Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [175,4,Mod(51,175)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(175, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("175.51");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 175.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 7) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
51.1 |
|
1.00000 | − | 1.73205i | 3.50000 | + | 6.06218i | 2.00000 | + | 3.46410i | 0 | 14.0000 | −14.0000 | + | 12.1244i | 24.0000 | −11.0000 | + | 19.0526i | 0 | ||||||||||||||
151.1 | 1.00000 | + | 1.73205i | 3.50000 | − | 6.06218i | 2.00000 | − | 3.46410i | 0 | 14.0000 | −14.0000 | − | 12.1244i | 24.0000 | −11.0000 | − | 19.0526i | 0 | |||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 175.4.e.a | 2 | |
5.b | even | 2 | 1 | 7.4.c.a | ✓ | 2 | |
5.c | odd | 4 | 2 | 175.4.k.a | 4 | ||
7.c | even | 3 | 1 | inner | 175.4.e.a | 2 | |
7.c | even | 3 | 1 | 1225.4.a.c | 1 | ||
7.d | odd | 6 | 1 | 1225.4.a.d | 1 | ||
15.d | odd | 2 | 1 | 63.4.e.b | 2 | ||
20.d | odd | 2 | 1 | 112.4.i.c | 2 | ||
35.c | odd | 2 | 1 | 49.4.c.a | 2 | ||
35.i | odd | 6 | 1 | 49.4.a.c | 1 | ||
35.i | odd | 6 | 1 | 49.4.c.a | 2 | ||
35.j | even | 6 | 1 | 7.4.c.a | ✓ | 2 | |
35.j | even | 6 | 1 | 49.4.a.d | 1 | ||
35.l | odd | 12 | 2 | 175.4.k.a | 4 | ||
40.e | odd | 2 | 1 | 448.4.i.a | 2 | ||
40.f | even | 2 | 1 | 448.4.i.f | 2 | ||
105.g | even | 2 | 1 | 441.4.e.k | 2 | ||
105.o | odd | 6 | 1 | 63.4.e.b | 2 | ||
105.o | odd | 6 | 1 | 441.4.a.d | 1 | ||
105.p | even | 6 | 1 | 441.4.a.e | 1 | ||
105.p | even | 6 | 1 | 441.4.e.k | 2 | ||
140.p | odd | 6 | 1 | 112.4.i.c | 2 | ||
140.p | odd | 6 | 1 | 784.4.a.b | 1 | ||
140.s | even | 6 | 1 | 784.4.a.r | 1 | ||
280.bf | even | 6 | 1 | 448.4.i.f | 2 | ||
280.bi | odd | 6 | 1 | 448.4.i.a | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
7.4.c.a | ✓ | 2 | 5.b | even | 2 | 1 | |
7.4.c.a | ✓ | 2 | 35.j | even | 6 | 1 | |
49.4.a.c | 1 | 35.i | odd | 6 | 1 | ||
49.4.a.d | 1 | 35.j | even | 6 | 1 | ||
49.4.c.a | 2 | 35.c | odd | 2 | 1 | ||
49.4.c.a | 2 | 35.i | odd | 6 | 1 | ||
63.4.e.b | 2 | 15.d | odd | 2 | 1 | ||
63.4.e.b | 2 | 105.o | odd | 6 | 1 | ||
112.4.i.c | 2 | 20.d | odd | 2 | 1 | ||
112.4.i.c | 2 | 140.p | odd | 6 | 1 | ||
175.4.e.a | 2 | 1.a | even | 1 | 1 | trivial | |
175.4.e.a | 2 | 7.c | even | 3 | 1 | inner | |
175.4.k.a | 4 | 5.c | odd | 4 | 2 | ||
175.4.k.a | 4 | 35.l | odd | 12 | 2 | ||
441.4.a.d | 1 | 105.o | odd | 6 | 1 | ||
441.4.a.e | 1 | 105.p | even | 6 | 1 | ||
441.4.e.k | 2 | 105.g | even | 2 | 1 | ||
441.4.e.k | 2 | 105.p | even | 6 | 1 | ||
448.4.i.a | 2 | 40.e | odd | 2 | 1 | ||
448.4.i.a | 2 | 280.bi | odd | 6 | 1 | ||
448.4.i.f | 2 | 40.f | even | 2 | 1 | ||
448.4.i.f | 2 | 280.bf | even | 6 | 1 | ||
784.4.a.b | 1 | 140.p | odd | 6 | 1 | ||
784.4.a.r | 1 | 140.s | even | 6 | 1 | ||
1225.4.a.c | 1 | 7.c | even | 3 | 1 | ||
1225.4.a.d | 1 | 7.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .