529
\(955\) 0 0
\(956\) 244.293 0.00826464
\(957\) −338.228 −0.0114246
\(958\) 11955.2 0.403188
\(959\) 0 0
\(960\) 0 0
\(961\) 55650.1 1.86802
\(962\) 20216.5 0.677552
\(963\) −13481.7 −0.451135
\(964\) 3298.91 0.110218
\(965\) 0 0
\(966\) 0 0
\(967\) 12986.1 0.431857 0.215929 0.976409i \(-0.430722\pi\)
0.215929 + 0.976409i \(0.430722\pi\)
\(968\) 30909.8 1.02632
\(969\) −2411.19 −0.0799366
\(970\) 0 0
\(971\) 15044.2 0.497210 0.248605 0.968605i \(-0.420028\pi\)
0.248605 + 0.968605i \(0.420028\pi\)
\(972\) −1050.37 −0.0346613
\(973\) 0 0
\(974\) −35323.8 −1.16206
\(975\) 0 0
\(976\) 18649.0 0.611618
\(977\) −26593.4 −0.870828 −0.435414 0.900230i \(-0.643398\pi\)
−0.435414 + 0.900230i \(0.643398\pi\)
\(978\) −1732.68 −0.0566512
\(979\) 3220.82 0.105146
\(980\) 0 0
\(981\) −9122.12 −0.296888
\(982\) 30948.2 1.00570
\(983\) 36050.3 1.16971 0.584856 0.811137i \(-0.301151\pi\)
0.584856 + 0.811137i \(0.301151\pi\)
\(984\) −943.431 −0.0305645
\(985\) 0 0
\(986\) 21895.7 0.707203
\(987\) 0 0
\(988\) −1843.45 −0.0593604
\(989\) −143.721 −0.00462088
\(990\) 0 0
\(991\) −54789.8 −1.75626 −0.878131 0.478420i \(-0.841210\pi\)
−0.878131 + 0.478420i \(0.841210\pi\)
\(992\) 9252.77 0.296145
\(993\) 4241.53 0.135550
\(994\) 0 0
\(995\) 0 0
\(996\) 264.597 0.00841775
\(997\) 23309.0 0.740426 0.370213 0.928947i \(-0.379285\pi\)
0.370213 + 0.928947i \(0.379285\pi\)
\(998\) 14915.6 0.473091
\(999\) −5442.75 −0.172373
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.4.a.r.1.2 2
5.4 even 2 1225.4.a.t.1.1 2
7.6 odd 2 175.4.a.d.1.2 2
21.20 even 2 1575.4.a.v.1.1 2
35.13 even 4 175.4.b.d.99.2 4
35.27 even 4 175.4.b.d.99.3 4
35.34 odd 2 175.4.a.e.1.1 yes 2
105.104 even 2 1575.4.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.d.1.2 2 7.6 odd 2
175.4.a.e.1.1 yes 2 35.34 odd 2
175.4.b.d.99.2 4 35.13 even 4
175.4.b.d.99.3 4 35.27 even 4
1225.4.a.r.1.2 2 1.1 even 1 trivial
1225.4.a.t.1.1 2 5.4 even 2
1575.4.a.s.1.2 2 105.104 even 2
1575.4.a.v.1.1 2 21.20 even 2