Properties

Label 175.6.a.c.1.1
Level 175175
Weight 66
Character 175.1
Self dual yes
Analytic conductor 28.06728.067
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [175,6,Mod(1,175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("175.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 175.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 28.067168467328.0671684673
Analytic rank: 11
Dimension: 22
Coefficient field: Q(57)\Q(\sqrt{57})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x14 x^{2} - x - 14 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 7)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 4.274924.27492 of defining polynomial
Character χ\chi == 175.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q8.27492q2+25.6495q3+36.4743q4212.248q649.0000q737.0241q8+414.897q9270.090q11+935.547q12300.640q13+405.471q14860.805q16613.106q173433.24q181700.95q191256.83q21+2234.97q223188.15q23949.650q24+2487.77q26+4409.07q271787.24q28+4299.28q29+2028.46q31+8307.86q326927.67q33+5073.40q34+15133.1q365154.46q37+14075.2q387711.26q397146.21q41+10400.1q42+19584.3q439851.32q44+26381.7q4619998.4q4722079.2q48+2401.00q4915725.9q5110965.6q523948.82q5336484.7q54+1814.18q5643628.5q5735576.2q5829707.6q5950519.3q6116785.3q6220330.0q6341201.1q64+57325.9q665053.56q6722362.6q6881774.5q69+32853.3q7115361.2q72+11115.0q73+42652.7q7462040.8q76+13234.4q77+63810.0q78+81889.4q79+12270.6q81+59134.3q82118234.q8345841.8q84162058.q86+110274.q87+9999.83q8841695.4q89+14731.3q91116286.q92+52028.9q93+165485.q94+213092.q9643682.8q9719868.1q98112059.q99+O(q100)q-8.27492 q^{2} +25.6495 q^{3} +36.4743 q^{4} -212.248 q^{6} -49.0000 q^{7} -37.0241 q^{8} +414.897 q^{9} -270.090 q^{11} +935.547 q^{12} -300.640 q^{13} +405.471 q^{14} -860.805 q^{16} -613.106 q^{17} -3433.24 q^{18} -1700.95 q^{19} -1256.83 q^{21} +2234.97 q^{22} -3188.15 q^{23} -949.650 q^{24} +2487.77 q^{26} +4409.07 q^{27} -1787.24 q^{28} +4299.28 q^{29} +2028.46 q^{31} +8307.86 q^{32} -6927.67 q^{33} +5073.40 q^{34} +15133.1 q^{36} -5154.46 q^{37} +14075.2 q^{38} -7711.26 q^{39} -7146.21 q^{41} +10400.1 q^{42} +19584.3 q^{43} -9851.32 q^{44} +26381.7 q^{46} -19998.4 q^{47} -22079.2 q^{48} +2401.00 q^{49} -15725.9 q^{51} -10965.6 q^{52} -3948.82 q^{53} -36484.7 q^{54} +1814.18 q^{56} -43628.5 q^{57} -35576.2 q^{58} -29707.6 q^{59} -50519.3 q^{61} -16785.3 q^{62} -20330.0 q^{63} -41201.1 q^{64} +57325.9 q^{66} -5053.56 q^{67} -22362.6 q^{68} -81774.5 q^{69} +32853.3 q^{71} -15361.2 q^{72} +11115.0 q^{73} +42652.7 q^{74} -62040.8 q^{76} +13234.4 q^{77} +63810.0 q^{78} +81889.4 q^{79} +12270.6 q^{81} +59134.3 q^{82} -118234. q^{83} -45841.8 q^{84} -162058. q^{86} +110274. q^{87} +9999.83 q^{88} -41695.4 q^{89} +14731.3 q^{91} -116286. q^{92} +52028.9 q^{93} +165485. q^{94} +213092. q^{96} -43682.8 q^{97} -19868.1 q^{98} -112059. q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q9q2+6q3+5q4198q698q7+9q8+558q9+396q11+1554q12+350q13+441q14+113q161800q173537q183266q19294q21+1752q22+16740q99+O(q100) 2 q - 9 q^{2} + 6 q^{3} + 5 q^{4} - 198 q^{6} - 98 q^{7} + 9 q^{8} + 558 q^{9} + 396 q^{11} + 1554 q^{12} + 350 q^{13} + 441 q^{14} + 113 q^{16} - 1800 q^{17} - 3537 q^{18} - 3266 q^{19} - 294 q^{21} + 1752 q^{22}+ \cdots - 16740 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −8.27492 −1.46281 −0.731406 0.681942i 0.761136π-0.761136\pi
−0.731406 + 0.681942i 0.761136π0.761136\pi
33 25.6495 1.64542 0.822708 0.568464i 0.192462π-0.192462\pi
0.822708 + 0.568464i 0.192462π0.192462\pi
44 36.4743 1.13982
55 0 0
66 −212.248 −2.40694
77 −49.0000 −0.377964
88 −37.0241 −0.204531
99 414.897 1.70740
1010 0 0
1111 −270.090 −0.673018 −0.336509 0.941680i 0.609246π-0.609246\pi
−0.336509 + 0.941680i 0.609246π0.609246\pi
1212 935.547 1.87548
1313 −300.640 −0.493387 −0.246694 0.969094i 0.579344π-0.579344\pi
−0.246694 + 0.969094i 0.579344π0.579344\pi
1414 405.471 0.552891
1515 0 0
1616 −860.805 −0.840630
1717 −613.106 −0.514533 −0.257267 0.966340i 0.582822π-0.582822\pi
−0.257267 + 0.966340i 0.582822π0.582822\pi
1818 −3433.24 −2.49760
1919 −1700.95 −1.08095 −0.540477 0.841359i 0.681756π-0.681756\pi
−0.540477 + 0.841359i 0.681756π0.681756\pi
2020 0 0
2121 −1256.83 −0.621909
2222 2234.97 0.984498
2323 −3188.15 −1.25667 −0.628333 0.777945i 0.716262π-0.716262\pi
−0.628333 + 0.777945i 0.716262π0.716262\pi
2424 −949.650 −0.336539
2525 0 0
2626 2487.77 0.721733
2727 4409.07 1.16396
2828 −1787.24 −0.430812
2929 4299.28 0.949294 0.474647 0.880176i 0.342576π-0.342576\pi
0.474647 + 0.880176i 0.342576π0.342576\pi
3030 0 0
3131 2028.46 0.379106 0.189553 0.981870i 0.439296π-0.439296\pi
0.189553 + 0.981870i 0.439296π0.439296\pi
3232 8307.86 1.43421
3333 −6927.67 −1.10739
3434 5073.40 0.752666
3535 0 0
3636 15133.1 1.94612
3737 −5154.46 −0.618983 −0.309491 0.950902i 0.600159π-0.600159\pi
−0.309491 + 0.950902i 0.600159π0.600159\pi
3838 14075.2 1.58123
3939 −7711.26 −0.811827
4040 0 0
4141 −7146.21 −0.663921 −0.331960 0.943293i 0.607710π-0.607710\pi
−0.331960 + 0.943293i 0.607710π0.607710\pi
4242 10400.1 0.909736
4343 19584.3 1.61524 0.807620 0.589703i 0.200755π-0.200755\pi
0.807620 + 0.589703i 0.200755π0.200755\pi
4444 −9851.32 −0.767119
