Properties

Label 175.6.a.c.1.1
Level $175$
Weight $6$
Character 175.1
Self dual yes
Analytic conductor $28.067$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,6,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.0671684673\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.27492\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.27492 q^{2} +25.6495 q^{3} +36.4743 q^{4} -212.248 q^{6} -49.0000 q^{7} -37.0241 q^{8} +414.897 q^{9} -270.090 q^{11} +935.547 q^{12} -300.640 q^{13} +405.471 q^{14} -860.805 q^{16} -613.106 q^{17} -3433.24 q^{18} -1700.95 q^{19} -1256.83 q^{21} +2234.97 q^{22} -3188.15 q^{23} -949.650 q^{24} +2487.77 q^{26} +4409.07 q^{27} -1787.24 q^{28} +4299.28 q^{29} +2028.46 q^{31} +8307.86 q^{32} -6927.67 q^{33} +5073.40 q^{34} +15133.1 q^{36} -5154.46 q^{37} +14075.2 q^{38} -7711.26 q^{39} -7146.21 q^{41} +10400.1 q^{42} +19584.3 q^{43} -9851.32 q^{44} +26381.7 q^{46} -19998.4 q^{47} -22079.2 q^{48} +2401.00 q^{49} -15725.9 q^{51} -10965.6 q^{52} -3948.82 q^{53} -36484.7 q^{54} +1814.18 q^{56} -43628.5 q^{57} -35576.2 q^{58} -29707.6 q^{59} -50519.3 q^{61} -16785.3 q^{62} -20330.0 q^{63} -41201.1 q^{64} +57325.9 q^{66} -5053.56 q^{67} -22362.6 q^{68} -81774.5 q^{69} +32853.3 q^{71} -15361.2 q^{72} +11115.0 q^{73} +42652.7 q^{74} -62040.8 q^{76} +13234.4 q^{77} +63810.0 q^{78} +81889.4 q^{79} +12270.6 q^{81} +59134.3 q^{82} -118234. q^{83} -45841.8 q^{84} -162058. q^{86} +110274. q^{87} +9999.83 q^{88} -41695.4 q^{89} +14731.3 q^{91} -116286. q^{92} +52028.9 q^{93} +165485. q^{94} +213092. q^{96} -43682.8 q^{97} -19868.1 q^{98} -112059. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 9 q^{2} + 6 q^{3} + 5 q^{4} - 198 q^{6} - 98 q^{7} + 9 q^{8} + 558 q^{9} + 396 q^{11} + 1554 q^{12} + 350 q^{13} + 441 q^{14} + 113 q^{16} - 1800 q^{17} - 3537 q^{18} - 3266 q^{19} - 294 q^{21} + 1752 q^{22}+ \cdots - 16740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.27492 −1.46281 −0.731406 0.681942i \(-0.761136\pi\)
−0.731406 + 0.681942i \(0.761136\pi\)
\(3\) 25.6495 1.64542 0.822708 0.568464i \(-0.192462\pi\)
0.822708 + 0.568464i \(0.192462\pi\)
\(4\) 36.4743 1.13982
\(5\) 0 0
\(6\) −212.248 −2.40694
\(7\) −49.0000 −0.377964
\(8\) −37.0241 −0.204531
\(9\) 414.897 1.70740
\(10\) 0 0
\(11\) −270.090 −0.673018 −0.336509 0.941680i \(-0.609246\pi\)
−0.336509 + 0.941680i \(0.609246\pi\)
\(12\) 935.547 1.87548
\(13\) −300.640 −0.493387 −0.246694 0.969094i \(-0.579344\pi\)
−0.246694 + 0.969094i \(0.579344\pi\)
\(14\) 405.471 0.552891
\(15\) 0 0
\(16\) −860.805 −0.840630
\(17\) −613.106 −0.514533 −0.257267 0.966340i \(-0.582822\pi\)
−0.257267 + 0.966340i \(0.582822\pi\)
\(18\) −3433.24 −2.49760
\(19\) −1700.95 −1.08095 −0.540477 0.841359i \(-0.681756\pi\)
−0.540477 + 0.841359i \(0.681756\pi\)
\(20\) 0 0
\(21\) −1256.83 −0.621909
\(22\) 2234.97 0.984498
\(23\) −3188.15 −1.25667 −0.628333 0.777945i \(-0.716262\pi\)
−0.628333 + 0.777945i \(0.716262\pi\)
\(24\) −949.650 −0.336539
\(25\) 0 0
\(26\) 2487.77 0.721733
\(27\) 4409.07 1.16396
\(28\) −1787.24 −0.430812
\(29\) 4299.28 0.949294 0.474647 0.880176i \(-0.342576\pi\)
0.474647 + 0.880176i \(0.342576\pi\)
