Properties

Label 175.4.k.b.149.1
Level $175$
Weight $4$
Character 175.149
Analytic conductor $10.325$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(74,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.74");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 149.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 175.149
Dual form 175.4.k.b.74.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.59808 - 1.50000i) q^{2} +(1.73205 - 1.00000i) q^{3} +(0.500000 + 0.866025i) q^{4} -6.00000 q^{6} +(-12.1244 - 14.0000i) q^{7} +21.0000i q^{8} +(-11.5000 + 19.9186i) q^{9} +(22.5000 + 38.9711i) q^{11} +(1.73205 + 1.00000i) q^{12} -59.0000i q^{13} +(10.5000 + 54.5596i) q^{14} +(35.5000 - 61.4878i) q^{16} +(-46.7654 + 27.0000i) q^{17} +(59.7558 - 34.5000i) q^{18} +(-60.5000 + 104.789i) q^{19} +(-35.0000 - 12.1244i) q^{21} -135.000i q^{22} +(59.7558 + 34.5000i) q^{23} +(21.0000 + 36.3731i) q^{24} +(-88.5000 + 153.286i) q^{26} +100.000i q^{27} +(6.06218 - 17.5000i) q^{28} +162.000 q^{29} +(44.0000 + 76.2102i) q^{31} +(-38.9711 + 22.5000i) q^{32} +(77.9423 + 45.0000i) q^{33} +162.000 q^{34} -23.0000 q^{36} +(224.301 + 129.500i) q^{37} +(314.367 - 181.500i) q^{38} +(-59.0000 - 102.191i) q^{39} +195.000 q^{41} +(72.7461 + 84.0000i) q^{42} +286.000i q^{43} +(-22.5000 + 38.9711i) q^{44} +(-103.500 - 179.267i) q^{46} +(-38.9711 - 22.5000i) q^{47} -142.000i q^{48} +(-49.0000 + 339.482i) q^{49} +(-54.0000 + 93.5307i) q^{51} +(51.0955 - 29.5000i) q^{52} +(-517.017 + 298.500i) q^{53} +(150.000 - 259.808i) q^{54} +(294.000 - 254.611i) q^{56} +242.000i q^{57} +(-420.888 - 243.000i) q^{58} +(-180.000 - 311.769i) q^{59} +(-196.000 + 339.482i) q^{61} -264.000i q^{62} +(418.290 - 80.5000i) q^{63} -433.000 q^{64} +(-135.000 - 233.827i) q^{66} +(-242.487 + 140.000i) q^{67} +(-46.7654 - 27.0000i) q^{68} +138.000 q^{69} +48.0000 q^{71} +(-418.290 - 241.500i) q^{72} +(-578.505 + 334.000i) q^{73} +(-388.500 - 672.902i) q^{74} -121.000 q^{76} +(272.798 - 787.500i) q^{77} +354.000i q^{78} +(391.000 - 677.232i) q^{79} +(-210.500 - 364.597i) q^{81} +(-506.625 - 292.500i) q^{82} -768.000i q^{83} +(-7.00000 - 36.3731i) q^{84} +(429.000 - 743.050i) q^{86} +(280.592 - 162.000i) q^{87} +(-818.394 + 472.500i) q^{88} +(-597.000 + 1034.03i) q^{89} +(-826.000 + 715.337i) q^{91} +69.0000i q^{92} +(152.420 + 88.0000i) q^{93} +(67.5000 + 116.913i) q^{94} +(-45.0000 + 77.9423i) q^{96} +902.000i q^{97} +(636.529 - 808.500i) q^{98} -1035.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 24 q^{6} - 46 q^{9} + 90 q^{11} + 42 q^{14} + 142 q^{16} - 242 q^{19} - 140 q^{21} + 84 q^{24} - 354 q^{26} + 648 q^{29} + 176 q^{31} + 648 q^{34} - 92 q^{36} - 236 q^{39} + 780 q^{41} - 90 q^{44}+ \cdots - 4140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.59808 1.50000i −0.918559 0.530330i −0.0353837 0.999374i \(-0.511265\pi\)
−0.883175 + 0.469044i \(0.844599\pi\)
\(3\) 1.73205 1.00000i 0.333333 0.192450i −0.323987 0.946062i \(-0.605023\pi\)
0.657320 + 0.753612i \(0.271690\pi\)
\(4\) 0.500000 + 0.866025i 0.0625000 + 0.108253i
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) −12.1244 14.0000i −0.654654 0.755929i
\(8\) 21.0000i 0.928078i
\(9\) −11.5000 + 19.9186i −0.425926 + 0.737725i
\(10\) 0 0
\(11\) 22.5000 + 38.9711i 0.616728 + 1.06820i 0.990079 + 0.140514i \(0.0448754\pi\)
−0.373351 + 0.927690i \(0.621791\pi\)
\(12\) 1.73205 + 1.00000i 0.0416667 + 0.0240563i
\(13\) 59.0000i 1.25874i −0.777105 0.629371i \(-0.783312\pi\)
0.777105 0.629371i \(-0.216688\pi\)
\(14\) 10.5000 + 54.5596i 0.200446 + 1.04155i
\(15\) 0 0
\(16\) 35.5000 61.4878i 0.554688 0.960747i
\(17\) −46.7654 + 27.0000i −0.667192 + 0.385204i −0.795012 0.606594i \(-0.792535\pi\)
0.127820 + 0.991797i \(0.459202\pi\)
\(18\) 59.7558 34.5000i 0.782476 0.451763i
\(19\) −60.5000 + 104.789i −0.730508 + 1.26528i 0.226158 + 0.974091i \(0.427383\pi\)
−0.956666 + 0.291186i \(0.905950\pi\)
\(20\) 0 0
\(21\) −35.0000 12.1244i −0.363696 0.125988i
\(22\) 135.000i 1.30828i
\(23\) 59.7558 + 34.5000i 0.541736 + 0.312772i 0.745782 0.666190i \(-0.232076\pi\)
−0.204046 + 0.978961i \(0.565409\pi\)
\(24\) 21.0000 + 36.3731i 0.178609 + 0.309359i
\(25\) 0 0
\(26\) −88.5000 + 153.286i −0.667549 + 1.15623i
\(27\) 100.000i 0.712778i
\(28\) 6.06218 17.5000i 0.0409159 0.118114i
\(29\) 162.000 1.03733 0.518666 0.854977i \(-0.326429\pi\)
0.518666 + 0.854977i \(0.326429\pi\)
\(30\) 0 0
\(31\) 44.0000 + 76.2102i 0.254924 + 0.441541i 0.964875 0.262710i \(-0.0846163\pi\)
−0.709951 + 0.704251i \(0.751283\pi\)
\(32\) −38.9711 + 22.5000i −0.215287 + 0.124296i
\(33\) 77.9423 + 45.0000i 0.411152 + 0.237379i
\(34\) 162.000 0.817140
\(35\) 0 0
\(36\) −23.0000 −0.106481
\(37\) 224.301 + 129.500i 0.996616 + 0.575396i 0.907245 0.420602i \(-0.138181\pi\)
0.0893706 + 0.995998i \(0.471514\pi\)
\(38\) 314.367 181.500i 1.34203 0.774821i
\(39\) −59.0000 102.191i −0.242245 0.419581i
\(40\) 0 0
\(41\) 195.000 0.742778 0.371389 0.928477i \(-0.378882\pi\)
0.371389 + 0.928477i \(0.378882\pi\)
\(42\) 72.7461 + 84.0000i 0.267261 + 0.308607i
\(43\) 286.000i 1.01429i 0.861860 + 0.507146i \(0.169300\pi\)
−0.861860 + 0.507146i \(0.830700\pi\)
\(44\) −22.5000 + 38.9711i −0.0770910 + 0.133525i
\(45\) 0 0
\(46\) −103.500 179.267i −0.331744 0.574598i
\(47\) −38.9711 22.5000i −0.120947 0.0698290i 0.438306 0.898826i \(-0.355579\pi\)
−0.559253 + 0.828997i \(0.688912\pi\)
\(48\) 142.000i 0.426999i
\(49\) −49.0000 + 339.482i −0.142857 + 0.989743i
\(50\) 0 0
\(51\) −54.0000 + 93.5307i −0.148265 + 0.256802i
\(52\) 51.0955 29.5000i 0.136263 0.0786714i
\(53\) −517.017 + 298.500i −1.33996 + 0.773625i −0.986801 0.161939i \(-0.948225\pi\)
−0.353157 + 0.935564i \(0.614892\pi\)
\(54\) 150.000 259.808i 0.378008 0.654729i
\(55\) 0 0
\(56\) 294.000 254.611i 0.701561 0.607569i
\(57\) 242.000i 0.562345i
\(58\) −420.888 243.000i −0.952851 0.550129i
\(59\) −180.000 311.769i −0.397187 0.687947i 0.596191 0.802843i \(-0.296680\pi\)
−0.993378 + 0.114895i \(0.963347\pi\)
\(60\) 0 0
\(61\) −196.000 + 339.482i −0.411397 + 0.712561i −0.995043 0.0994477i \(-0.968292\pi\)
0.583646 + 0.812009i \(0.301626\pi\)
\(62\) 264.000i 0.540775i
\(63\) 418.290 80.5000i 0.836502 0.160985i
\(64\) −433.000 −0.845703
\(65\) 0 0
\(66\) −135.000 233.827i −0.251778 0.436092i
\(67\) −242.487 + 140.000i −0.442157 + 0.255279i −0.704512 0.709692i \(-0.748834\pi\)
0.262355 + 0.964971i \(0.415501\pi\)
\(68\) −46.7654 27.0000i −0.0833990 0.0481505i
\(69\) 138.000 0.240772
\(70\) 0 0
\(71\) 48.0000 0.0802331 0.0401166 0.999195i \(-0.487227\pi\)