4545 0 0
4646 26381.7 1.83827
4747 −19998.4 −1.32054 −0.660268 0.751030i 0.729557π-0.729557\pi
−0.660268 + 0.751030i 0.729557π0.729557\pi
4848 −22079.2 −1.38319
4949 2401.00 0.142857
5050 0 0
5151 −15725.9 −0.846621
5252 −10965.6 −0.562373
5353 −3948.82 −0.193098 −0.0965489 0.995328i 0.530780π-0.530780\pi
−0.0965489 + 0.995328i 0.530780π0.530780\pi
5454 −36484.7 −1.70265
5555 0 0
5656 1814.18 0.0773055
5757 −43628.5 −1.77862
5858 −35576.2 −1.38864
5959 −29707.6 −1.11106 −0.555530 0.831497i 0.687484π-0.687484\pi
−0.555530 + 0.831497i 0.687484π0.687484\pi
6060 0 0
6161 −50519.3 −1.73833 −0.869165 0.494522i 0.835343π-0.835343\pi
−0.869165 + 0.494522i 0.835343π0.835343\pi
6262 −16785.3 −0.554562
6363 −20330.0 −0.645335
6464 −41201.1 −1.25736
6565 0 0
6666 57325.9 1.61991
6767 −5053.56 −0.137534 −0.0687671 0.997633i 0.521907π-0.521907\pi
−0.0687671 + 0.997633i 0.521907π0.521907\pi
6868 −22362.6 −0.586476
6969 −81774.5 −2.06774
7070 0 0
7171 32853.3 0.773453 0.386726 0.922195i 0.373606π-0.373606\pi
0.386726 + 0.922195i 0.373606π0.373606\pi
7272 −15361.2 −0.349215
7373 11115.0 0.244119 0.122059 0.992523i 0.461050π-0.461050\pi
0.122059 + 0.992523i 0.461050π0.461050\pi
7474 42652.7 0.905456
7575 0 0
7676 −62040.8 −1.23209
7777 13234.4 0.254377
7878 63810.0 1.18755
7979 81889.4 1.47625 0.738125 0.674664i 0.235712π-0.235712\pi
0.738125 + 0.674664i 0.235712π0.235712\pi
8080 0 0
8181 12270.6 0.207803
8282 59134.3 0.971191
8383 −118234. −1.88385 −0.941926 0.335819i 0.890987π-0.890987\pi
−0.941926 + 0.335819i 0.890987π0.890987\pi
8484 −45841.8 −0.708865
8585 0 0
8686 −162058. −2.36279
8787 110274. 1.56198
8888 9999.83 0.137653
8989 −41695.4 −0.557972 −0.278986 0.960295i 0.589998π-0.589998\pi
−0.278986 + 0.960295i 0.589998π0.589998\pi
9090 0 0
9191 14731.3 0.186483
9292 −116286. −1.43237
9393 52028.9 0.623788
9494 165485. 1.93170
9595 0 0
9696 213092. 2.35988
9797 −43682.8 −0.471391 −0.235695 0.971827i 0.575737π-0.575737\pi
−0.235695 + 0.971827i 0.575737π0.575737\pi
9898 −19868.1 −0.208973
9999 −112059. −1.14911
100100 0 0
101101 25648.1 0.250179 0.125090 0.992145i 0.460078π-0.460078\pi
0.125090 + 0.992145i 0.460078π0.460078\pi
102102 130130. 1.23845
103103 14320.0 0.133000 0.0664999 0.997786i 0.478817π-0.478817\pi
0.0664999 + 0.997786i 0.478817π0.478817\pi
104104 11130.9 0.100913
105105 0 0
106106 32676.1 0.282466
107107 −17201.8 −0.145249 −0.0726247 0.997359i 0.523138π-0.523138\pi
−0.0726247 + 0.997359i 0.523138π0.523138\pi
108108 160818. 1.32670
109109 −86017.6 −0.693459 −0.346730 0.937965i 0.612708π-0.612708\pi
−0.346730 + 0.937965i 0.612708π0.612708\pi
110110 0 0
111111 −132209. −1.01848
112112 42179.4 0.317728
113113 −137568. −1.01349 −0.506745 0.862096i 0.669152π-0.669152\pi
−0.506745 + 0.862096i 0.669152π0.669152\pi
114114 361022. 2.60179
115115 0 0
116116 156813. 1.08202
117117 −124734. −0.842407
118118 245828. 1.62527
119119 30042.2 0.194475
120120 0 0
121121 −88102.5 −0.547047
122122 418043. 2.54285
123123 −183297. −1.09243
124124 73986.4 0.432113
125125 0 0
126126 168229. 0.944004
127127 70567.1 0.388233 0.194117 0.980978i 0.437816π-0.437816\pi
0.194117 + 0.980978i 0.437816π0.437816\pi
128128 75084.2 0.405064
129129 502328. 2.65774
130130 0 0
131131 −173712. −0.884408 −0.442204 0.896914i 0.645803π-0.645803\pi
−0.442204 + 0.896914i 0.645803π0.645803\pi
132132 −252682. −1.26223
133133 83346.5 0.408562
134134 41817.8 0.201187
135135 0 0
136136 22699.7 0.105238
137137 1989.94 0.00905813 0.00452907 0.999990i 0.498558π-0.498558\pi
0.00452907 + 0.999990i 0.498558π0.498558\pi
138138 676678. 3.02471
139139 366409. 1.60853 0.804264 0.594272i 0.202560π-0.202560\pi
0.804264 + 0.594272i 0.202560π0.202560\pi
140140 0 0
141141 −512949. −2.17283
142142 −271859. −1.13142
143143 81199.7 0.332058
144144 −357145. −1.43529
145145 0 0
146146 −91975.4 −0.357100
147147 61584.5 0.235059
148148 −188005. −0.705529
149149 140719. 0.519261 0.259631 0.965708i 0.416399π-0.416399\pi
0.259631 + 0.965708i 0.416399π0.416399\pi
150150 0 0
151151 50064.6 0.178685 0.0893425 0.996001i 0.471523π-0.471523\pi
0.0893425 + 0.996001i 0.471523π0.471523\pi
152152 62976.1 0.221089
153153 −254376. −0.878512
154154 −109514. −0.372105
155155 0 0
156156 −281262. −0.925337
157157 89794.6 0.290738 0.145369 0.989378i 0.453563π-0.453563\pi
0.145369 + 0.989378i 0.453563π0.453563\pi
158158 −677628. −2.15948
159159 −101285. −0.317726
160160 0 0
161161 156219. 0.474975
162162 −101538. −0.303977
163163 481230. 1.41868 0.709339 0.704867i 0.248994π-0.248994\pi
0.709339 + 0.704867i 0.248994π0.248994\pi
164164 −260653. −0.756750
165165 0 0
166166 978376. 2.75572
167167 86572.7 0.240209 0.120105 0.992761i 0.461677π-0.461677\pi
0.120105 + 0.992761i 0.461677π0.461677\pi
168168 46532.8 0.127200
169169 −280909. −0.756569
170170 0 0
171171 −705718. −1.84562
172172 714323. 1.84108
173173 58137.4 0.147686 0.0738432 0.997270i 0.476474π-0.476474\pi
0.0738432 + 0.997270i 0.476474π0.476474\pi
174174 −912511. −2.28489
175175 0 0
176176 232495. 0.565759
177177 −761985. −1.82816
178178 345026. 0.816209
179179 −209380. −0.488431 −0.244215 0.969721i 0.578530π-0.578530\pi
−0.244215 + 0.969721i 0.578530π0.578530\pi