\(30\) 0 0
\(31\) 2028.46 0.379106 0.189553 0.981870i \(-0.439296\pi\)
0.189553 + 0.981870i \(0.439296\pi\)
\(32\) 8307.86 1.43421
\(33\) −6927.67 −1.10739
\(34\) 5073.40 0.752666
\(35\) 0 0
\(36\) 15133.1 1.94612
\(37\) −5154.46 −0.618983 −0.309491 0.950902i \(-0.600159\pi\)
−0.309491 + 0.950902i \(0.600159\pi\)
\(38\) 14075.2 1.58123
\(39\) −7711.26 −0.811827
\(40\) 0 0
\(41\) −7146.21 −0.663921 −0.331960 0.943293i \(-0.607710\pi\)
−0.331960 + 0.943293i \(0.607710\pi\)
\(42\) 10400.1 0.909736
\(43\) 19584.3 1.61524 0.807620 0.589703i \(-0.200755\pi\)
0.807620 + 0.589703i \(0.200755\pi\)
\(44\) −9851.32 −0.767119
\(45\) 0 0
\(46\) 26381.7 1.83827
\(47\) −19998.4 −1.32054 −0.660268 0.751030i \(-0.729557\pi\)
−0.660268 + 0.751030i \(0.729557\pi\)
\(48\) −22079.2 −1.38319
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −15725.9 −0.846621
\(52\) −10965.6 −0.562373
\(53\) −3948.82 −0.193098 −0.0965489 0.995328i \(-0.530780\pi\)
−0.0965489 + 0.995328i \(0.530780\pi\)
\(54\) −36484.7 −1.70265
\(55\) 0 0
\(56\) 1814.18 0.0773055
\(57\) −43628.5 −1.77862
\(58\) −35576.2 −1.38864
\(59\) −29707.6 −1.11106 −0.555530 0.831497i \(-0.687484\pi\)
−0.555530 + 0.831497i \(0.687484\pi\)
\(60\) 0 0
\(61\) −50519.3 −1.73833 −0.869165 0.494522i \(-0.835343\pi\)
−0.869165 + 0.494522i \(0.835343\pi\)
\(62\) −16785.3 −0.554562
\(63\) −20330.0 −0.645335
\(64\) −41201.1 −1.25736
\(65\) 0 0
\(66\) 57325.9 1.61991
\(67\) −5053.56 −0.137534 −0.0687671 0.997633i \(-0.521907\pi\)
−0.0687671 + 0.997633i \(0.521907\pi\)
\(68\) −22362.6 −0.586476
\(69\) −81774.5 −2.06774
\(70\) 0 0
\(71\) 32853.3 0.773453 0.386726 0.922195i \(-0.373606\pi\)
0.386726 + 0.922195i \(0.373606\pi\)
\(72\) −15361.2 −0.349215
\(73\) 11115.0 0.244119 0.122059 0.992523i \(-0.461050\pi\)
0.122059 + 0.992523i \(0.461050\pi\)
\(74\) 42652.7 0.905456
\(75\) 0 0
\(76\) −62040.8 −1.23209
\(77\) 13234.4 0.254377
\(78\) 63810.0 1.18755
\(79\) 81889.4 1.47625 0.738125 0.674664i \(-0.235712\pi\)
0.738125 + 0.674664i \(0.235712\pi\)
\(80\) 0 0
\(81\) 12270.6 0.207803
\(82\) 59134.3 0.971191
\(83\) −118234. −1.88385 −0.941926 0.335819i \(-0.890987\pi\)
−0.941926 + 0.335819i \(0.890987\pi\)
\(84\) −45841.8 −0.708865
\(85\) 0 0
\(86\) −162058. −2.36279
\(87\) 110274. 1.56198
\(88\) 9999.83 0.137653
\(89\) −41695.4 −0.557972 −0.278986 0.960295i \(-0.589998\pi\)
−0.278986 + 0.960295i \(0.589998\pi\)
\(90\) 0 0
\(91\) 14731.3 0.186483
\(92\) −116286. −1.43237
\(93\) 52028.9 0.623788
\(94\) 165485. 1.93170
\(95\) 0 0
\(96\) 213092. 2.35988
\(97\) −43682.8 −0.471391 −0.235695 0.971827i \(-0.575737\pi\)
−0.235695 + 0.971827i \(0.575737\pi\)
\(98\) −19868.1 −0.208973
\(99\) −112059. −1.14911
\(100\) 0 0
\(101\) 25648.1 0.250179 0.125090 0.992145i \(-0.460078\pi\)
0.125090 + 0.992145i \(0.460078\pi\)
\(102\) 130130. 1.23845
\(103\) 14320.0 0.133000 0.0664999 0.997786i \(-0.478817\pi\)
0.0664999 + 0.997786i \(0.478817\pi\)
\(104\) 11130.9 0.100913
\(105\) 0 0
\(106\) 32676.1 0.282466
\(107\) −17201.8 −0.145249 −0.0726247 0.997359i \(-0.523138\pi\)
−0.0726247 + 0.997359i \(0.523138\pi\)
\(108\) 160818. 1.32670