0.0401166 + 0.999195i \(0.487227\pi\)
\(72\) −418.290 241.500i −0.684666 0.395292i
\(73\) −578.505 + 334.000i −0.927519 + 0.535503i −0.886026 0.463635i \(-0.846545\pi\)
−0.0414929 + 0.999139i \(0.513211\pi\)
\(74\) −388.500 672.902i −0.610300 1.05707i
\(75\) 0 0
\(76\) −121.000 −0.182627
\(77\) 272.798 787.500i 0.403743 1.16551i
\(78\) 354.000i 0.513880i
\(79\) 391.000 677.232i 0.556847 0.964488i −0.440910 0.897551i \(-0.645344\pi\)
0.997757 0.0669365i \(-0.0213225\pi\)
\(80\) 0 0
\(81\) −210.500 364.597i −0.288752 0.500133i
\(82\) −506.625 292.500i −0.682285 0.393917i
\(83\) 768.000i 1.01565i −0.861460 0.507825i \(-0.830450\pi\)
0.861460 0.507825i \(-0.169550\pi\)
\(84\) −7.00000 36.3731i −0.00909241 0.0472456i
\(85\) 0 0
\(86\) 429.000 743.050i 0.537910 0.931687i
\(87\) 280.592 162.000i 0.345778 0.199635i
\(88\) −818.394 + 472.500i −0.991376 + 0.572371i
\(89\) −597.000 + 1034.03i −0.711032 + 1.23154i 0.253438 + 0.967352i \(0.418439\pi\)
−0.964470 + 0.264192i \(0.914895\pi\)
\(90\) 0 0
\(91\) −826.000 + 715.337i −0.951520 + 0.824041i
\(92\) 69.0000i 0.0781929i
\(93\) 152.420 + 88.0000i 0.169949 + 0.0981202i
\(94\) 67.5000 + 116.913i 0.0740648 + 0.128284i
\(95\) 0 0
\(96\) −45.0000 + 77.9423i −0.0478416 + 0.0828641i
\(97\) 902.000i 0.944167i 0.881554 + 0.472084i \(0.156498\pi\)
−0.881554 + 0.472084i \(0.843502\pi\)
\(98\) 636.529 808.500i 0.656113 0.833376i
\(99\) −1035.00 −1.05072
\(100\) 0 0
\(101\) −342.000 592.361i −0.336933 0.583586i 0.646921 0.762557i \(-0.276056\pi\)
−0.983854 + 0.178971i \(0.942723\pi\)
\(102\) 280.592 162.000i 0.272380 0.157259i
\(103\) −1312.89 758.000i −1.25595 0.725126i −0.283669 0.958922i \(-0.591552\pi\)
−0.972286 + 0.233796i \(0.924885\pi\)
\(104\) 1239.00 1.16821
\(105\) 0 0
\(106\) 1791.00 1.64111
\(107\) 633.931 + 366.000i 0.572751 + 0.330678i 0.758247 0.651967i \(-0.226056\pi\)
−0.185496 + 0.982645i \(0.559389\pi\)
\(108\) −86.6025 + 50.0000i −0.0771605 + 0.0445486i
\(109\) −800.000 1385.64i −0.702992 1.21762i −0.967411 0.253210i \(-0.918514\pi\)
0.264420 0.964408i \(-0.414820\pi\)
\(110\) 0 0
\(111\) 518.000 0.442940
\(112\) −1291.24 + 248.500i −1.08938 + 0.209652i
\(113\) 1392.00i 1.15883i 0.815031 + 0.579417i \(0.196720\pi\)
−0.815031 + 0.579417i \(0.803280\pi\)
\(114\) 363.000 628.734i 0.298229 0.516547i
\(115\) 0 0
\(116\) 81.0000 + 140.296i 0.0648333 + 0.112295i
\(117\) 1175.20 + 678.500i 0.928606 + 0.536131i
\(118\) 1080.00i 0.842560i
\(119\) 945.000 + 327.358i 0.727966 + 0.252175i
\(120\) 0 0
\(121\) −347.000 + 601.022i −0.260706 + 0.451556i
\(122\) 1018.45 588.000i 0.755785 0.436353i
\(123\) 337.750 195.000i 0.247593 0.142948i
\(124\) −44.0000 + 76.2102i −0.0318655 + 0.0551926i
\(125\) 0 0
\(126\) −1207.50 418.290i −0.853751 0.295748i
\(127\) 803.000i 0.561061i 0.959845 + 0.280530i \(0.0905104\pi\)
−0.959845 + 0.280530i \(0.909490\pi\)
\(128\) 1436.74 + 829.500i 0.992115 + 0.572798i
\(129\) 286.000 + 495.367i 0.195201 + 0.338098i
\(130\) 0 0
\(131\) −1009.50 + 1748.51i −0.673286 + 1.16617i 0.303681 + 0.952774i \(0.401784\pi\)
−0.976967 + 0.213391i \(0.931549\pi\)
\(132\) 90.0000i 0.0593447i
\(133\) 2200.57 423.500i 1.43469 0.276106i
\(134\) 840.000 0.541529
\(135\) 0 0
\(136\) −567.000 982.073i −0.357499 0.619206i
\(137\) 51.9615 30.0000i 0.0324042 0.0187086i −0.483710 0.875228i \(-0.660711\pi\)
0.516115 + 0.856520i \(0.327378\pi\)
\(138\) −358.535 207.000i −0.221163 0.127688i
\(139\) 1708.00 1.04224 0.521118 0.853485i \(-0.325515\pi\)
0.521118 + 0.853485i \(0.325515\pi\)
\(140\) 0 0
\(141\) −90.0000 −0.0537544
\(142\) −124.708 72.0000i −0.0736988 0.0425500i
\(143\) 2299.30 1327.50i 1.34459 0.776302i
\(144\) 816.500 + 1414.22i 0.472512 + 0.818414i
\(145\) 0 0
\(146\) 2004.00 1.13597
\(147\) 254.611 + 637.000i 0.142857 + 0.357407i
\(148\) 259.000i 0.143849i
\(149\) −543.000 + 940.504i −0.298552 + 0.517108i −0.975805 0.218643i \(-0.929837\pi\)
0.677253 + 0.735751i \(0.263170\pi\)
\(150\) 0 0
\(151\) 1433.00 + 2482.03i 0.772291 + 1.33765i 0.936305 + 0.351189i \(0.114222\pi\)
−0.164014 + 0.986458i \(0.552444\pi\)
\(152\) −2200.57 1270.50i −1.17428 0.677968i
\(153\) 1242.00i 0.656273i
\(154\) −1890.00 + 1636.79i −0.988965 + 0.856468i
\(155\) 0 0
\(156\) 59.0000 102.191i 0.0302806 0.0524476i
\(157\) −198.320 + 114.500i −0.100813 + 0.0582044i −0.549559 0.835455i \(-0.685204\pi\)
0.448746 + 0.893659i \(0.351871\pi\)
\(158\) −2031.70 + 1173.00i −1.02299 + 0.590626i
\(159\) −597.000 + 1034.03i −0.297768 + 0.515750i
\(160\) 0 0
\(161\) −241.500 1254.87i −0.118217 0.614271i
\(162\) 1263.00i 0.612535i
\(163\) −1063.48 614.000i −0.511031 0.295044i 0.222226 0.974995i \(-0.428668\pi\)
−0.733258 + 0.679951i \(0.762001\pi\)
\(164\) 97.5000 + 168.875i 0.0464236 + 0.0804080i
\(165\) 0 0
\(166\) −1152.00 + 1995.32i −0.538630 + 0.932934i
\(167\) 1929.00i 0.893835i −0.894575 0.446918i \(-0.852522\pi\)
0.894575 0.446918i \(-0.147478\pi\)
\(168\) 254.611 735.000i 0.116927 0.337539i
\(169\) −1284.00 −0.584433
\(170\) 0 0
\(171\) −1391.50 2410.15i −0.622285 1.07783i
\(172\) −247.683 + 143.000i −0.109800 + 0.0633933i
\(173\) −605.352 349.500i −0.266035 0.153595i 0.361049 0.932547i \(-0.382419\pi\)
−0.627084 + 0.778951i \(0.715752\pi\)
\(174\) −972.000 −0.423489
\(175\) 0 0
\(176\) 3195.00 1.36836
\(177\) −623.538 360.000i −0.264791 0.152877i
\(178\) 3102.10 1791.00i 1.30625 0.754164i
\(179\) 1558.50 + 2699.40i 0.650770 + 1.12717i 0.982936 + 0.183945i \(0.0588870\pi\)
−0.332167 + 0.943221i \(0.607780\pi\)
\(180\) 0 0
\(181\) −1798.00 −0.738366 −0.369183 0.929357i \(-0.620362\pi\)
−0.369183 + 0.929357i \(0.620362\pi\)
\(182\) 3219.02 619.500i 1.31104 0.252310i
\(183\) 784.000i 0.316694i
\(184\) −724.500 + 1254.87i −0.290276 + 0.502773i
\(185\) 0 0
\(186\) −264.000 457.261i −0.104072 0.180258i
\(187\) −2104.44 1215.00i −0.822952 0.475132i
\(188\) 45.0000i 0.0174572i
\(189\) 1400.00 1212.44i 0.538810 0.466623i
\(190\) 0 0
\(191\) 1194.00 2068.07i 0.452329 0.783457i −0.546201 0.837654i \(-0.683927\pi\)
0.998530 + 0.0541974i \(0.0172600\pi\)
\(192\) −749.978 + 433.000i −0.281901 + 0.162756i
\(193\) −235.559 + 136.000i −0.0878544 + 0.0507228i −0.543284 0.839549i \(-0.682819\pi\)
0.455429 + 0.890272i \(0.349486\pi\)
\(194\) 1353.00 2343.46i 0.500720 0.867273i
\(195\) 0 0
\(196\) −318.500 + 127.306i −0.116071 + 0.0463942i
\(197\) 2109.00i 0.762741i −0.924422 0.381371i \(-0.875452\pi\)
0.924422 0.381371i \(-0.124548\pi\)
\(198\) 2689.01 + 1552.50i 0.965149 + 0.557229i
\(199\) 712.000 + 1233.22i 0.253630 + 0.439300i 0.964522 0.264001i \(-0.0850422\pi\)