180180 0 0
181181 278996. 0.632996 0.316498 0.948593i 0.397493π-0.397493\pi
0.316498 + 0.948593i 0.397493π0.397493\pi
182182 −121901. −0.272789
183183 −1.29579e6 −2.86028
184184 118038. 0.257027
185185 0 0
186186 −430535. −0.912485
187187 165594. 0.346290
188188 −729426. −1.50517
189189 −216045. −0.439935
190190 0 0
191191 −445132. −0.882888 −0.441444 0.897289i 0.645534π-0.645534\pi
−0.441444 + 0.897289i 0.645534π0.645534\pi
192192 −1.05679e6 −2.06888
193193 726811. 1.40452 0.702260 0.711920i 0.252174π-0.252174\pi
0.702260 + 0.711920i 0.252174π0.252174\pi
194194 361471. 0.689556
195195 0 0
196196 87574.7 0.162831
197197 364897. 0.669892 0.334946 0.942237i 0.391282π-0.391282\pi
0.334946 + 0.942237i 0.391282π0.391282\pi
198198 927282. 1.68093
199199 289307. 0.517877 0.258938 0.965894i 0.416627π-0.416627\pi
0.258938 + 0.965894i 0.416627π0.416627\pi
200200 0 0
201201 −129621. −0.226301
202202 −212236. −0.365965
203203 −210665. −0.358799
204204 −573589. −0.964997
205205 0 0
206206 −118497. −0.194554
207207 −1.32276e6 −2.14562
208208 258792. 0.414756
209209 459409. 0.727501
210210 0 0
211211 750147. 1.15995 0.579976 0.814633i 0.303062π-0.303062\pi
0.579976 + 0.814633i 0.303062π0.303062\pi
212212 −144030. −0.220097
213213 842672. 1.27265
214214 142343. 0.212473
215215 0 0
216216 −163242. −0.238066
217217 −99394.3 −0.143289
218218 711788. 1.01440
219219 285093. 0.401677
220220 0 0
221221 184324. 0.253864
222222 1.09402e6 1.48985
223223 −534398. −0.719619 −0.359810 0.933026i 0.617158π-0.617158\pi
−0.359810 + 0.933026i 0.617158π0.617158\pi
224224 −407085. −0.542082
225225 0 0
226226 1.13836e6 1.48255
227227 410624. 0.528907 0.264453 0.964398i 0.414808π-0.414808\pi
0.264453 + 0.964398i 0.414808π0.414808\pi
228228 −1.59132e6 −2.02731
229229 1.03036e6 1.29838 0.649189 0.760627i 0.275108π-0.275108\pi
0.649189 + 0.760627i 0.275108π0.275108\pi
230230 0 0
231231 339456. 0.418556
232232 −159177. −0.194160
233233 119211. 0.143856 0.0719278 0.997410i 0.477085π-0.477085\pi
0.0719278 + 0.997410i 0.477085π0.477085\pi
234234 1.03217e6 1.23228
235235 0 0
236236 −1.08356e6 −1.26641
237237 2.10042e6 2.42905
238238 −248597. −0.284481
239239 −254090. −0.287735 −0.143868 0.989597i 0.545954π-0.545954\pi
−0.143868 + 0.989597i 0.545954π0.545954\pi
240240 0 0
241241 1.41251e6 1.56656 0.783282 0.621667i 0.213544π-0.213544\pi
0.783282 + 0.621667i 0.213544π0.213544\pi
242242 729041. 0.800228
243243 −756671. −0.822037
244244 −1.84265e6 −1.98138
245245 0 0
246246 1.51677e6 1.59801
247247 511372. 0.533329
248248 −75101.7 −0.0775391
249249 −3.03264e6 −3.09972
250250 0 0
251251 −1.67542e6 −1.67857 −0.839286 0.543690i 0.817027π-0.817027\pi
−0.839286 + 0.543690i 0.817027π0.817027\pi
252252 −741520. −0.735566
253253 861087. 0.845758
254254 −583937. −0.567913
255255 0 0
256256 697120. 0.664825
257257 −726996. −0.686593 −0.343296 0.939227i 0.611544π-0.611544\pi
−0.343296 + 0.939227i 0.611544π0.611544\pi
258258 −4.15672e6 −3.88778
259259 252568. 0.233953
260260 0 0
261261 1.78376e6 1.62082
262262 1.43746e6 1.29372
263263 225880. 0.201367 0.100684 0.994918i 0.467897π-0.467897\pi
0.100684 + 0.994918i 0.467897π0.467897\pi
264264 256491. 0.226497
265265 0 0
266266 −689685. −0.597650
267267 −1.06947e6 −0.918097
268268 −184325. −0.156764
269269 1.80527e6 1.52111 0.760557 0.649272i 0.224926π-0.224926\pi
0.760557 + 0.649272i 0.224926π0.224926\pi
270270 0 0
271271 −1.71380e6 −1.41754 −0.708771 0.705439i 0.750750π-0.750750\pi
−0.708771 + 0.705439i 0.750750π0.750750\pi
272272 527765. 0.432532
273273 377852. 0.306842
274274 −16466.6 −0.0132504
275275 0 0
276276 −2.98267e6 −2.35685
277277 −2.23055e6 −1.74668 −0.873338 0.487115i 0.838049π-0.838049\pi
−0.873338 + 0.487115i 0.838049π0.838049\pi
278278 −3.03200e6 −2.35298
279279 841600. 0.647285
280280 0 0
281281 1.67140e6 1.26274 0.631371 0.775481i 0.282493π-0.282493\pi
0.631371 + 0.775481i 0.282493π0.282493\pi
282282 4.24461e6 3.17845
283283 396152. 0.294033 0.147016 0.989134i 0.453033π-0.453033\pi
0.147016 + 0.989134i 0.453033π0.453033\pi
284284 1.19830e6 0.881597
285285 0 0
286286 −671920. −0.485739
287287 350164. 0.250938
288288 3.44691e6 2.44877
289289 −1.04396e6 −0.735256
290290 0 0
291291 −1.12044e6 −0.775634
292292 405410. 0.278251
293293 929465. 0.632505 0.316252 0.948675i 0.397575π-0.397575\pi
0.316252 + 0.948675i 0.397575π0.397575\pi
294294 −509606. −0.343848
295295 0 0
296296 190839. 0.126601
297297 −1.19085e6 −0.783365
298298 −1.16443e6 −0.759582
299299 958485. 0.620022
300300 0 0
301301 −959631. −0.610503
302302 −414280. −0.261383
303303 657860. 0.411649
304304 1.46418e6 0.908682
305305 0 0
306306 2.10494e6 1.28510
307307 −1.83295e6 −1.10995 −0.554976 0.831866i 0.687273π-0.687273\pi
−0.554976 + 0.831866i 0.687273π0.687273\pi
308308 482715. 0.289944
309309 367302. 0.218840
310310 0 0
311311 −2.29685e6 −1.34658 −0.673289 0.739379i 0.735119π-0.735119\pi
−0.673289 + 0.739379i 0.735119π0.735119\pi
312312 285502. 0.166044
313313 3.42470e6 1.97589 0.987943 0.154817i 0.0494787π-0.0494787\pi
0.987943 + 0.154817i 0.0494787π0.0494787\pi
314314 −743043. −0.425295
315315 0 0
316316 2.98685e6 1.68266
317317 −2.94305e6 −1.64494 −0.822470 0.568808i 0.807405π-0.807405\pi
