Properties

Label 49.4.a.d
Level 4949
Weight 44
Character orbit 49.a
Self dual yes
Analytic conductor 2.8912.891
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [49,4,Mod(1,49)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(49, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("49.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 49=72 49 = 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 49.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 2.891093590282.89109359028
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 7)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2q2+7q34q4+7q5+14q624q8+22q9+14q105q1128q1214q13+49q1516q1621q17+44q18+49q1928q2010q22+110q99+O(q100) q + 2 q^{2} + 7 q^{3} - 4 q^{4} + 7 q^{5} + 14 q^{6} - 24 q^{8} + 22 q^{9} + 14 q^{10} - 5 q^{11} - 28 q^{12} - 14 q^{13} + 49 q^{15} - 16 q^{16} - 21 q^{17} + 44 q^{18} + 49 q^{19} - 28 q^{20} - 10 q^{22}+ \cdots - 110 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
2.00000 7.00000 −4.00000 7.00000 14.0000 0 −24.0000 22.0000 14.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 49.4.a.d 1
3.b odd 2 1 441.4.a.d 1
4.b odd 2 1 784.4.a.b 1
5.b even 2 1 1225.4.a.c 1
7.b odd 2 1 49.4.a.c 1
7.c even 3 2 7.4.c.a 2
7.d odd 6 2 49.4.c.a 2
21.c even 2 1 441.4.a.e 1
21.g even 6 2 441.4.e.k 2
21.h odd 6 2 63.4.e.b 2
28.d even 2 1 784.4.a.r 1
28.g odd 6 2 112.4.i.c 2
35.c odd 2 1 1225.4.a.d 1
35.j even 6 2 175.4.e.a 2
35.l odd 12 4 175.4.k.a 4
56.k odd 6 2 448.4.i.a 2
56.p even 6 2 448.4.i.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.4.c.a 2 7.c even 3 2
49.4.a.c 1 7.b odd 2 1
49.4.a.d 1 1.a even 1 1 trivial
49.4.c.a 2 7.d odd 6 2
63.4.e.b 2 21.h odd 6 2
112.4.i.c 2 28.g odd 6 2
175.4.e.a 2 35.j even 6 2
175.4.k.a 4 35.l odd 12 4
441.4.a.d 1 3.b odd 2 1
441.4.a.e 1 21.c even 2 1
441.4.e.k 2 21.g even 6 2
448.4.i.a 2 56.k odd 6 2
448.4.i.f 2 56.p even 6 2
784.4.a.b 1 4.b odd 2 1
784.4.a.r 1 28.d even 2 1
1225.4.a.c 1 5.b even 2 1
1225.4.a.d 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(49))S_{4}^{\mathrm{new}}(\Gamma_0(49)):

T22 T_{2} - 2 Copy content Toggle raw display
T37 T_{3} - 7 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T - 2 Copy content Toggle raw display
33 T7 T - 7 Copy content Toggle raw display
55 T7 T - 7 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+5 T + 5 Copy content Toggle raw display
1313 T+14 T + 14 Copy content Toggle raw display
1717 T+21 T + 21 Copy content Toggle raw display
1919 T49 T - 49 Copy content Toggle raw display
2323 T+159 T + 159 Copy content Toggle raw display
2929 T58 T - 58 Copy content Toggle raw display
3131 T147 T - 147 Copy content Toggle raw display
3737 T219 T - 219 Copy content Toggle raw display
4141 T350 T - 350 Copy content Toggle raw display
4343 T+124 T + 124 Copy content Toggle raw display
4747 T525 T - 525 Copy content Toggle raw display
5353 T303 T - 303 Copy content Toggle raw display
5959 T+105 T + 105 Copy content Toggle raw display
6161 T+413 T + 413 Copy content Toggle raw display
6767 T415 T - 415 Copy content Toggle raw display
7171 T+432 T + 432 Copy content Toggle raw display
7373 T+1113 T + 1113 Copy content Toggle raw display
7979 T+103 T + 103 Copy content Toggle raw display
8383 T1092 T - 1092 Copy content Toggle raw display
8989 T+329 T + 329 Copy content Toggle raw display
9797 T+882 T + 882 Copy content Toggle raw display
show more
show less