−0.710893 + 0.703301i \(0.751709\pi\)
\(200\) 0 0
\(201\) −280.000 + 484.974i −0.0982571 + 0.170186i
\(202\) 2052.00i 0.714744i
\(203\) −1964.15 2268.00i −0.679094 0.784150i
\(204\) −108.000 −0.0370662
\(205\) 0 0
\(206\) 2274.00 + 3938.68i 0.769112 + 1.33214i
\(207\) −1374.38 + 793.500i −0.461479 + 0.266435i
\(208\) −3627.78 2094.50i −1.20933 0.698209i
\(209\) −5445.00 −1.80210
\(210\) 0 0
\(211\) −3625.00 −1.18273 −0.591363 0.806405i \(-0.701410\pi\)
−0.591363 + 0.806405i \(0.701410\pi\)
\(212\) −517.017 298.500i −0.167495 0.0967031i
\(213\) 83.1384 48.0000i 0.0267444 0.0154409i
\(214\) −1098.00 1901.79i −0.350737 0.607494i
\(215\) 0 0
\(216\) −2100.00 −0.661513
\(217\) 533.472 1540.00i 0.166887 0.481760i
\(218\) 4800.00i 1.49127i
\(219\) −668.000 + 1157.01i −0.206115 + 0.357002i
\(220\) 0 0
\(221\) 1593.00 + 2759.16i 0.484872 + 0.839823i
\(222\) −1345.80 777.000i −0.406867 0.234905i
\(223\) 4960.00i 1.48944i 0.667374 + 0.744722i \(0.267418\pi\)
−0.667374 + 0.744722i \(0.732582\pi\)
\(224\) 787.500 + 272.798i 0.234898 + 0.0813709i
\(225\) 0 0
\(226\) 2088.00 3616.52i 0.614565 1.06446i
\(227\) −1299.04 + 750.000i −0.379825 + 0.219292i −0.677742 0.735300i \(-0.737041\pi\)
0.297917 + 0.954592i \(0.403708\pi\)
\(228\) −209.578 + 121.000i −0.0608757 + 0.0351466i
\(229\) 3046.00 5275.83i 0.878975 1.52243i 0.0265085 0.999649i \(-0.491561\pi\)
0.852467 0.522781i \(-0.175106\pi\)
\(230\) 0 0
\(231\) −315.000 1636.79i −0.0897207 0.466202i
\(232\) 3402.00i 0.962725i
\(233\) 119.512 + 69.0000i 0.0336028 + 0.0194006i 0.516707 0.856162i \(-0.327158\pi\)
−0.483104 + 0.875563i \(0.660491\pi\)
\(234\) −2035.50 3525.59i −0.568653 0.984936i
\(235\) 0 0
\(236\) 180.000 311.769i 0.0496483 0.0859934i
\(237\) 1564.00i 0.428661i
\(238\) −1964.15 2268.00i −0.534944 0.617700i
\(239\) 5502.00 1.48910 0.744550 0.667567i \(-0.232664\pi\)
0.744550 + 0.667567i \(0.232664\pi\)
\(240\) 0 0
\(241\) −1775.50 3075.26i −0.474564 0.821970i 0.525011 0.851095i \(-0.324061\pi\)
−0.999576 + 0.0291256i \(0.990728\pi\)
\(242\) 1803.06 1041.00i 0.478948 0.276521i
\(243\) −3067.46 1771.00i −0.809785 0.467530i
\(244\) −392.000 −0.102849
\(245\) 0 0
\(246\) −1170.00 −0.303238
\(247\) 6182.56 + 3569.50i 1.59266 + 0.919522i
\(248\) −1600.41 + 924.000i −0.409784 + 0.236589i
\(249\) −768.000 1330.22i −0.195462 0.338550i
\(250\) 0 0
\(251\) 7065.00 1.77665 0.888324 0.459216i \(-0.151870\pi\)
0.888324 + 0.459216i \(0.151870\pi\)
\(252\) 278.860 + 322.000i 0.0697085 + 0.0804924i
\(253\) 3105.00i 0.771580i
\(254\) 1204.50 2086.26i 0.297547 0.515367i
\(255\) 0 0
\(256\) −756.500 1310.30i −0.184692 0.319897i
\(257\) 3533.38 + 2040.00i 0.857613 + 0.495143i 0.863212 0.504842i \(-0.168449\pi\)
−0.00559954 + 0.999984i \(0.501782\pi\)
\(258\) 1716.00i 0.414083i
\(259\) −906.500 4710.31i −0.217479 1.13006i
\(260\) 0 0
\(261\) −1863.00 + 3226.81i −0.441827 + 0.765267i
\(262\) 5245.52 3028.50i 1.23690 0.714127i
\(263\) 2847.49 1644.00i 0.667619 0.385450i −0.127555 0.991832i \(-0.540713\pi\)
0.795174 + 0.606381i \(0.207380\pi\)
\(264\) −945.000 + 1636.79i −0.220306 + 0.381581i
\(265\) 0 0
\(266\) −6352.50 2200.57i −1.46427 0.507239i
\(267\) 2388.00i 0.547353i
\(268\) −242.487 140.000i −0.0552696 0.0319099i
\(269\) −1632.00 2826.71i −0.369906 0.640697i 0.619644 0.784883i \(-0.287277\pi\)
−0.989551 + 0.144186i \(0.953944\pi\)
\(270\) 0 0
\(271\) 1376.00 2383.30i 0.308436 0.534226i −0.669585 0.742736i \(-0.733528\pi\)
0.978020 + 0.208510i \(0.0668612\pi\)
\(272\) 3834.00i 0.854671i
\(273\) −715.337 + 2065.00i −0.158587 + 0.457800i
\(274\) −180.000 −0.0396869
\(275\) 0 0
\(276\) 69.0000 + 119.512i 0.0150482 + 0.0260643i
\(277\) −4061.66 + 2345.00i −0.881016 + 0.508655i −0.870993 0.491295i \(-0.836524\pi\)
−0.0100228 + 0.999950i \(0.503190\pi\)
\(278\) −4437.51 2562.00i −0.957354 0.552729i
\(279\) −2024.00 −0.434314
\(280\) 0 0
\(281\) 7821.00 1.66036 0.830181 0.557494i \(-0.188237\pi\)
0.830181 + 0.557494i \(0.188237\pi\)
\(282\) 233.827 + 135.000i 0.0493765 + 0.0285076i
\(283\) 569.845 329.000i 0.119695 0.0691061i −0.438957 0.898508i \(-0.644652\pi\)
0.558652 + 0.829402i \(0.311319\pi\)
\(284\) 24.0000 + 41.5692i 0.00501457 + 0.00868549i
\(285\) 0 0
\(286\) −7965.00 −1.64678
\(287\) −2364.25 2730.00i −0.486262 0.561487i
\(288\) 1035.00i 0.211764i
\(289\) −998.500 + 1729.45i −0.203236 + 0.352016i
\(290\) 0 0
\(291\) 902.000 + 1562.31i 0.181705 + 0.314722i
\(292\) −578.505 334.000i −0.115940 0.0669379i
\(293\) 5997.00i 1.19573i 0.801597 + 0.597864i \(0.203984\pi\)
−0.801597 + 0.597864i \(0.796016\pi\)
\(294\) 294.000 2036.89i 0.0583212 0.404061i
\(295\) 0 0
\(296\) −2719.50 + 4710.31i −0.534013 + 0.924937i
\(297\) −3897.11 + 2250.00i −0.761392 + 0.439590i
\(298\) 2821.51 1629.00i 0.548476 0.316663i
\(299\) 2035.50 3525.59i 0.393699 0.681907i
\(300\) 0 0
\(301\) 4004.00 3467.57i 0.766733 0.664011i
\(302\) 8598.00i 1.63828i
\(303\) −1184.72 684.000i −0.224622 0.129686i
\(304\) 4295.50 + 7440.02i 0.810407 + 1.40367i
\(305\) 0 0
\(306\) −1863.00 + 3226.81i −0.348041 + 0.602825i
\(307\) 6226.00i 1.15745i −0.815523 0.578724i \(-0.803551\pi\)
0.815523 0.578724i \(-0.196449\pi\)
\(308\) 818.394 157.500i 0.151404 0.0291376i
\(309\) −3032.00 −0.558202
\(310\) 0 0
\(311\) −2340.00 4053.00i −0.426653 0.738985i 0.569920 0.821700i \(-0.306974\pi\)
−0.996573 + 0.0827149i \(0.973641\pi\)
\(312\) 2146.01 1239.00i 0.389404 0.224822i
\(313\) 890.274 + 514.000i 0.160771 + 0.0928211i 0.578227 0.815876i \(-0.303745\pi\)
−0.417456 + 0.908697i \(0.637078\pi\)
\(314\) 687.000 0.123470
\(315\) 0 0
\(316\) 782.000 0.139212
\(317\) −7466.87 4311.00i −1.32297 0.763817i −0.338768 0.940870i \(-0.610010\pi\)
−0.984201 + 0.177053i \(0.943344\pi\)
\(318\) 3102.10 1791.00i 0.547036 0.315831i
\(319\) 3645.00 + 6313.33i 0.639752 + 1.10808i
\(320\) 0 0
\(321\) 1464.00 0.254556
\(322\) −1254.87 + 3622.50i −0.217178 + 0.626938i
\(323\) 6534.00i 1.12558i
\(324\) 210.500 364.597i 0.0360940 0.0625166i
\(325\) 0 0
\(326\) 1842.00 + 3190.44i 0.312942 + 0.542031i
\(327\) −2771.28 1600.00i −0.468661 0.270582i
\(328\) 4095.00i 0.689355i
\(329\) 157.500 + 818.394i 0.0263929 + 0.137141i
\(330\) 0 0
\(331\) 999.500 1731.18i 0.165974 0.287476i −0.771027 0.636803i \(-0.780256\pi\)
0.937001 + 0.349327i \(0.113590\pi\)
\(332\) 665.108 384.000i 0.109947 0.0634781i
\(333\) −5158.91 + 2978.50i −0.848969 + 0.490153i
\(334\) −2893.50 + 5011.69i −0.474028 + 0.821040i
\(335\) 0 0
\(336\) −1988.00 + 1721.66i −0.322781 + 0.279536i
\(337\) 5114.00i 0.826639i 0.910586 + 0.413319i \(0.135631\pi\)
−0.910586 + 0.413319i \(0.864369\pi\)
\(338\) 3335.93 + 1926.00i 0.536836 + 0.309943i
\(339\) 1392.00 + 2411.01i 0.223018 + 0.386278i
\(340\) 0 0
\(341\) −1980.00 + 3429.46i −0.314437 + 0.544621i
\(342\) 8349.00i 1.32006i
\(343\) 5346.84 3430.00i 0.841698 0.539949i
\(344\) −6006.00 −0.941342
\(345\) 0 0
\(346\) 1048.50 + 1816.06i 0.162912 + 0.282173i
\(347\) 3741.23 2160.00i 0.578789 0.334164i −0.181863 0.983324i \(-0.558213\pi\)
0.760652 + 0.649160i \(0.224879\pi\)
\(348\) 280.592 + 162.000i 0.0432222 + 0.0249543i
\(349\) −7922.00 −1.21506 −0.607529 0.794298i \(-0.707839\pi\)
−0.607529 + 0.794298i \(0.707839\pi\)
\(350\) 0 0
\(351\) 5900.00 0.897204
\(352\) −1753.70 1012.50i −0.265547 0.153314i
\(353\) −717.069 + 414.000i −0.108118 + 0.0624221i −0.553084 0.833125i \(-0.686549\pi\)
0.444966 + 0.895548i \(0.353216\pi\)
\(354\) 1080.00 + 1870.61i 0.162151 + 0.280853i
\(355\) 0 0
\(356\) −1194.00 −0.177758
\(357\) 1964.15 378.000i 0.291187 0.0560389i
\(358\) 9351.00i 1.38049i
\(359\) −675.000 + 1169.13i −0.0992344 + 0.171879i −0.911368 0.411593i \(-0.864973\pi\)
0.812134 + 0.583472i \(0.198306\pi\)
\(360\) 0 0
\(361\) −3891.00 6739.41i −0.567284 0.982564i
\(362\) 4671.34 + 2697.00i 0.678233 + 0.391578i
\(363\) 1388.00i 0.200692i
\(364\) −1032.50 357.668i −0.148675 0.0515025i
\(365\) 0 0
\(366\) 1176.00 2036.89i 0.167952 0.290902i
\(367\) 2425.74 1400.50i 0.345020 0.199198i −0.317470 0.948268i \(-0.602833\pi\)
0.662490 + 0.749071i \(0.269500\pi\)
\(368\) 4242.66 2449.50i 0.600989 0.346981i
\(369\) −2242.50 + 3884.12i −0.316368 + 0.547966i
\(370\) 0 0
\(371\) 10447.5 + 3619.12i 1.46201 + 0.506456i
\(372\) 176.000i 0.0245300i
\(373\) 5717.50 + 3301.00i 0.793675 + 0.458229i 0.841255 0.540639i \(-0.181817\pi\)
−0.0475795 + 0.998867i \(0.515151\pi\)
\(374\) 3645.00 + 6313.33i 0.503953 + 0.872872i
\(375\) 0 0
\(376\) 472.500 818.394i 0.0648067 0.112249i
\(377\) 9558.00i 1.30573i
\(378\) −5455.96 + 1050.00i −0.742392 + 0.142873i
\(379\) 8305.00 1.12559 0.562796 0.826596i \(-0.309726\pi\)
0.562796 + 0.826596i \(0.309726\pi\)
\(380\) 0 0
\(381\) 803.000 + 1390.84i 0.107976 + 0.187020i
\(382\) −6204.21 + 3582.00i −0.830981 + 0.479767i
\(383\) 818.394 + 472.500i 0.109185 + 0.0630382i 0.553598 0.832784i \(-0.313254\pi\)
−0.444413 + 0.895822i \(0.646588\pi\)
\(384\) 3318.00 0.440940
\(385\) 0 0
\(386\) 816.000 0.107599
\(387\) −5696.72 3289.00i −0.748270 0.432014i
\(388\) −781.155 + 451.000i −0.102209 + 0.0590105i
\(389\) 6018.00 + 10423.5i 0.784382 + 1.35859i 0.929367 + 0.369156i \(0.120353\pi\)
−0.144985 + 0.989434i \(0.546313\pi\)
\(390\) 0 0
\(391\) −3726.00 −0.481923
\(392\) −7129.12 1029.00i −0.918559 0.132583i
\(393\) 4038.00i 0.518296i
\(394\) −3163.50 + 5479.34i −0.404505 + 0.700623i
\(395\) 0 0
\(396\) −517.500 896.336i −0.0656701 0.113744i
\(397\) 2336.54 + 1349.00i 0.295384 + 0.170540i 0.640367 0.768069i \(-0.278782\pi\)
−0.344983 + 0.938609i \(0.612115\pi\)
\(398\) 4272.00i 0.538030i
\(399\) 3388.00 2934.09i 0.425093 0.368141i
\(400\) 0 0
\(401\) −3526.50 + 6108.08i −0.439165 + 0.760655i −0.997625 0.0688756i \(-0.978059\pi\)
0.558461 + 0.829531i \(0.311392\pi\)
\(402\) 1454.92 840.000i 0.180510 0.104217i
\(403\) 4496.40 2596.00i 0.555786 0.320883i
\(404\) 342.000 592.361i 0.0421167 0.0729482i
\(405\) 0 0
\(406\) 1701.00 + 8838.66i 0.207929 + 1.08043i
\(407\) 11655.0i 1.41945i
\(408\) −1964.15 1134.00i −0.238333 0.137601i
\(409\) −5435.00 9413.70i −0.657074 1.13809i −0.981369 0.192130i \(-0.938460\pi\)
0.324295 0.945956i \(-0.394873\pi\)
\(410\) 0 0
\(411\) 60.0000 103.923i 0.00720093 0.0124724i
\(412\) 1516.00i 0.181281i
\(413\) −2182.38 + 6300.00i −0.260020 + 0.750612i
\(414\) 4761.00 0.565194
\(415\) 0 0
\(416\) 1327.50 + 2299.30i 0.156457 + 0.270991i
\(417\) 2958.34 1708.00i 0.347412 0.200578i
\(418\) 14146.5 + 8167.50i 1.65533 + 0.955707i
\(419\) 9729.00 1.13435 0.567175 0.823597i \(-0.308036\pi\)
0.567175 + 0.823597i \(0.308036\pi\)
\(420\) 0 0
\(421\) −12550.0 −1.45285 −0.726425 0.687246i \(-0.758819\pi\)
−0.726425 + 0.687246i \(0.758819\pi\)
\(422\) 9418.03 + 5437.50i 1.08640 + 0.627235i
\(423\) 896.336 517.500i 0.103029 0.0594840i
\(424\) −6268.50 10857.4i −0.717984 1.24358i
\(425\) 0 0
\(426\) −288.000 −0.0327550
\(427\) 7129.12 1372.00i 0.807968 0.155494i
\(428\) 732.000i 0.0826695i
\(429\) 2655.00 4598.59i 0.298799 0.517534i
\(430\) 0 0
\(431\) −1494.00 2587.68i −0.166969 0.289198i 0.770384 0.637580i \(-0.220065\pi\)
−0.937353 + 0.348382i \(0.886731\pi\)
\(432\) 6148.78 + 3550.00i 0.684799 + 0.395369i
\(433\) 16616.0i 1.84414i −0.387019 0.922072i \(-0.626495\pi\)
0.387019 0.922072i \(-0.373505\pi\)
\(434\) −3696.00 + 3200.83i −0.408787 + 0.354020i
\(435\) 0 0
\(436\) 800.000 1385.64i 0.0878740 0.152202i
\(437\) −7230.45 + 4174.50i −0.791485 + 0.456964i
\(438\) 3471.03 2004.00i 0.378658 0.218618i
\(439\) 3673.00 6361.82i 0.399323 0.691647i −0.594320 0.804229i \(-0.702579\pi\)
0.993642 + 0.112581i \(0.0359119\pi\)
\(440\) 0 0
\(441\) −6198.50 4880.05i −0.669312 0.526947i
\(442\) 9558.00i 1.02857i
\(443\) 10.3923 + 6.00000i 0.00111457 + 0.000643496i 0.500557 0.865703i \(-0.333129\pi\)
−0.499443 + 0.866347i \(0.666462\pi\)
\(444\) 259.000 + 448.601i 0.0276838 + 0.0479497i
\(445\) 0 0
\(446\) 7440.00 12886.5i 0.789897 1.36814i
\(447\) 2172.00i 0.229826i
\(448\) 5249.85 + 6062.00i 0.553643 + 0.639291i
\(449\) −9669.00 −1.01628 −0.508138 0.861275i \(-0.669666\pi\)
−0.508138 + 0.861275i \(0.669666\pi\)
\(450\) 0 0
\(451\) 4387.50 + 7599.37i 0.458092 + 0.793438i
\(452\) −1205.51 + 696.000i −0.125448 + 0.0724272i
\(453\) 4964.06 + 2866.00i 0.514860 + 0.297255i
\(454\) 4500.00 0.465188
\(455\) 0 0
\(456\) −5082.00 −0.521900
\(457\) 8343.29 + 4817.00i 0.854010 + 0.493063i 0.862002 0.506905i \(-0.169211\pi\)
−0.00799181 + 0.999968i \(0.502544\pi\)
\(458\) −15827.5 + 9138.00i −1.61478 + 0.932294i
\(459\) −2700.00 4676.54i −0.274565 0.475560i
\(460\) 0 0
\(461\) −342.000 −0.0345521 −0.0172761 0.999851i \(-0.505499\pi\)
−0.0172761 + 0.999851i \(0.505499\pi\)
\(462\) −1636.79 + 4725.00i −0.164827 + 0.475816i
\(463\) 2411.00i 0.242006i −0.992652 0.121003i \(-0.961389\pi\)
0.992652 0.121003i \(-0.0386110\pi\)
\(464\) 5751.00 9961.02i 0.575395 0.996614i
\(465\) 0 0
\(466\) −207.000 358.535i −0.0205774 0.0356412i
\(467\) 1044.43 + 603.000i 0.103491 + 0.0597506i 0.550852 0.834603i \(-0.314303\pi\)
−0.447361 + 0.894353i \(0.647636\pi\)
\(468\) 1357.00i 0.134033i
\(469\) 4900.00 + 1697.41i 0.482433 + 0.167120i
\(470\) 0 0
\(471\) −229.000 + 396.640i −0.0224029 + 0.0388030i
\(472\) 6547.15 3780.00i 0.638468 0.368620i
\(473\) −11145.7 + 6435.00i −1.08347 + 0.625543i
\(474\) −2346.00 + 4063.39i −0.227332 + 0.393751i
\(475\) 0 0
\(476\) 189.000 + 982.073i 0.0181992 + 0.0945656i
\(477\) 13731.0i 1.31803i
\(478\) −14294.6 8253.00i −1.36783 0.789714i
\(479\) −216.000 374.123i −0.0206039 0.0356871i 0.855540 0.517737i \(-0.173226\pi\)
−0.876144 + 0.482050i \(0.839892\pi\)
\(480\) 0 0
\(481\) 7640.50 13233.7i 0.724276 1.25448i
\(482\) 10653.0i 1.00670i
\(483\) −1673.16 1932.00i −0.157622 0.182006i
\(484\) −694.000 −0.0651766
\(485\) 0 0
\(486\) 5313.00 + 9202.39i 0.495890 + 0.858907i
\(487\) −10302.2 + 5948.00i −0.958602 + 0.553449i −0.895742 0.444574i \(-0.853355\pi\)
−0.0628592 + 0.998022i \(0.520022\pi\)
\(488\) −7129.12 4116.00i −0.661312 0.381809i
\(489\) −2456.00 −0.227125
\(490\) 0 0
\(491\) −12276.0 −1.12833 −0.564163 0.825663i \(-0.690801\pi\)
−0.564163 + 0.825663i \(0.690801\pi\)
\(492\) 337.750 + 195.000i 0.0309491 + 0.0178685i
\(493\) −7575.99 + 4374.00i −0.692100 + 0.399584i
\(494\) −10708.5 18547.7i −0.975300 1.68927i
\(495\) 0 0
\(496\) 6248.00 0.565612
\(497\) −581.969 672.000i −0.0525249 0.0606505i
\(498\) 4608.00i 0.414637i
\(499\) −5438.00 + 9418.89i −0.487852 + 0.844985i −0.999902 0.0139706i \(-0.995553\pi\)
0.512050 + 0.858956i \(0.328886\pi\)
\(500\) 0 0
\(501\) −1929.00 3341.13i −0.172019 0.297945i
\(502\) −18355.4 10597.5i −1.63196 0.942210i
\(503\) 12000.0i 1.06372i −0.846831 0.531862i \(-0.821492\pi\)
0.846831 0.531862i \(-0.178508\pi\)
\(504\) 1690.50 + 8784.10i 0.149406 + 0.776339i
\(505\) 0 0
\(506\) 4657.50 8067.03i 0.409192 0.708741i
\(507\) −2223.95 + 1284.00i −0.194811 + 0.112474i
\(508\) −695.418 + 401.500i −0.0607366 + 0.0350663i
\(509\) −5841.00 + 10116.9i −0.508640 + 0.880990i 0.491310 + 0.870985i \(0.336518\pi\)
−0.999950 + 0.0100055i \(0.996815\pi\)
\(510\) 0 0
\(511\) 11690.0 + 4049.53i 1.01201 + 0.350569i
\(512\) 8733.00i 0.753804i
\(513\) −10478.9 6050.00i −0.901862 0.520690i
\(514\) −6120.00 10600.2i −0.525178 0.909635i
\(515\) 0 0
\(516\) −286.000 + 495.367i −0.0244001 + 0.0422622i
\(517\) 2025.00i 0.172262i
\(518\) −4710.31 + 13597.5i −0.399535 + 1.15336i
\(519\) −1398.00 −0.118238
\(520\) 0 0
\(521\) −4804.50 8321.64i −0.404010 0.699765i 0.590196 0.807260i \(-0.299050\pi\)
−0.994206 + 0.107495i \(0.965717\pi\)
\(522\) 9680.43 5589.00i 0.811688 0.468628i
\(523\) 18349.3 + 10594.0i 1.53415 + 0.885742i 0.999164 + 0.0408820i \(0.0130168\pi\)
0.534987 + 0.844860i \(0.320317\pi\)
\(524\) −2019.00 −0.168321
\(525\) 0 0
\(526\) −9864.00 −0.817663
\(527\) −4115.35 2376.00i −0.340166 0.196395i
\(528\) 5533.90 3195.00i 0.456122 0.263342i
\(529\) −3703.00 6413.78i −0.304348 0.527146i
\(530\) 0 0
\(531\) 8280.00 0.676688
\(532\) 1467.05 + 1694.00i 0.119557 + 0.138053i
\(533\) 11505.0i 0.934966i
\(534\) 3582.00 6204.21i 0.290278 0.502776i
\(535\) 0 0
\(536\) −2940.00 5092.23i −0.236919 0.410356i
\(537\) 5398.80 + 3117.00i 0.433846 + 0.250481i
\(538\) 9792.00i 0.784690i
\(539\) −14332.5 + 5728.76i −1.14535 + 0.457802i
\(540\) 0 0
\(541\) −4036.00 + 6990.56i −0.320742 + 0.555541i −0.980641 0.195813i \(-0.937265\pi\)
0.659900 + 0.751354i \(0.270599\pi\)
\(542\) −7149.91 + 4128.00i −0.566632 + 0.327145i
\(543\) −3114.23 + 1798.00i −0.246122 + 0.142099i
\(544\) 1215.00 2104.44i 0.0957586 0.165859i
\(545\) 0 0
\(546\) 4956.00 4292.02i 0.388456 0.336413i
\(547\) 344.000i 0.0268892i 0.999910 + 0.0134446i \(0.00427967\pi\)
−0.999910 + 0.0134446i \(0.995720\pi\)
\(548\) 51.9615 + 30.0000i 0.00405052 + 0.00233857i
\(549\) −4508.00 7808.09i −0.350449 0.606996i
\(550\) 0 0
\(551\) −9801.00 + 16975.8i −0.757780 + 1.31251i
\(552\) 2898.00i 0.223455i
\(553\) −14221.9 + 2737.00i −1.09363 + 0.210468i
\(554\) 14070.0 1.07902
\(555\) 0 0
\(556\) 854.000 + 1479.17i 0.0651397 + 0.112825i
\(557\) 15902.8 9181.50i 1.20974 0.698443i 0.247036 0.969006i \(-0.420543\pi\)
0.962702 + 0.270563i \(0.0872100\pi\)
\(558\) 5258.51 + 3036.00i 0.398943 + 0.230330i
\(559\) 16874.0 1.27673
\(560\) 0 0
\(561\) −4860.00 −0.365756
\(562\) −20319.6 11731.5i −1.52514 0.880540i
\(563\) 5450.76 3147.00i 0.408033 0.235578i −0.281912 0.959440i \(-0.590968\pi\)
0.689944 + 0.723863i \(0.257635\pi\)
\(564\) −45.0000 77.9423i −0.00335965 0.00581908i
\(565\) 0 0
\(566\) −1974.00 −0.146596
\(567\) −2552.18 + 7367.50i −0.189032 + 0.545689i
\(568\) 1008.00i 0.0744626i
\(569\) 5866.50 10161.1i 0.432226 0.748637i −0.564839 0.825201i \(-0.691062\pi\)
0.997065 + 0.0765642i \(0.0243950\pi\)
\(570\) 0 0
\(571\) −526.000 911.059i −0.0385506 0.0667717i 0.846106 0.533014i \(-0.178941\pi\)
−0.884657 + 0.466242i \(0.845607\pi\)
\(572\) 2299.30 + 1327.50i 0.168074 + 0.0970377i
\(573\) 4776.00i 0.348203i
\(574\) 2047.50 + 10639.1i 0.148887 + 0.773638i
\(575\) 0 0
\(576\) 4979.50 8624.75i 0.360207 0.623897i
\(577\) −11393.4 + 6578.00i −0.822036 + 0.474603i −0.851118 0.524974i \(-0.824075\pi\)
0.0290821 + 0.999577i \(0.490742\pi\)
\(578\) 5188.36 2995.50i 0.373369 0.215565i
\(579\) −272.000 + 471.118i −0.0195232 + 0.0338152i
\(580\) 0 0
\(581\) −10752.0 + 9311.51i −0.767759 + 0.664899i
\(582\) 5412.00i 0.385455i
\(583\) −23265.8 13432.5i −1.65278 0.954232i
\(584\) −7014.00 12148.6i −0.496989 0.860810i
\(585\) 0 0
\(586\) 8995.50 15580.7i 0.634131 1.09835i
\(587\) 13368.0i 0.939960i −0.882677 0.469980i \(-0.844261\pi\)
0.882677 0.469980i \(-0.155739\pi\)
\(588\) −424.352 + 539.000i −0.0297619 + 0.0378027i
\(589\) −10648.0 −0.744895
\(590\) 0 0
\(591\) −2109.00 3652.90i −0.146790 0.254247i
\(592\) 15925.3 9194.50i 1.10562 0.638330i
\(593\) 23091.7 + 13332.0i 1.59909 + 0.923237i 0.991662 + 0.128865i \(0.0411334\pi\)
0.607431 + 0.794372i \(0.292200\pi\)
\(594\) 13500.0 0.932511
\(595\) 0 0
\(596\) −1086.00 −0.0746381
\(597\) 2466.44 + 1424.00i 0.169087 + 0.0976222i
\(598\) −10576.8 + 6106.50i −0.723271 + 0.417581i
\(599\) 3807.00 + 6593.92i 0.259682 + 0.449783i 0.966157 0.257955i \(-0.0830488\pi\)
−0.706474 + 0.707739i \(0.749715\pi\)
\(600\) 0 0
\(601\) 6410.00 0.435057 0.217529 0.976054i \(-0.430200\pi\)
0.217529 + 0.976054i \(0.430200\pi\)
\(602\) −15604.0 + 3003.00i −1.05643 + 0.203311i
\(603\) 6440.00i 0.434921i
\(604\) −1433.00 + 2482.03i −0.0965363 + 0.167206i
\(605\) 0 0
\(606\) 2052.00 + 3554.17i 0.137552 + 0.238248i
\(607\) 18592.7 + 10734.5i 1.24325 + 0.717792i 0.969755 0.244080i \(-0.0784861\pi\)
0.273498 + 0.961873i \(0.411819\pi\)
\(608\) 5445.00i 0.363197i
\(609\) −5670.00 1964.15i −0.377274 0.130692i
