Properties

Label 175.4.e.a
Level 175175
Weight 44
Character orbit 175.e
Analytic conductor 10.32510.325
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(51,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.51");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 175.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.325334251010.3253342510
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2ζ6q2+(7ζ6+7)q3+(4ζ6+4)q4+14q6+(14ζ67)q7+24q822ζ6q9+(5ζ6+5)q1128ζ6q12+110q99+O(q100) q + 2 \zeta_{6} q^{2} + ( - 7 \zeta_{6} + 7) q^{3} + ( - 4 \zeta_{6} + 4) q^{4} + 14 q^{6} + ( - 14 \zeta_{6} - 7) q^{7} + 24 q^{8} - 22 \zeta_{6} q^{9} + ( - 5 \zeta_{6} + 5) q^{11} - 28 \zeta_{6} q^{12} + \cdots - 110 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2+7q3+4q4+28q628q7+48q822q9+5q1128q12+28q13+14q14+16q1621q17+44q1849q19245q21+20q22159q23+220q99+O(q100) 2 q + 2 q^{2} + 7 q^{3} + 4 q^{4} + 28 q^{6} - 28 q^{7} + 48 q^{8} - 22 q^{9} + 5 q^{11} - 28 q^{12} + 28 q^{13} + 14 q^{14} + 16 q^{16} - 21 q^{17} + 44 q^{18} - 49 q^{19} - 245 q^{21} + 20 q^{22} - 159 q^{23}+ \cdots - 220 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/175Z)×\left(\mathbb{Z}/175\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) ζ6-\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
51.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 1.73205i 3.50000 + 6.06218i 2.00000 + 3.46410i 0 14.0000 −14.0000 + 12.1244i 24.0000 −11.0000 + 19.0526i 0
151.1 1.00000 + 1.73205i 3.50000 6.06218i 2.00000 3.46410i 0 14.0000 −14.0000 12.1244i 24.0000 −11.0000 19.0526i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.4.e.a 2
5.b even 2 1 7.4.c.a 2
5.c odd 4 2 175.4.k.a 4
7.c even 3 1 inner 175.4.e.a 2
7.c even 3 1 1225.4.a.c 1
7.d odd 6 1 1225.4.a.d 1
15.d odd 2 1 63.4.e.b 2
20.d odd 2 1 112.4.i.c 2
35.c odd 2 1 49.4.c.a 2
35.i odd 6 1 49.4.a.c 1
35.i odd 6 1 49.4.c.a 2
35.j even 6 1 7.4.c.a 2
35.j even 6 1 49.4.a.d 1
35.l odd 12 2 175.4.k.a 4
40.e odd 2 1 448.4.i.a 2
40.f even 2 1 448.4.i.f 2
105.g even 2 1 441.4.e.k 2
105.o odd 6 1 63.4.e.b 2
105.o odd 6 1 441.4.a.d 1
105.p even 6 1 441.4.a.e 1
105.p even 6 1 441.4.e.k 2
140.p odd 6 1 112.4.i.c 2
140.p odd 6 1 784.4.a.b 1
140.s even 6 1 784.4.a.r 1
280.bf even 6 1 448.4.i.f 2
280.bi odd 6 1 448.4.i.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.4.c.a 2 5.b even 2 1
7.4.c.a 2 35.j even 6 1
49.4.a.c 1 35.i odd 6 1
49.4.a.d 1 35.j even 6 1
49.4.c.a 2 35.c odd 2 1
49.4.c.a 2 35.i odd 6 1
63.4.e.b 2 15.d odd 2 1
63.4.e.b 2 105.o odd 6 1
112.4.i.c 2 20.d odd 2 1
112.4.i.c 2 140.p odd 6 1
175.4.e.a 2 1.a even 1 1 trivial
175.4.e.a 2 7.c even 3 1 inner
175.4.k.a 4 5.c odd 4 2
175.4.k.a 4 35.l odd 12 2
441.4.a.d 1 105.o odd 6 1
441.4.a.e 1 105.p even 6 1
441.4.e.k 2 105.g even 2 1
441.4.e.k 2 105.p even 6 1
448.4.i.a 2 40.e odd 2 1
448.4.i.a 2 280.bi odd 6 1
448.4.i.f 2 40.f even 2 1
448.4.i.f 2 280.bf even 6 1
784.4.a.b 1 140.p odd 6 1
784.4.a.r 1 140.s even 6 1
1225.4.a.c 1 7.c even 3 1
1225.4.a.d 1 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T222T2+4 T_{2}^{2} - 2T_{2} + 4 acting on S4new(175,[χ])S_{4}^{\mathrm{new}}(175, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
33 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+28T+343 T^{2} + 28T + 343 Copy content Toggle raw display
1111 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
1313 (T14)2 (T - 14)^{2} Copy content Toggle raw display
1717 T2+21T+441 T^{2} + 21T + 441 Copy content Toggle raw display
1919 T2+49T+2401 T^{2} + 49T + 2401 Copy content Toggle raw display
2323 T2+159T+25281 T^{2} + 159T + 25281 Copy content Toggle raw display
2929 (T58)2 (T - 58)^{2} Copy content Toggle raw display
3131 T2+147T+21609 T^{2} + 147T + 21609 Copy content Toggle raw display
3737 T2219T+47961 T^{2} - 219T + 47961 Copy content Toggle raw display
4141 (T350)2 (T - 350)^{2} Copy content Toggle raw display
4343 (T124)2 (T - 124)^{2} Copy content Toggle raw display
4747 T2525T+275625 T^{2} - 525T + 275625 Copy content Toggle raw display
5353 T2303T+91809 T^{2} - 303T + 91809 Copy content Toggle raw display
5959 T2105T+11025 T^{2} - 105T + 11025 Copy content Toggle raw display
6161 T2413T+170569 T^{2} - 413T + 170569 Copy content Toggle raw display
6767 T2415T+172225 T^{2} - 415T + 172225 Copy content Toggle raw display
7171 (T+432)2 (T + 432)^{2} Copy content Toggle raw display
7373 T2+1113T+1238769 T^{2} + 1113 T + 1238769 Copy content Toggle raw display
7979 T2103T+10609 T^{2} - 103T + 10609 Copy content Toggle raw display
8383 (T+1092)2 (T + 1092)^{2} Copy content Toggle raw display
8989 T2329T+108241 T^{2} - 329T + 108241 Copy content Toggle raw display
9797 (T882)2 (T - 882)^{2} Copy content Toggle raw display
show more
show less