−0.822470 + 0.568808i 0.807405π0.807405\pi
318318 838127. 0.464774
319319 −1.16119e6 −0.638891
320320 0 0
321321 −441217. −0.238996
322322 −1.29270e6 −0.694799
323323 1.04286e6 0.556187
324324 447560. 0.236858
325325 0 0
326326 −3.98214e6 −2.07526
327327 −2.20631e6 −1.14103
328328 264582. 0.135792
329329 979921. 0.499116
330330 0 0
331331 966164. 0.484709 0.242354 0.970188i 0.422080π-0.422080\pi
0.242354 + 0.970188i 0.422080π0.422080\pi
332332 −4.31250e6 −2.14725
333333 −2.13857e6 −1.05685
334334 −716382. −0.351381
335335 0 0
336336 1.08188e6 0.522795
337337 −136417. −0.0654327 −0.0327163 0.999465i 0.510416π-0.510416\pi
−0.0327163 + 0.999465i 0.510416π0.510416\pi
338338 2.32450e6 1.10672
339339 −3.52854e6 −1.66761
340340 0 0
341341 −547865. −0.255145
342342 5.83976e6 2.69979
343343 −117649. −0.0539949
344344 −725091. −0.330367
345345 0 0
346346 −481082. −0.216038
347347 −355408. −0.158454 −0.0792270 0.996857i 0.525245π-0.525245\pi
−0.0792270 + 0.996857i 0.525245π0.525245\pi
348348 4.02218e6 1.78038
349349 −140128. −0.0615830 −0.0307915 0.999526i 0.509803π-0.509803\pi
−0.0307915 + 0.999526i 0.509803π0.509803\pi
350350 0 0
351351 −1.32554e6 −0.574283
352352 −2.24387e6 −0.965252
353353 −3.48141e6 −1.48703 −0.743514 0.668721i 0.766842π-0.766842\pi
−0.743514 + 0.668721i 0.766842π0.766842\pi
354354 6.30536e6 2.67425
355355 0 0
356356 −1.52081e6 −0.635988
357357 770568. 0.319993
358358 1.73260e6 0.714482
359359 1.75285e6 0.717810 0.358905 0.933374i 0.383150π-0.383150\pi
0.358905 + 0.933374i 0.383150π0.383150\pi
360360 0 0
361361 417127. 0.168461
362362 −2.30867e6 −0.925955
363363 −2.25979e6 −0.900121
364364 537315. 0.212557
365365 0 0
366366 1.07226e7 4.18405
367367 1.76939e6 0.685738 0.342869 0.939383i 0.388601π-0.388601\pi
0.342869 + 0.939383i 0.388601π0.388601\pi
368368 2.74438e6 1.05639
369369 −2.96494e6 −1.13357
370370 0 0
371371 193492. 0.0729841
372372 1.89771e6 0.711006
373373 4.16212e6 1.54897 0.774485 0.632592i 0.218009π-0.218009\pi
0.774485 + 0.632592i 0.218009π0.218009\pi
374374 −1.37027e6 −0.506557
375375 0 0
376376 740422. 0.270091
377377 −1.29253e6 −0.468369
378378 1.78775e6 0.643543
379379 618163. 0.221057 0.110529 0.993873i 0.464746π-0.464746\pi
0.110529 + 0.993873i 0.464746π0.464746\pi
380380 0 0
381381 1.81001e6 0.638805
382382 3.68343e6 1.29150
383383 4.11163e6 1.43225 0.716123 0.697974i 0.245915π-0.245915\pi
0.716123 + 0.697974i 0.245915π0.245915\pi
384384 1.92587e6 0.666498
385385 0 0
386386 −6.01430e6 −2.05455
387387 8.12547e6 2.75785
388388 −1.59330e6 −0.537301
389389 4.62076e6 1.54824 0.774122 0.633037i 0.218192π-0.218192\pi
0.774122 + 0.633037i 0.218192π0.218192\pi
390390 0 0
391391 1.95468e6 0.646596
392392 −88894.8 −0.0292187
393393 −4.45564e6 −1.45522
394394 −3.01949e6 −0.979926
395395 0 0
396396 −4.08728e6 −1.30978
397397 −5.07349e6 −1.61559 −0.807794 0.589465i 0.799339π-0.799339\pi
−0.807794 + 0.589465i 0.799339π0.799339\pi
398398 −2.39399e6 −0.757557
399399 2.13780e6 0.672255
400400 0 0
401401 −1.48056e6 −0.459795 −0.229898 0.973215i 0.573839π-0.573839\pi
−0.229898 + 0.973215i 0.573839π0.573839\pi
402402 1.07261e6 0.331036
403403 −609834. −0.187046
404404 935495. 0.285160
405405 0 0
406406 1.74323e6 0.524856
407407 1.39217e6 0.416586
408408 582236. 0.173160
409409 −4.53379e6 −1.34015 −0.670075 0.742294i 0.733738π-0.733738\pi
−0.670075 + 0.742294i 0.733738π0.733738\pi
410410 0 0
411411 51041.0 0.0149044
412412 522313. 0.151596
413413 1.45567e6 0.419941
414414 1.09457e7 3.13865
415415 0 0
416416 −2.49767e6 −0.707623
417417 9.39820e6 2.64670
418418 −3.80157e6 −1.06420
419419 111026. 0.0308952 0.0154476 0.999881i 0.495083π-0.495083\pi
0.0154476 + 0.999881i 0.495083π0.495083\pi
420420 0 0
421421 −1.41151e6 −0.388132 −0.194066 0.980988i 0.562168π-0.562168\pi
−0.194066 + 0.980988i 0.562168π0.562168\pi
422422 −6.20740e6 −1.69679
423423 −8.29727e6 −2.25468
424424 146201. 0.0394945
425425 0 0
426426 −6.97304e6 −1.86165
427427 2.47544e6 0.657027
428428 −627422. −0.165558
429429 2.08273e6 0.546374
430430 0 0
431431 1.07640e6 0.279113 0.139557 0.990214i 0.455432π-0.455432\pi
0.139557 + 0.990214i 0.455432π0.455432\pi
432432 −3.79535e6 −0.978459
433433 310172. 0.0795029 0.0397515 0.999210i 0.487343π-0.487343\pi
0.0397515 + 0.999210i 0.487343π0.487343\pi
434434 822480. 0.209605
435435 0 0
436436 −3.13743e6 −0.790419
437437 5.42288e6 1.35840
438438 −2.35912e6 −0.587578
439439 5.67650e6 1.40579 0.702893 0.711296i 0.251891π-0.251891\pi
0.702893 + 0.711296i 0.251891π0.251891\pi
440440 0 0
441441 996168. 0.243914
442442 −1.52527e6 −0.371356
443443 −4.05966e6 −0.982834 −0.491417 0.870924i 0.663521π-0.663521\pi
−0.491417 + 0.870924i 0.663521π0.663521\pi
444444 −4.82223e6 −1.16089
445445 0 0
446446 4.42210e6 1.05267
447447 3.60936e6 0.854401
448448 2.01885e6 0.475237
449449 −6.96544e6 −1.63054 −0.815272 0.579078i 0.803413π-0.803413\pi
−0.815272 + 0.579078i 0.803413π0.803413\pi
450450 0 0
451451 1.93012e6 0.446830
452452 −5.01767e6 −1.15520
453453 1.28413e6 0.294011
454454 −3.39788e6 −0.773692
455455 0 0
456456 1.61530e6 0.363783
457457 −1.79523e6 −0.402096 −0.201048 0.979581i 0.564435π-0.564435\pi
−0.201048 + 0.979581i 0.564435π0.564435\pi
458458 −8.52616e6 −1.89928
459459 −2.70323e6 −0.598896
460460 0 0
461461 −2.11294e6 −0.463058 −0.231529 0.972828i 0.574373π-0.574373\pi
−0.231529 + 0.972828i 0.574373π0.574373\pi
462462 −2.80897e6 −0.612268
463463 −1.26223e6 −0.273643 −0.136822 0.990596i 0.543689π-0.543689\pi
−0.136822 + 0.990596i 0.543689π0.543689\pi
464464 −3.70084e6 −0.798005
465465 0 0
466466 −986462. −0.210434
467467 3.58926e6 0.761576 0.380788 0.924662i 0.375653π-0.375653\pi
0.380788 + 0.924662i 0.375653π0.375653\pi
468468 −4.54960e6 −0.960192
469469 247624. 0.0519830
470470 0 0
471471 2.30319e6 0.478384
472472 1.09990e6 0.227246
473473 −5.28952e6 −1.08708
474474 −1.73808e7 −3.55324
475475 0 0
476476 1.09577e6 0.221667
477477 −1.63835e6 −0.329694
478478 2.10257e6 0.420903
479479 −2.41693e6 −0.481311 −0.240655 0.970611i 0.577362π-0.577362\pi
−0.240655 + 0.970611i 0.577362π0.577362\pi
480480 0 0
481481 1.54963e6 0.305398
482482 −1.16884e7 −2.29159
483483 4.00695e6 0.781531
484484 −3.21347e6 −0.623536
485485 0 0
486486 6.26139e6 1.20249
487487 5.19403e6 0.992388 0.496194 0.868212i 0.334730π-0.334730\pi
0.496194 + 0.868212i 0.334730π0.334730\pi
488488 1.87043e6 0.355543
489489 1.23433e7 2.33432
490490 0 0
491491 5.38961e6 1.00891 0.504456 0.863437i 0.331693π-0.331693\pi
0.504456 + 0.863437i 0.331693π0.331693\pi
492492 −6.68561e6 −1.24517
493493 −2.63592e6 −0.488443
494494 −4.23156e6 −0.780160
495495 0 0
496496 −1.74610e6 −0.318688
497497 −1.60981e6 −0.292338
498498 2.50949e7 4.53431
499499 −3.29606e6 −0.592576 −0.296288 0.955099i 0.595749π-0.595749\pi
−0.296288 + 0.955099i 0.595749π0.595749\pi
500500 0 0
501501 2.22055e6 0.395244
502502 1.38640e7 2.45544
503503 1.06512e7 1.87706 0.938528 0.345204i 0.112190π-0.112190\pi
0.938528 + 0.345204i 0.112190π0.112190\pi
504504 752698. 0.131991
505505 0 0
506506 −7.12543e6 −1.23718
507507 −7.20517e6 −1.24487
508508 2.57388e6 0.442516
509509 −2.74268e6 −0.469225 −0.234612 0.972089i 0.575382π-0.575382\pi
−0.234612 + 0.972089i 0.575382π0.575382\pi
510510 0 0
511511 −544633. −0.0922682
512512 −8.17130e6 −1.37758
513513 −7.49961e6 −1.25819
514514 6.01583e6 1.00436
515515 0 0
516516 1.83220e7 3.02935
517517 5.40136e6 0.888744
518518 −2.08998e6 −0.342230
519519 1.49120e6 0.243006
520520 0 0
521521 4.97077e6 0.802286 0.401143 0.916015i 0.368613π-0.368613\pi
0.401143 + 0.916015i 0.368613π0.368613\pi
522522 −1.47605e7 −2.37096
523523 −2.41579e6 −0.386193 −0.193096 0.981180i 0.561853π-0.561853\pi
−0.193096 + 0.981180i 0.561853π0.561853\pi
524524 −6.33603e6 −1.00807
525525 0 0
526526 −1.86914e6 −0.294563
527527 −1.24366e6 −0.195063
528528 5.96337e6 0.930908
529529 3.72798e6 0.579207
530530 0 0
531531 −1.23256e7 −1.89702
532532 3.04000e6 0.465688
533533 2.14843e6 0.327570
534534 8.84974e6 1.34300
535535 0 0
536536 187103. 0.0281300
537537 −5.37050e6 −0.803672
538538 −1.49385e7 −2.22510
539539 −648485. −0.0961454
540540 0 0
541541 472165. 0.0693587 0.0346794 0.999398i 0.488959π-0.488959\pi
0.0346794 + 0.999398i 0.488959π0.488959\pi
542542 1.41815e7 2.07360
543543 7.15610e6 1.04154
544544 −5.09360e6 −0.737951
545545 0 0
546546 −3.12669e6 −0.448852
547547 −7.63716e6 −1.09135 −0.545675 0.837997i 0.683727π-0.683727\pi
−0.545675 + 0.837997i 0.683727π0.683727\pi
548548 72581.6 0.0103246
549549 −2.09603e7 −2.96802
550550 0 0
551551 −7.31285e6 −1.02614
552552 3.02763e6 0.422917
553553 −4.01258e6 −0.557970
554554 1.84576e7 2.55506
555555 0 0
556556 1.33645e7 1.83343
557557 4.48807e6 0.612946 0.306473 0.951879i 0.400851π-0.400851\pi
0.306473 + 0.951879i 0.400851π0.400851\pi
558558 −6.96417e6 −0.946856
559559 −5.88782e6 −0.796938
560560 0 0
561561 4.24740e6 0.569791
562562 −1.38307e7 −1.84715
563563 2.16500e6 0.287864 0.143932 0.989588i 0.454025π-0.454025\pi
0.143932 + 0.989588i 0.454025π0.454025\pi
564564 −1.87094e7 −2.47664
565565 0 0
566566 −3.27812e6 −0.430115
567567 −601258. −0.0785422
568568 −1.21637e6 −0.158195
569569 −1.13325e7 −1.46739 −0.733696 0.679478i 0.762206π-0.762206\pi
−0.733696 + 0.679478i 0.762206π0.762206\pi
570570 0 0
571571 −843773. −0.108302 −0.0541509 0.998533i 0.517245π-0.517245\pi
−0.0541509 + 0.998533i 0.517245π0.517245\pi
572572 2.96170e6 0.378487
573573 −1.14174e7 −1.45272
574574 −2.89758e6 −0.367076
575575 0 0
576576 −1.70942e7 −2.14681
577577 2.23784e6 0.279827 0.139914 0.990164i 0.455318π-0.455318\pi
0.139914 + 0.990164i 0.455318π0.455318\pi
578578 8.63866e6 1.07554
579579 1.86423e7 2.31102
580580 0 0
581581 5.79346e6 0.712029
582582 9.27156e6 1.13461
583583 1.06653e6 0.129958
584584 −411521. −0.0499299
585585 0 0
586586 −7.69124e6 −0.925236
587587 −1.21190e7 −1.45168 −0.725839 0.687864i 0.758548π-0.758548\pi
−0.725839 + 0.687864i 0.758548π0.758548\pi
588588 2.24625e6 0.267926
589589 −3.45030e6 −0.409797
590590 0 0
591591 9.35942e6 1.10225
592592 4.43698e6 0.520335
593593 −8.00167e6 −0.934424 −0.467212 0.884145i 0.654742π-0.654742\pi
−0.467212 + 0.884145i 0.654742π0.654742\pi
594594 9.85415e6 1.14592
595595 0 0
596596 5.13261e6 0.591865
597597 7.42058e6 0.852123
598598 −7.93138e6 −0.906976
599599 1.45899e7 1.66144 0.830719 0.556692i 0.187930π-0.187930\pi
0.830719 + 0.556692i 0.187930π0.187930\pi
600600 0 0
601601 −8.67178e6 −0.979314 −0.489657 0.871915i 0.662878π-0.662878\pi
−0.489657 + 0.871915i 0.662878π0.662878\pi
602602 7.94087e6 0.893052
603603 −2.09671e6 −0.234825
604604 1.82607e6 0.203669
605605 0 0
606606 −5.44374e6 −0.602166
607607 1.33059e7 1.46580 0.732898 0.680339i 0.238167π-0.238167\pi
0.732898 + 0.680339i 0.238167π0.238167\pi
608608 −1.41312e7 −1.55032
609609 −5.40344e6 −0.590374
610610 0 0
611611 6.01231e6 0.651536
612612 −9.27817e6 −1.00135
613613 −2.35101e6 −0.252699 −0.126350 0.991986i 0.540326π-0.540326\pi
−0.126350 + 0.991986i 0.540326π0.540326\pi
614614 1.51675e7 1.62365
615615 0 0
616616 −489991. −0.0520280
617617 −9.63523e6 −1.01894 −0.509470 0.860488i 0.670159π-0.670159\pi
−0.509470 + 0.860488i 0.670159π0.670159\pi
618618 −3.03939e6 −0.320122
619619 −4.86148e6 −0.509967 −0.254983 0.966945i 0.582070π-0.582070\pi
−0.254983 + 0.966945i 0.582070π0.582070\pi
620620 0 0
621621 −1.40568e7 −1.46271
622622 1.90062e7 1.96979
623623 2.04307e6 0.210894
624624 6.63789e6 0.682446
625625 0 0
626626 −2.83391e7 −2.89035
627627 1.17836e7 1.19704
628628 3.27519e6 0.331389
629629 3.16023e6 0.318487
630630 0 0
631631 −6.59770e6 −0.659659 −0.329829 0.944041i 0.606991π-0.606991\pi
−0.329829 + 0.944041i 0.606991π0.606991\pi
632632 −3.03188e6 −0.301939
633633 1.92409e7 1.90860
634634 2.43535e7 2.40624
635635 0 0
636636 −3.69430e6 −0.362151
637637 −721836. −0.0704839
638638 9.60876e6 0.934578
639639 1.36308e7 1.32059
640640 0 0
641641 1.44525e7 1.38930 0.694651 0.719347i 0.255559π-0.255559\pi
0.694651 + 0.719347i 0.255559π0.255559\pi
642642 3.65104e6 0.349606
643643 1.54720e7 1.47577 0.737886 0.674926i 0.235824π-0.235824\pi
0.737886 + 0.674926i 0.235824π0.235824\pi
644644 5.69799e6 0.541386
645645 0 0
646646 −8.62960e6 −0.813597
647647 −1.66647e7 −1.56508 −0.782540 0.622601i 0.786076π-0.786076\pi
−0.782540 + 0.622601i 0.786076π0.786076\pi
648648 −454306. −0.0425022
649649 8.02371e6 0.747762
650650 0 0
651651 −2.54941e6 −0.235770
652652 1.75525e7 1.61704
653653 1.33451e7 1.22472 0.612361 0.790578i 0.290220π-0.290220\pi
0.612361 + 0.790578i 0.290220π0.290220\pi
654654 1.82570e7 1.66911
655655 0 0
656656 6.15149e6 0.558111
657657 4.61157e6 0.416807
658658 −8.10877e6 −0.730113
659659 −4.00667e6 −0.359393 −0.179697 0.983722i 0.557512π-0.557512\pi
−0.179697 + 0.983722i 0.557512π0.557512\pi
660660 0 0
661661 1.08005e7 0.961478 0.480739 0.876864i 0.340368π-0.340368\pi
0.480739 + 0.876864i 0.340368π0.340368\pi
662662 −7.99493e6 −0.709038
663663 4.72782e6 0.417712
664664 4.37750e6 0.385307
665665 0 0
666666 1.76965e7 1.54597
667667 −1.37068e7 −1.19294
668668 3.15767e6 0.273795
669669 −1.37070e7 −1.18407
670670 0 0
671671 1.36447e7 1.16993
672672 −1.04415e7 −0.891951
673673 −1.09119e7 −0.928676 −0.464338 0.885658i 0.653708π-0.653708\pi
−0.464338 + 0.885658i 0.653708π0.653708\pi
674674 1.12884e6 0.0957158
675675 0 0
676676 −1.02459e7 −0.862353
677677 1.35765e7 1.13846 0.569229 0.822179i 0.307242π-0.307242\pi
0.569229 + 0.822179i 0.307242π0.307242\pi
678678 2.91984e7 2.43941
679679 2.14046e6 0.178169
680680 0 0
681681 1.05323e7 0.870272
682682 4.53354e6 0.373230
683683 1.26726e7 1.03948 0.519738 0.854326i 0.326030π-0.326030\pi
0.519738 + 0.854326i 0.326030π0.326030\pi
684684 −2.57406e7 −2.10367
685685 0 0
686686 973536. 0.0789845
687687 2.64283e7 2.13637
688688 −1.68583e7 −1.35782
689689 1.18717e6 0.0952720
690690 0 0
691691 7.11964e6 0.567235 0.283617 0.958938i 0.408465π-0.408465\pi
0.283617 + 0.958938i 0.408465π0.408465\pi
692692 2.12052e6 0.168336
693693 5.49091e6 0.434322
694694 2.94097e6 0.231789
695695 0 0
696696 −4.08281e6 −0.319474
697697 4.38139e6 0.341609
698698 1.15955e6 0.0900844
699699 3.05770e6 0.236702
700700 0 0
701701 −1.00155e7 −0.769803 −0.384902 0.922958i 0.625765π-0.625765\pi
−0.384902 + 0.922958i 0.625765π0.625765\pi
702702 1.09687e7 0.840068
703703 8.76746e6 0.669092
704704 1.11280e7 0.846224
705705 0 0
706706 2.88084e7 2.17524
707707 −1.25676e6 −0.0945589
708708 −2.77928e7 −2.08377
709709 −8.84454e6 −0.660784 −0.330392 0.943844i 0.607181π-0.607181\pi
−0.330392 + 0.943844i 0.607181π0.607181\pi
710710 0 0
711711 3.39757e7 2.52054
712712 1.54373e6 0.114123
713713 −6.46703e6 −0.476410
714714 −6.37638e6 −0.468090
715715 0 0
716716 −7.63698e6 −0.556723
717717 −6.51728e6 −0.473444
718718 −1.45047e7 −1.05002
719719 6.58086e6 0.474745 0.237373 0.971419i 0.423714π-0.423714\pi
0.237373 + 0.971419i 0.423714π0.423714\pi
720720 0 0
721721 −701682. −0.0502692
722722 −3.45169e6 −0.246427
723723 3.62301e7 2.57765
724724 1.01762e7 0.721502
725725 0 0
726726 1.86995e7 1.31671
727727 −1.88401e7 −1.32205 −0.661023 0.750365i 0.729878π-0.729878\pi
−0.661023 + 0.750365i 0.729878π0.729878\pi
728728 −545414. −0.0381415
729729 −2.23900e7 −1.56040
730730 0 0
731731 −1.20073e7 −0.831095
732732 −4.72631e7 −3.26020
733733 2.78330e6 0.191337 0.0956687 0.995413i 0.469501π-0.469501\pi
0.0956687 + 0.995413i 0.469501π0.469501\pi
734734 −1.46416e7 −1.00311
735735 0 0
736736 −2.64867e7 −1.80233
737737 1.36491e6 0.0925629
738738 2.45346e7 1.65821
739739 −2.48970e7 −1.67701 −0.838505 0.544894i 0.816570π-0.816570\pi
−0.838505 + 0.544894i 0.816570π0.816570\pi
740740 0 0
741741 1.31164e7 0.877548
742742 −1.60113e6 −0.106762
743743 3.86085e6 0.256573 0.128286 0.991737i 0.459052π-0.459052\pi
0.128286 + 0.991737i 0.459052π0.459052\pi
744744 −1.92632e6 −0.127584
745745 0 0
746746 −3.44412e7 −2.26585
747747 −4.90549e7 −3.21648
748748 6.03991e6 0.394708
749749 842888. 0.0548991
750750 0 0
751751 6.72737e6 0.435257 0.217628 0.976032i 0.430168π-0.430168\pi
0.217628 + 0.976032i 0.430168π0.430168\pi
752752 1.72147e7 1.11008
753753 −4.29737e7 −2.76195
754754 1.06956e7 0.685136
755755 0 0
756756 −7.88007e6 −0.501447
757757 −2.17782e7 −1.38128 −0.690642 0.723197i 0.742672π-0.742672\pi
−0.690642 + 0.723197i 0.742672π0.742672\pi
758758 −5.11525e6 −0.323366
759759 2.20865e7 1.39162
760760 0 0
761761 −2.57074e7 −1.60915 −0.804575 0.593851i 0.797607π-0.797607\pi
−0.804575 + 0.593851i 0.797607π0.797607\pi
762762 −1.49777e7 −0.934453
763763 4.21486e6 0.262103
764764 −1.62359e7 −1.00633
765765 0 0
766766 −3.40234e7 −2.09511
767767 8.93127e6 0.548182
768768 1.78808e7 1.09391
769769 −1.34375e7 −0.819413 −0.409706 0.912217i 0.634369π-0.634369\pi
−0.409706 + 0.912217i 0.634369π0.634369\pi
770770 0 0
771771 −1.86471e7 −1.12973
772772 2.65099e7 1.60090
773773 −3.05572e7 −1.83935 −0.919674 0.392682i 0.871547π-0.871547\pi
−0.919674 + 0.392682i 0.871547π0.871547\pi
774774 −6.72376e7 −4.03422
775775 0 0
776776 1.61731e6 0.0964140
777777 6.47825e6 0.384951
778778 −3.82364e7 −2.26479
779779 1.21553e7 0.717667
780780 0 0
781781 −8.87335e6 −0.520547
782782 −1.61748e7 −0.945849
783783 1.89558e7 1.10494
784784 −2.06679e6 −0.120090
785785 0 0
786786 3.68700e7 2.12871
787787 2.07672e6 0.119520 0.0597602 0.998213i 0.480966π-0.480966\pi
0.0597602 + 0.998213i 0.480966π0.480966\pi
788788 1.33093e7 0.763556
789789 5.79372e6 0.331333
790790 0 0
791791 6.74081e6 0.383064
792792 4.14890e6 0.235028
793793 1.51881e7 0.857670
794794 4.19827e7 2.36330
795795 0 0
796796 1.05523e7 0.590286
797797 5.98563e6 0.333783 0.166892 0.985975i 0.446627π-0.446627\pi
0.166892 + 0.985975i 0.446627π0.446627\pi
798798 −1.76901e7 −0.983383
799799 1.22611e7 0.679460
800800 0 0
801801 −1.72993e7 −0.952679
802802 1.22515e7 0.672594
803803 −3.00204e6 −0.164296
804804 −4.72784e6 −0.257942
805805 0 0
806806 5.04633e6 0.273614
807807 4.63043e7 2.50286
808808 −949597. −0.0511695
809809 1.96864e7 1.05754 0.528769 0.848766i 0.322654π-0.322654\pi
0.528769 + 0.848766i 0.322654π0.322654\pi
810810 0 0
811811 8.50101e6 0.453856 0.226928 0.973912i 0.427132π-0.427132\pi
0.226928 + 0.973912i 0.427132π0.427132\pi
812812 −7.68384e6 −0.408967
813813 −4.39580e7 −2.33245
814814 −1.15201e7 −0.609387
815815 0 0
816816 1.35369e7 0.711695
817817 −3.33119e7 −1.74600
818818 3.75168e7 1.96039
819819 6.11199e6 0.318400
820820 0 0
821821 −1.36199e6 −0.0705204 −0.0352602 0.999378i 0.511226π-0.511226\pi
−0.0352602 + 0.999378i 0.511226π0.511226\pi
822822 −422360. −0.0218023
823823 1.35934e6 0.0699566 0.0349783 0.999388i 0.488864π-0.488864\pi
0.0349783 + 0.999388i 0.488864π0.488864\pi
824824 −530186. −0.0272026
825825 0 0
826826 −1.20456e7 −0.614295
827827 −1.00727e7 −0.512132 −0.256066 0.966659i 0.582426π-0.582426\pi
−0.256066 + 0.966659i 0.582426π0.582426\pi
828828 −4.82465e7 −2.44563
829829 −5.63984e6 −0.285023 −0.142512 0.989793i 0.545518π-0.545518\pi
−0.142512 + 0.989793i 0.545518π0.545518\pi
830830 0 0
831831 −5.72125e7 −2.87401
832832 1.23867e7 0.620364
833833 −1.47207e6 −0.0735048
834834 −7.77693e7 −3.87163
835835 0 0
836836 1.67566e7 0.829220
837837 8.94361e6 0.441265
838838 −918733. −0.0451938
839839 −1.16351e7 −0.570642 −0.285321 0.958432i 0.592100π-0.592100\pi
−0.285321 + 0.958432i 0.592100π0.592100\pi
840840 0 0
841841 −2.02735e6 −0.0988413
842842 1.16801e7 0.567764
843843 4.28706e7 2.07774
844844 2.73610e7 1.32214
845845 0 0
846846 6.86592e7 3.29817
847847 4.31702e6 0.206764
848848 3.39916e6 0.162324
849849 1.01611e7 0.483806
850850 0 0
851851 1.64332e7 0.777854
852852 3.07358e7 1.45059
853853 −2.85205e7 −1.34210 −0.671049 0.741413i 0.734156π-0.734156\pi
−0.671049 + 0.741413i 0.734156π0.734156\pi
854854 −2.04841e7 −0.961108
855855 0 0
856856 636880. 0.0297080
857857 9.95725e6 0.463113 0.231557 0.972821i 0.425618π-0.425618\pi
0.231557 + 0.972821i 0.425618π0.425618\pi
858858 −1.72344e7 −0.799243
859859 −1.49322e7 −0.690463 −0.345232 0.938517i 0.612200π-0.612200\pi
−0.345232 + 0.938517i 0.612200π0.612200\pi
860860 0 0
861861 8.98154e6 0.412898
862862 −8.90711e6 −0.408290
863863 −3.84933e7 −1.75937 −0.879687 0.475553i 0.842248π-0.842248\pi
−0.879687 + 0.475553i 0.842248π0.842248\pi
864864 3.66300e7 1.66937
865865 0 0
866866 −2.56665e6 −0.116298
867867 −2.67770e7 −1.20980
868868 −3.62533e6 −0.163323
869869 −2.21175e7 −0.993542
870870 0 0
871871 1.51930e6 0.0678576
872872 3.18472e6 0.141834
873873 −1.81239e7 −0.804850
874874 −4.48739e7 −1.98708
875875 0 0
876876 1.03986e7 0.457839
877877 −9.40311e6 −0.412831 −0.206416 0.978464i 0.566180π-0.566180\pi
−0.206416 + 0.978464i 0.566180π0.566180\pi
878878 −4.69726e7 −2.05640
879879 2.38403e7 1.04073
880880 0 0
881881 1.10395e6 0.0479194 0.0239597 0.999713i 0.492373π-0.492373\pi
0.0239597 + 0.999713i 0.492373π0.492373\pi
882882 −8.24321e6 −0.356800
883883 −8.06579e6 −0.348133 −0.174067 0.984734i 0.555691π-0.555691\pi
−0.174067 + 0.984734i 0.555691π0.555691\pi
884884 6.72308e6 0.289359
885885 0 0
886886 3.35933e7 1.43770
887887 1.49902e7 0.639732 0.319866 0.947463i 0.396362π-0.396362\pi
0.319866 + 0.947463i 0.396362π0.396362\pi
888888 4.89493e6 0.208312
889889 −3.45779e6 −0.146738
890890 0 0
891891 −3.31415e6 −0.139855
892892 −1.94918e7 −0.820237
893893 3.40162e7 1.42744
894894 −2.98672e7 −1.24983
895895 0 0
896896 −3.67912e6 −0.153100
897897 2.45847e7 1.02019
898898 5.76384e7 2.38518
899899 8.72090e6 0.359883
900900 0 0
901901 2.42104e6 0.0993553
902902 −1.59716e7 −0.653629
903903 −2.46141e7 −1.00453
904904 5.09331e6 0.207290
905905 0 0
906906 −1.06261e7 −0.430083
907907 −4.12622e6 −0.166546 −0.0832730 0.996527i 0.526537π-0.526537\pi
−0.0832730 + 0.996527i 0.526537π0.526537\pi
908908 1.49772e7 0.602859
909909 1.06413e7 0.427155
910910 0 0
911911 4.04272e7 1.61391 0.806953 0.590616i 0.201115π-0.201115\pi
0.806953 + 0.590616i 0.201115π0.201115\pi
912912 3.75556e7 1.49516
913913 3.19338e7 1.26787
914914 1.48554e7 0.588191
915915 0 0
916916 3.75817e7 1.47992
917917 8.51191e6 0.334275
918918 2.23690e7 0.876072
919919 2.18546e7 0.853600 0.426800 0.904346i 0.359641π-0.359641\pi
0.426800 + 0.904346i 0.359641π0.359641\pi
920920 0 0
921921 −4.70142e7 −1.82633
922922 1.74844e7 0.677366
923923 −9.87702e6 −0.381612
924924 1.23814e7 0.477078
925925 0 0
926926 1.04448e7 0.400289
927927 5.94134e6 0.227083
928928 3.57178e7 1.36149
929929 1.06843e7 0.406169 0.203085 0.979161i 0.434903π-0.434903\pi
0.203085 + 0.979161i 0.434903π0.434903\pi
930930 0 0
931931 −4.08398e6 −0.154422
932932 4.34813e6 0.163970
933933 −5.89130e7 −2.21568
934934 −2.97009e7 −1.11404
935935 0 0
936936 4.61818e6 0.172298
937937 3.99105e7 1.48504 0.742521 0.669823i 0.233630π-0.233630\pi
0.742521 + 0.669823i 0.233630π0.233630\pi
938938 −2.04907e6 −0.0760414
939939 8.78419e7 3.25116
940940 0 0
941941 1.32350e6 0.0487248 0.0243624 0.999703i 0.492244π-0.492244\pi
0.0243624 + 0.999703i 0.492244π0.492244\pi
942942 −1.90587e7 −0.699787
943943 2.27832e7 0.834326
944944 2.55724e7 0.933990
945945 0 0
946946 4.37703e7 1.59020
947947 2.76322e7 1.00124 0.500622 0.865666i 0.333105π-0.333105\pi
0.500622 + 0.865666i 0.333105π0.333105\pi
948948 7.66113e7 2.76868
949949 −3.34160e6 −0.120445
950950 0 0
951951 −7.54879e7 −2.70661
952952 −1.11229e6 −0.0397763
953953 3.07901e7 1.09819 0.549096 0.835759i 0.314972π-0.314972\pi
0.549096 + 0.835759i 0.314972π0.314972\pi
954954 1.35572e7 0.482281
955955 0 0
956956 −9.26775e6 −0.327966
957957 −2.97840e7 −1.05124
958958 1.99999e7 0.704068
959959 −97507.1 −0.00342365
960960 0 0
961961 −2.45145e7 −0.856278
962962 −1.28231e7 −0.446740
963963 −7.13697e6 −0.247998
964964 5.15202e7 1.78560
965965 0 0
966966 −3.31572e7 −1.14323
967967 −2.92557e6 −0.100611 −0.0503055 0.998734i 0.516019π-0.516019\pi
−0.0503055 + 0.998734i 0.516019π0.516019\pi
968968 3.26192e6 0.111888
969969 2.67489e7 0.915159
970970 0 0
971971 2.78109e6 0.0946601 0.0473301 0.998879i 0.484929π-0.484929\pi
0.0473301 + 0.998879i 0.484929π0.484929\pi
972972 −2.75990e7 −0.936975
973973 −1.79540e7 −0.607967
974974 −4.29801e7 −1.45168
975975 0 0
976976 4.34872e7 1.46129
977977 −7.48673e6 −0.250932 −0.125466 0.992098i 0.540043π-0.540043\pi
−0.125466 + 0.992098i 0.540043π0.540043\pi
978978 −1.02140e8 −3.41467
979979 1.12615e7 0.375525
980980 0 0
981981 −3.56884e7 −1.18401
982982 −4.45985e7 −1.47585
983983 −1.79815e7 −0.593528 −0.296764 0.954951i 0.595907π-0.595907\pi
−0.296764 + 0.954951i 0.595907π0.595907\pi
984984 6.78639e6 0.223435
985985 0 0
986986 2.18120e7 0.714501
987987 2.51345e7 0.821253
988988 1.86519e7 0.607899
989989 −6.24378e7 −2.02982
990990 0 0
991991 3.72778e7 1.20578 0.602888 0.797826i 0.294017π-0.294017\pi
0.602888 + 0.797826i 0.294017π0.294017\pi
992992 1.68521e7 0.543720
993993 2.47816e7 0.797548
994994 1.33211e7 0.427635
995995 0 0
996996 −1.10613e8 −3.53313
997997 −4.87422e7 −1.55298 −0.776492 0.630128i 0.783003π-0.783003\pi
−0.776492 + 0.630128i 0.783003π0.783003\pi
998998 2.72747e7 0.866828
999999 −2.27264e7 −0.720471
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.6.a.c.1.1 2
5.2 odd 4 175.6.b.c.99.1 4
5.3 odd 4 175.6.b.c.99.4 4
5.4 even 2 7.6.a.b.1.2 2
15.14 odd 2 63.6.a.f.1.1 2
20.19 odd 2 112.6.a.h.1.2 2
35.4 even 6 49.6.c.e.30.1 4
35.9 even 6 49.6.c.e.18.1 4
35.19 odd 6 49.6.c.d.18.1 4
35.24 odd 6 49.6.c.d.30.1 4
35.34 odd 2 49.6.a.f.1.2 2
40.19 odd 2 448.6.a.u.1.1 2
40.29 even 2 448.6.a.w.1.2 2
55.54 odd 2 847.6.a.c.1.1 2
60.59 even 2 1008.6.a.bq.1.1 2
105.104 even 2 441.6.a.l.1.1 2
140.139 even 2 784.6.a.v.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.6.a.b.1.2 2 5.4 even 2
49.6.a.f.1.2 2 35.34 odd 2
49.6.c.d.18.1 4 35.19 odd 6
49.6.c.d.30.1 4 35.24 odd 6
49.6.c.e.18.1 4 35.9 even 6
49.6.c.e.30.1 4 35.4 even 6
63.6.a.f.1.1 2 15.14 odd 2
112.6.a.h.1.2 2 20.19 odd 2
175.6.a.c.1.1 2 1.1 even 1 trivial
175.6.b.c.99.1 4 5.2 odd 4
175.6.b.c.99.4 4 5.3 odd 4
441.6.a.l.1.1 2 105.104 even 2
448.6.a.u.1.1 2 40.19 odd 2
448.6.a.w.1.2 2 40.29 even 2
784.6.a.v.1.1 2 140.139 even 2
847.6.a.c.1.1 2 55.54 odd 2
1008.6.a.bq.1.1 2 60.59 even 2