\(610\) 0 0
\(611\) −1327.50 + 2299.30i −0.0878967 + 0.152242i
\(612\) 1075.60 621.000i 0.0710436 0.0410171i
\(613\) −3236.34 + 1868.50i −0.213237 + 0.123113i −0.602815 0.797881i \(-0.705954\pi\)
0.389578 + 0.920994i \(0.372621\pi\)
\(614\) −9339.00 + 16175.6i −0.613830 + 1.06318i
\(615\) 0 0
\(616\) 16537.5 + 5728.76i 1.08168 + 0.374705i
\(617\) 18078.0i 1.17957i 0.807561 + 0.589784i \(0.200787\pi\)
−0.807561 + 0.589784i \(0.799213\pi\)
\(618\) 7877.37 + 4548.00i 0.512741 + 0.296031i
\(619\) 6143.50 + 10640.9i 0.398915 + 0.690940i 0.993592 0.113024i \(-0.0360537\pi\)
−0.594678 + 0.803964i \(0.702720\pi\)
\(620\) 0 0
\(621\) −3450.00 + 5975.58i −0.222937 + 0.386138i
\(622\) 14040.0i 0.905069i
\(623\) 21714.7 4179.00i 1.39644 0.268745i
\(624\) −8378.00 −0.537481
\(625\) 0 0
\(626\) −1542.00 2670.82i −0.0984516 0.170523i
\(627\) −9431.02 + 5445.00i −0.600699 + 0.346814i
\(628\) −198.320 114.500i −0.0126016 0.00727555i
\(629\) −13986.0 −0.886579
\(630\) 0 0
\(631\) −9580.00 −0.604396 −0.302198 0.953245i \(-0.597720\pi\)
−0.302198 + 0.953245i \(0.597720\pi\)
\(632\) 14221.9 + 8211.00i 0.895120 + 0.516798i
\(633\) −6278.68 + 3625.00i −0.394242 + 0.227616i
\(634\) 12933.0 + 22400.6i 0.810150 + 1.40322i
\(635\) 0 0
\(636\) −1194.00 −0.0744421
\(637\) 20029.4 + 2891.00i 1.24583 + 0.179820i
\(638\) 21870.0i 1.35712i
\(639\) −552.000 + 956.092i −0.0341734 + 0.0591900i
\(640\) 0 0
\(641\) −5389.50 9334.89i −0.332094 0.575204i 0.650828 0.759225i \(-0.274422\pi\)
−0.982922 + 0.184021i \(0.941089\pi\)
\(642\) −3803.58 2196.00i −0.233825 0.134999i
\(643\) 8882.00i 0.544746i −0.962192 0.272373i \(-0.912191\pi\)
0.962192 0.272373i \(-0.0878085\pi\)
\(644\) 966.000 836.581i 0.0591083 0.0511893i
\(645\) 0 0
\(646\) −9801.00 + 16975.8i −0.596928 + 1.03391i
\(647\) −9542.73 + 5509.50i −0.579851 + 0.334777i −0.761074 0.648665i \(-0.775328\pi\)
0.181223 + 0.983442i \(0.441994\pi\)
\(648\) 7656.53 4420.50i 0.464162 0.267984i
\(649\) 8100.00 14029.6i 0.489912 0.848552i
\(650\) 0 0
\(651\) −616.000 3200.83i −0.0370859 0.192704i
\(652\) 1228.00i 0.0737610i
\(653\) 19332.3 + 11161.5i 1.15855 + 0.668887i 0.950955 0.309329i \(-0.100104\pi\)
0.207591 + 0.978216i \(0.433438\pi\)
\(654\) 4800.00 + 8313.84i 0.286995 + 0.497090i
\(655\) 0 0
\(656\) 6922.50 11990.1i 0.412009 0.713621i
\(657\) 15364.0i 0.912339i
\(658\) 818.394 2362.50i 0.0484868 0.139969i
\(659\) 11856.0 0.700826 0.350413 0.936595i \(-0.386041\pi\)
0.350413 + 0.936595i \(0.386041\pi\)
\(660\) 0 0
\(661\) 16622.0 + 28790.1i 0.978095 + 1.69411i 0.669318 + 0.742976i \(0.266586\pi\)
0.308777 + 0.951134i \(0.400080\pi\)
\(662\) −5193.55 + 2998.50i −0.304914 + 0.176042i
\(663\) 5518.31 + 3186.00i 0.323248 + 0.186627i
\(664\) 16128.0 0.942602
\(665\) 0 0
\(666\) 17871.0 1.03977
\(667\) 9680.43 + 5589.00i 0.561961 + 0.324448i
\(668\) 1670.56 964.500i 0.0967605 0.0558647i
\(669\) 4960.00 + 8590.97i 0.286644 + 0.496482i
\(670\) 0 0
\(671\) −17640.0 −1.01488
\(672\) 1636.79 315.000i 0.0939590 0.0180824i
\(673\) 12322.0i 0.705763i 0.935668 + 0.352881i \(0.114798\pi\)
−0.935668 + 0.352881i \(0.885202\pi\)
\(674\) 7671.00 13286.6i 0.438392 0.759316i
\(675\) 0 0
\(676\) −642.000 1111.98i −0.0365271 0.0632668i
\(677\) 10909.3 + 6298.50i 0.619320 + 0.357564i 0.776604 0.629989i \(-0.216941\pi\)
−0.157285 + 0.987553i \(0.550274\pi\)
\(678\) 8352.00i 0.473092i
\(679\) 12628.0 10936.2i 0.713723 0.618103i
\(680\) 0 0
\(681\) −1500.00 + 2598.08i −0.0844055 + 0.146195i
\(682\) 10288.4 5940.00i 0.577658 0.333511i
\(683\) 7222.65 4170.00i 0.404637 0.233617i −0.283846 0.958870i \(-0.591610\pi\)
0.688483 + 0.725253i \(0.258277\pi\)
\(684\) 1391.50 2410.15i 0.0777856 0.134729i
\(685\) 0 0
\(686\) −19036.5 + 891.140i −1.05950 + 0.0495975i
\(687\) 12184.0i 0.676636i
\(688\) 17585.5 + 10153.0i 0.974479 + 0.562616i
\(689\) 17611.5 + 30504.0i 0.973795 + 1.68666i
\(690\) 0 0
\(691\) 10100.0 17493.7i 0.556038 0.963086i −0.441784 0.897121i \(-0.645654\pi\)
0.997822 0.0659643i \(-0.0210124\pi\)
\(692\) 699.000i 0.0383988i
\(693\) 12548.7 + 14490.0i 0.687859 + 0.794271i
\(694\) −12960.0 −0.708869
\(695\) 0 0
\(696\) 3402.00 + 5892.44i 0.185277 + 0.320908i
\(697\) −9119.25 + 5265.00i −0.495576 + 0.286121i
\(698\) 20582.0 + 11883.0i 1.11610 + 0.644381i
\(699\) 276.000 0.0149346
\(700\) 0 0
\(701\) 474.000 0.0255388 0.0127694 0.999918i \(-0.495935\pi\)
0.0127694 + 0.999918i \(0.495935\pi\)
\(702\) −15328.6 8850.00i −0.824135 0.475814i
\(703\) −27140.4 + 15669.5i −1.45607 + 0.840663i
\(704\) −9742.50 16874.5i −0.521569 0.903383i
\(705\) 0 0
\(706\) 2484.00 0.132417
\(707\) −4146.53 + 11970.0i −0.220575 + 0.636744i
\(708\) 720.000i 0.0382193i
\(709\) −12563.0 + 21759.8i −0.665463 + 1.15262i 0.313696 + 0.949523i \(0.398433\pi\)
−0.979160 + 0.203093i \(0.934901\pi\)
\(710\) 0 0
\(711\) 8993.00 + 15576.3i 0.474351 + 0.821601i
\(712\) −21714.7 12537.0i −1.14297 0.659893i
\(713\) 6072.00i 0.318932i
\(714\) −5670.00 1964.15i −0.297191 0.102950i
\(715\) 0 0
\(716\) −1558.50 + 2699.40i −0.0813462 + 0.140896i
\(717\) 9529.74 5502.00i 0.496367 0.286577i
\(718\) 3507.40 2025.00i 0.182305 0.105254i
\(719\) −3648.00 + 6318.52i −0.189218 + 0.327734i −0.944990 0.327100i \(-0.893928\pi\)
0.755772 + 0.654835i \(0.227262\pi\)
\(720\) 0 0
\(721\) 5306.00 + 27570.8i 0.274072 + 1.42412i
\(722\) 23346.0i 1.20339i
\(723\) −6150.51 3551.00i −0.316376 0.182660i
\(724\) −899.000 1557.11i −0.0461479 0.0799305i
\(725\) 0 0
\(726\) 2082.00 3606.13i 0.106433 0.184347i
\(727\) 15421.0i 0.786703i −0.919388 0.393352i \(-0.871316\pi\)
0.919388 0.393352i \(-0.128684\pi\)
\(728\) −15022.1 17346.0i −0.764774 0.883085i
\(729\) 4283.00 0.217599
\(730\) 0 0
\(731\) −7722.00 13374.9i −0.390709 0.676728i
\(732\) −678.964 + 392.000i −0.0342831 + 0.0197934i
\(733\) −25259.4 14583.5i −1.27282 0.734862i −0.297301 0.954784i \(-0.596086\pi\)
−0.975517 + 0.219922i \(0.929420\pi\)
\(734\) −8403.00 −0.422562
\(735\) 0 0
\(736\) −3105.00 −0.155505
\(737\) −10911.9 6300.00i −0.545381 0.314876i
\(738\) 11652.4 6727.50i 0.581206 0.335559i
\(739\) −6690.50 11588.3i −0.333037 0.576836i 0.650069 0.759875i \(-0.274740\pi\)
−0.983106 + 0.183039i \(0.941407\pi\)
\(740\) 0 0
\(741\) 14278.0 0.707848
\(742\) −21714.7 25074.0i −1.07436 1.24056i
\(743\) 5487.00i 0.270927i −0.990782 0.135463i \(-0.956748\pi\)
0.990782 0.135463i \(-0.0432523\pi\)
\(744\) −1848.00 + 3200.83i −0.0910631 + 0.157726i
\(745\) 0 0
\(746\) −9903.00 17152.5i −0.486025 0.841820i
\(747\) 15297.5 + 8832.00i 0.749271 + 0.432592i
\(748\) 2430.00i 0.118783i
\(749\) −2562.00 13312.5i −0.124985 0.649439i
\(750\) 0 0
\(751\) −3319.00 + 5748.68i −0.161268 + 0.279324i −0.935324 0.353793i \(-0.884892\pi\)
0.774056 + 0.633117i \(0.218225\pi\)
\(752\) −2766.95 + 1597.50i −0.134176 + 0.0774665i
\(753\) 12236.9 7065.00i 0.592216 0.341916i
\(754\) −14337.0 + 24832.4i −0.692470 + 1.19939i
\(755\) 0 0
\(756\) 1750.00 + 606.218i 0.0841890 + 0.0291639i
\(757\) 14846.0i 0.712797i 0.934334 + 0.356398i \(0.115995\pi\)
−0.934334 + 0.356398i \(0.884005\pi\)
\(758\) −21577.0 12457.5i −1.03392 0.596935i
\(759\) 3105.00 + 5378.02i 0.148491 + 0.257193i
\(760\) 0 0
\(761\) 1825.50 3161.86i 0.0869571 0.150614i −0.819266 0.573413i \(-0.805619\pi\)
0.906223 + 0.422799i \(0.138952\pi\)
\(762\) 4818.00i 0.229052i
\(763\) −9699.48 + 28000.0i −0.460216 + 1.32853i
\(764\) 2388.00 0.113082
\(765\) 0 0
\(766\) −1417.50 2455.18i −0.0668621 0.115809i
\(767\) −18394.4 + 10620.0i −0.865949 + 0.499956i
\(768\) −2620.59 1513.00i −0.123128 0.0710881i
\(769\) −29855.0 −1.40000 −0.699999 0.714144i \(-0.746816\pi\)
−0.699999 + 0.714144i \(0.746816\pi\)
\(770\) 0 0
\(771\) 8160.00 0.381161
\(772\) −235.559 136.000i −0.0109818 0.00634035i
\(773\) 5645.62 3259.50i 0.262689 0.151664i −0.362871 0.931839i \(-0.618204\pi\)
0.625561 + 0.780175i \(0.284870\pi\)
\(774\) 9867.00 + 17090.1i 0.458220 + 0.793660i
\(775\) 0 0
\(776\) −18942.0 −0.876261
\(777\) −6280.42 7252.00i −0.289973 0.334831i
\(778\) 36108.0i 1.66393i
\(779\) −11797.5 + 20433.9i −0.542605 + 0.939819i
\(780\) 0 0
\(781\) 1080.00 + 1870.61i 0.0494820 + 0.0857053i
\(782\) 9680.43 + 5589.00i 0.442675 + 0.255578i
\(783\) 16200.0i 0.739388i
\(784\) 19134.5 + 15064.5i 0.871652 + 0.686248i
\(785\) 0 0
\(786\) 6057.00 10491.0i 0.274868 0.476085i
\(787\) 30409.6 17557.0i 1.37736 0.795222i 0.385523 0.922698i \(-0.374021\pi\)
0.991842 + 0.127477i \(0.0406878\pi\)
\(788\) 1826.45 1054.50i 0.0825692 0.0476713i
\(789\) 3288.00 5694.98i 0.148360 0.256967i
\(790\) 0 0
\(791\) 19488.0 16877.1i 0.875997 0.758636i
\(792\) 21735.0i 0.975151i
\(793\) 20029.4 + 11564.0i 0.896931 + 0.517843i
\(794\) −4047.00 7009.61i −0.180885 0.313302i
\(795\) 0 0
\(796\) −712.000 + 1233.22i −0.0317037 + 0.0549125i
\(797\) 20910.0i 0.929323i 0.885488 + 0.464661i \(0.153824\pi\)
−0.885488 + 0.464661i \(0.846176\pi\)
\(798\) −13203.4 + 2541.00i −0.585709 + 0.112720i
\(799\) 2430.00 0.107594
\(800\) 0 0
\(801\) −13731.0 23782.8i −0.605694 1.04909i
\(802\) 18324.2 10579.5i 0.806797 0.465804i
\(803\) −26032.7 15030.0i −1.14405 0.660520i
\(804\) −560.000 −0.0245643
\(805\) 0 0
\(806\) −15576.0 −0.680696
\(807\) −5653.41 3264.00i −0.246604 0.142377i
\(808\) 12439.6 7182.00i 0.541613 0.312700i
\(809\) 2215.50 + 3837.36i 0.0962829 + 0.166767i 0.910143 0.414294i \(-0.135971\pi\)
−0.813860 + 0.581060i \(0.802638\pi\)
\(810\) 0 0
\(811\) −9577.00 −0.414666 −0.207333 0.978270i \(-0.566478\pi\)
−0.207333 + 0.978270i \(0.566478\pi\)
\(812\) 982.073 2835.00i 0.0424433 0.122523i
\(813\) 5504.00i 0.237434i
\(814\) 17482.5 30280.6i 0.752778 1.30385i
\(815\) 0 0
\(816\) 3834.00 + 6640.68i 0.164481 + 0.284890i
\(817\) −29969.7 17303.0i −1.28336 0.740949i
\(818\) 32610.0i 1.39387i
\(819\) −4749.50 24679.1i −0.202639 1.05294i
\(820\) 0 0
\(821\) 5469.00 9472.59i 0.232484 0.402674i −0.726054 0.687637i \(-0.758648\pi\)
0.958539 + 0.284963i \(0.0919813\pi\)
\(822\) −311.769 + 180.000i −0.0132290 + 0.00763774i
\(823\) −9993.93 + 5770.00i −0.423289 + 0.244386i −0.696483 0.717573i \(-0.745253\pi\)
0.273195 + 0.961959i \(0.411920\pi\)
\(824\) 15918.0 27570.8i 0.672973 1.16562i
\(825\) 0 0
\(826\) 15120.0 13094.3i 0.636915 0.551585i
\(827\) 18762.0i 0.788898i −0.918918 0.394449i \(-0.870935\pi\)
0.918918 0.394449i \(-0.129065\pi\)
\(828\) −1374.38 793.500i −0.0576849 0.0333044i
\(829\) −19805.0 34303.3i −0.829742 1.43716i −0.898241 0.439504i \(-0.855154\pi\)
0.0684987 0.997651i \(-0.478179\pi\)
\(830\) 0 0
\(831\) −4690.00 + 8123.32i −0.195781 + 0.339103i
\(832\) 25547.0i 1.06452i
\(833\) −6874.51 17199.0i −0.285940 0.715378i
\(834\) −10248.0 −0.425491
\(835\) 0 0
\(836\) −2722.50 4715.51i −0.112631 0.195083i
\(837\) −7621.02 + 4400.00i −0.314721 + 0.181704i
\(838\) −25276.7 14593.5i −1.04197 0.601580i
\(839\) −39162.0 −1.61147 −0.805734 0.592277i \(-0.798229\pi\)
−0.805734 + 0.592277i \(0.798229\pi\)
\(840\) 0 0
\(841\) 1855.00 0.0760589
\(842\) 32605.9 + 18825.0i 1.33453 + 0.770490i
\(843\) 13546.4 7821.00i 0.553454 0.319537i
\(844\) −1812.50 3139.34i −0.0739204 0.128034i
\(845\) 0 0
\(846\) −3105.00 −0.126185
\(847\) 12621.5 2429.00i 0.512017 0.0985377i
\(848\) 42387.0i 1.71648i
\(849\) 658.000 1139.69i 0.0265989 0.0460707i
\(850\) 0 0
\(851\) 8935.50 + 15476.7i 0.359935 + 0.623426i
\(852\) 83.1384 + 48.0000i 0.00334305 + 0.00193011i
\(853\) 11527.0i 0.462693i 0.972871 + 0.231346i \(0.0743131\pi\)
−0.972871 + 0.231346i \(0.925687\pi\)
\(854\) −20580.0 7129.12i −0.824629 0.285660i
\(855\) 0 0
\(856\) −7686.00 + 13312.5i −0.306895 + 0.531558i
\(857\) −36222.4 + 20913.0i −1.44380 + 0.833576i −0.998100 0.0616089i \(-0.980377\pi\)
−0.445695 + 0.895185i \(0.647044\pi\)
\(858\) −13795.8 + 7965.00i −0.548928 + 0.316924i
\(859\) 17596.0 30477.2i 0.698915 1.21056i −0.269928 0.962880i \(-0.587000\pi\)
0.968843 0.247675i \(-0.0796667\pi\)
\(860\) 0 0
\(861\) −6825.00 2364.25i −0.270146 0.0935812i
\(862\) 8964.00i 0.354194i
\(863\) −7848.79 4531.50i −0.309590 0.178742i 0.337153 0.941450i \(-0.390536\pi\)
−0.646743 + 0.762708i \(0.723869\pi\)
\(864\) −2250.00 3897.11i −0.0885955 0.153452i
\(865\) 0 0
\(866\) −24924.0 + 43169.6i −0.978005 + 1.69395i
\(867\) 3994.00i 0.156451i
\(868\) 1600.41 308.000i 0.0625825 0.0120440i
\(869\) 35190.0 1.37369
\(870\) 0 0
\(871\) 8260.00 + 14306.7i 0.321331 + 0.556562i
\(872\) 29098.5 16800.0i 1.13004 0.652431i
\(873\) −17966.6 10373.0i −0.696536 0.402145i
\(874\) 25047.0 0.969368
\(875\) 0 0
\(876\) −1336.00 −0.0515288
\(877\) −24628.9 14219.5i −0.948300 0.547501i −0.0557473 0.998445i \(-0.517754\pi\)
−0.892552 + 0.450944i \(0.851087\pi\)
\(878\) −19085.5 + 11019.0i −0.733603 + 0.423546i
\(879\) 5997.00 + 10387.1i 0.230118 + 0.398576i
\(880\) 0 0
\(881\) −9303.00 −0.355762 −0.177881 0.984052i \(-0.556924\pi\)
−0.177881 + 0.984052i \(0.556924\pi\)
\(882\) 8784.10 + 21976.5i 0.335347 + 0.838988i
\(883\) 14728.0i 0.561310i 0.959809 + 0.280655i \(0.0905517\pi\)
−0.959809 + 0.280655i \(0.909448\pi\)
\(884\) −1593.00 + 2759.16i −0.0606090 + 0.104978i
\(885\) 0 0
\(886\) −18.0000 31.1769i −0.000682530 0.00118218i
\(887\) 14736.3 + 8508.00i 0.557831 + 0.322064i 0.752274 0.658850i \(-0.228957\pi\)
−0.194443 + 0.980914i \(0.562290\pi\)
\(888\) 10878.0i 0.411083i
\(889\) 11242.0 9735.86i 0.424122 0.367301i
\(890\) 0 0
\(891\) 9472.50 16406.9i 0.356162 0.616891i
\(892\) −4295.49 + 2480.00i −0.161237 + 0.0930903i
\(893\) 4715.51 2722.50i 0.176706 0.102021i
\(894\) 3258.00 5643.02i 0.121883 0.211108i
\(895\) 0 0
\(896\) −5806.50 30171.5i −0.216497 1.12495i
\(897\) 8142.00i 0.303070i
\(898\) 25120.8 + 14503.5i 0.933510 + 0.538962i
\(899\) 7128.00 + 12346.1i 0.264441 + 0.458025i
\(900\) 0 0
\(901\) 16119.0 27918.9i 0.596006 1.03231i
\(902\) 26325.0i 0.971759i
\(903\) 3467.57 10010.0i 0.127789 0.368895i
\(904\) −29232.0 −1.07549
\(905\) 0 0
\(906\) −8598.00 14892.2i −0.315286 0.546092i
\(907\) −21583.1 + 12461.0i −0.790137 + 0.456186i −0.840011 0.542570i \(-0.817452\pi\)
0.0498735 + 0.998756i \(0.484118\pi\)
\(908\) −1299.04 750.000i −0.0474781 0.0274115i
\(909\) 15732.0 0.574035
\(910\) 0 0
\(911\) 30714.0 1.11701 0.558507 0.829500i \(-0.311374\pi\)
0.558507 + 0.829500i \(0.311374\pi\)
\(912\) 14880.0 + 8591.00i 0.540272 + 0.311926i
\(913\) 29929.8 17280.0i 1.08492 0.626380i
\(914\) −14451.0 25029.9i −0.522972 0.905814i
\(915\) 0 0
\(916\) 6092.00 0.219744
\(917\) 36718.6 7066.50i 1.32231 0.254478i
\(918\) 16200.0i 0.582440i
\(919\) 8713.00 15091.4i 0.312748 0.541695i −0.666208 0.745766i \(-0.732084\pi\)
0.978956 + 0.204070i \(0.0654172\pi\)
\(920\) 0 0
\(921\) −6226.00 10783.7i −0.222751 0.385816i
\(922\) 888.542 + 513.000i 0.0317382 + 0.0183240i
\(923\) 2832.00i 0.100993i
\(924\) 1260.00 1091.19i 0.0448603 0.0388502i
\(925\) 0 0
\(926\) −3616.50 + 6263.96i −0.128343 + 0.222296i
\(927\) 30196.6 17434.0i 1.06989 0.617700i
\(928\) −6313.33 + 3645.00i −0.223324 + 0.128936i
\(929\) 13324.5 23078.7i 0.470573 0.815057i −0.528860 0.848709i \(-0.677380\pi\)
0.999434 + 0.0336519i \(0.0107138\pi\)
\(930\) 0 0
\(931\) −32609.5 25673.3i −1.14794 0.903769i
\(932\) 138.000i 0.00485015i
\(933\) −8106.00 4680.00i −0.284436 0.164219i
\(934\) −1809.00 3133.28i −0.0633750 0.109769i
\(935\) 0 0
\(936\) −14248.5 + 24679.1i −0.497571 + 0.861819i
\(937\) 27686.0i 0.965274i 0.875820 + 0.482637i \(0.160321\pi\)
−0.875820 + 0.482637i \(0.839679\pi\)
\(938\) −10184.5 11760.0i −0.354514 0.409358i
\(939\) 2056.00 0.0714537
\(940\) 0 0
\(941\) 8904.00 + 15422.2i 0.308461 + 0.534271i 0.978026 0.208483i \(-0.0668526\pi\)
−0.669565 + 0.742754i \(0.733519\pi\)
\(942\) 1189.92 687.000i 0.0411567 0.0237619i
\(943\) 11652.4 + 6727.50i 0.402390 + 0.232320i
\(944\) −25560.0 −0.881258
\(945\) 0 0
\(946\) 38610.0 1.32698
\(947\) 5980.77 + 3453.00i 0.205226 + 0.118487i 0.599091 0.800681i \(-0.295529\pi\)
−0.393865 + 0.919168i \(0.628862\pi\)
\(948\) 1354.46 782.000i 0.0464039 0.0267913i
\(949\) 19706.0 + 34131.8i 0.674061 + 1.16751i
\(950\) 0 0
\(951\) −17244.0 −0.587986
\(952\) −6874.51 + 19845.0i −0.234038 + 0.675609i
\(953\) 20940.0i 0.711766i 0.934530 + 0.355883i \(0.115820\pi\)
−0.934530 + 0.355883i \(0.884180\pi\)
\(954\) −20596.5 + 35674.2i −0.698990 + 1.21069i
\(955\) 0 0
\(956\) 2751.00 + 4764.87i 0.0930687 + 0.161200i
\(957\) 12626.7 + 7290.00i 0.426501 + 0.246241i
\(958\) 1296.00i 0.0437076i
\(959\) −1050.00 363.731i −0.0353559 0.0122476i
\(960\) 0 0
\(961\) 11023.5 19093.3i 0.370028 0.640907i
\(962\) −39701.2 + 22921.5i −1.33058 + 0.768211i
\(963\) −14580.4 + 8418.00i −0.487899 + 0.281689i
\(964\) 1775.50 3075.26i 0.0593205 0.102746i
\(965\) 0 0
\(966\) 1449.00 + 7529.22i 0.0482617 + 0.250775i
\(967\) 9176.00i 0.305150i 0.988292 + 0.152575i \(0.0487566\pi\)
−0.988292 + 0.152575i \(0.951243\pi\)
\(968\) −12621.5 7287.00i −0.419079 0.241956i
\(969\) −6534.00 11317.2i −0.216617 0.375192i
\(970\) 0 0
\(971\) −14881.5 + 25775.5i −0.491833 + 0.851880i −0.999956 0.00940465i \(-0.997006\pi\)
0.508123 + 0.861285i \(0.330340\pi\)
\(972\) 3542.00i 0.116882i
\(973\) −20708.4 23912.0i −0.682303 0.787856i
\(974\) 35688.0 1.17404
\(975\) 0 0
\(976\) 13916.0 + 24103.2i 0.456394 + 0.790497i
\(977\) −33333.3 + 19245.0i −1.09153 + 0.630197i −0.933984 0.357315i \(-0.883692\pi\)
−0.157548 + 0.987511i \(0.550359\pi\)
\(978\) 6380.88 + 3684.00i 0.208628 + 0.120451i
\(979\) −53730.0 −1.75405
\(980\) 0 0
\(981\) 36800.0 1.19769
\(982\) 31894.0 + 18414.0i 1.03643 + 0.598385i
\(983\) 10919.7 6304.50i 0.354308 0.204560i −0.312273 0.949992i \(-0.601090\pi\)
0.666581 + 0.745433i \(0.267757\pi\)
\(984\) 4095.00 + 7092.75i 0.132666 + 0.229785i
\(985\) 0 0
\(986\) 26244.0 0.847646
\(987\) 1091.19 + 1260.00i 0.0351905 + 0.0406345i
\(988\) 7139.00i 0.229880i
\(989\) −9867.00 + 17090.1i −0.317242 + 0.549479i
\(990\) 0 0
\(991\) −9910.00 17164.6i −0.317660 0.550204i 0.662339 0.749204i \(-0.269564\pi\)
−0.979999 + 0.199000i \(0.936231\pi\)
\(992\) −3429.46 1980.00i −0.109764 0.0633720i
\(993\) 3998.00i 0.127767i
\(994\) 504.000 + 2618.86i 0.0160824 + 0.0835666i
\(995\) 0 0
\(996\) 768.000 1330.22i 0.0244327 0.0423188i
\(997\) 39866.6 23017.0i 1.26639 0.731149i 0.292085 0.956392i \(-0.405651\pi\)
0.974303 + 0.225243i \(0.0723177\pi\)
\(998\) 28256.7 16314.0i 0.896242 0.517446i
\(999\) −12950.0 + 22430.1i −0.410130 + 0.710366i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.k.b.149.1 4
5.2 odd 4 175.4.e.b.51.1 2
5.3 odd 4 35.4.e.a.16.1 yes 2
5.4 even 2 inner 175.4.k.b.149.2 4
7.4 even 3 inner 175.4.k.b.74.2 4
15.8 even 4 315.4.j.b.226.1 2
20.3 even 4 560.4.q.b.401.1 2
35.2 odd 12 1225.4.a.b.1.1 1
35.3 even 12 245.4.e.a.116.1 2
35.4 even 6 inner 175.4.k.b.74.1 4
35.12 even 12 1225.4.a.a.1.1 1
35.13 even 4 245.4.e.a.226.1 2
35.18 odd 12 35.4.e.a.11.1 2
35.23 odd 12 245.4.a.e.1.1 1
35.32 odd 12 175.4.e.b.151.1 2
35.33 even 12 245.4.a.f.1.1 1
105.23 even 12 2205.4.a.e.1.1 1
105.53 even 12 315.4.j.b.46.1 2
105.68 odd 12 2205.4.a.g.1.1 1
140.123 even 12 560.4.q.b.81.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.e.a.11.1 2 35.18 odd 12
35.4.e.a.16.1 yes 2 5.3 odd 4
175.4.e.b.51.1 2 5.2 odd 4
175.4.e.b.151.1 2 35.32 odd 12
175.4.k.b.74.1 4 35.4 even 6 inner
175.4.k.b.74.2 4 7.4 even 3 inner
175.4.k.b.149.1 4 1.1 even 1 trivial
175.4.k.b.149.2 4 5.4 even 2 inner
245.4.a.e.1.1 1 35.23 odd 12
245.4.a.f.1.1 1 35.33 even 12
245.4.e.a.116.1 2 35.3 even 12
245.4.e.a.226.1 2 35.13 even 4
315.4.j.b.46.1 2 105.53 even 12
315.4.j.b.226.1 2 15.8 even 4
560.4.q.b.81.1 2 140.123 even 12
560.4.q.b.401.1 2 20.3 even 4
1225.4.a.a.1.1 1 35.12 even 12
1225.4.a.b.1.1 1 35.2 odd 12
2205.4.a.e.1.1 1 105.23 even 12
2205.4.a.g.1.1 1 105.68 odd 12