\(109\) −86017.6 −0.693459 −0.346730 0.937965i \(-0.612708\pi\)
−0.346730 + 0.937965i \(0.612708\pi\)
\(110\) 0 0
\(111\) −132209. −1.01848
\(112\) 42179.4 0.317728
\(113\) −137568. −1.01349 −0.506745 0.862096i \(-0.669152\pi\)
−0.506745 + 0.862096i \(0.669152\pi\)
\(114\) 361022. 2.60179
\(115\) 0 0
\(116\) 156813. 1.08202
\(117\) −124734. −0.842407
\(118\) 245828. 1.62527
\(119\) 30042.2 0.194475
\(120\) 0 0
\(121\) −88102.5 −0.547047
\(122\) 418043. 2.54285
\(123\) −183297. −1.09243
\(124\) 73986.4 0.432113
\(125\) 0 0
\(126\) 168229. 0.944004
\(127\) 70567.1 0.388233 0.194117 0.980978i \(-0.437816\pi\)
0.194117 + 0.980978i \(0.437816\pi\)
\(128\) 75084.2 0.405064
\(129\) 502328. 2.65774
\(130\) 0 0
\(131\) −173712. −0.884408 −0.442204 0.896914i \(-0.645803\pi\)
−0.442204 + 0.896914i \(0.645803\pi\)
\(132\) −252682. −1.26223
\(133\) 83346.5 0.408562
\(134\) 41817.8 0.201187
\(135\) 0 0
\(136\) 22699.7 0.105238
\(137\) 1989.94 0.00905813 0.00452907 0.999990i \(-0.498558\pi\)
0.00452907 + 0.999990i \(0.498558\pi\)
\(138\) 676678. 3.02471
\(139\) 366409. 1.60853 0.804264 0.594272i \(-0.202560\pi\)
0.804264 + 0.594272i \(0.202560\pi\)
\(140\) 0 0
\(141\) −512949. −2.17283
\(142\) −271859. −1.13142
\(143\) 81199.7 0.332058
\(144\) −357145. −1.43529
\(145\) 0 0
\(146\) −91975.4 −0.357100
\(147\) 61584.5 0.235059
\(148\) −188005. −0.705529
\(149\) 140719. 0.519261 0.259631 0.965708i \(-0.416399\pi\)
0.259631 + 0.965708i \(0.416399\pi\)
\(150\) 0 0
\(151\) 50064.6 0.178685 0.0893425 0.996001i \(-0.471523\pi\)
0.0893425 + 0.996001i \(0.471523\pi\)
\(152\) 62976.1 0.221089
\(153\) −254376. −0.878512
\(154\) −109514. −0.372105
\(155\) 0 0
\(156\) −281262. −0.925337
\(157\) 89794.6 0.290738 0.145369 0.989378i \(-0.453563\pi\)
0.145369 + 0.989378i \(0.453563\pi\)
\(158\) −677628. −2.15948
\(159\) −101285. −0.317726
\(160\) 0 0
\(161\) 156219. 0.474975
\(162\) −101538. −0.303977
\(163\) 481230. 1.41868 0.709339 0.704867i \(-0.248994\pi\)
0.709339 + 0.704867i \(0.248994\pi\)
\(164\) −260653. −0.756750
\(165\) 0 0
\(166\) 978376. 2.75572
\(167\) 86572.7 0.240209 0.120105 0.992761i \(-0.461677\pi\)
0.120105 + 0.992761i \(0.461677\pi\)
\(168\) 46532.8 0.127200
\(169\) −280909. −0.756569
\(170\) 0 0
\(171\) −705718. −1.84562
\(172\) 714323. 1.84108
\(173\) 58137.4 0.147686 0.0738432 0.997270i \(-0.476474\pi\)
0.0738432 + 0.997270i \(0.476474\pi\)
\(174\) −912511. −2.28489
\(175\) 0 0
\(176\) 232495. 0.565759
\(177\) −761985. −1.82816
\(178\) 345026. 0.816209
\(179\) −209380. −0.488431 −0.244215 0.969721i \(-0.578530\pi\)
−0.244215 + 0.969721i \(0.578530\pi\)
\(180\) 0 0
\(181\) 278996. 0.632996 0.316498 0.948593i \(-0.397493\pi\)
0.316498 + 0.948593i \(0.397493\pi\)
\(182\) −121901. −0.272789
\(183\) −1.29579e6 −2.86028
\(184\) 118038. 0.257027
\(185\) 0 0
\(186\) −430535. −0.912485
\(187\) 165594. 0.346290
\(188\) −729426. −1.50517
\(189\) −216045. −0.439935
\(190\) 0 0
\(191\) −445132. −0.882888 −0.441444 0.897289i \(-0.645534\pi\)
−0.441444 + 0.897289i \(0.645534\pi\)
\(192\) −1.05679e6 −2.06888
\(193\) 726811. 1.40452 0.702260 0.711920i \(-0.252174\pi\)
0.702260 + 0.711920i \(0.252174\pi\)
\(194\) 361471. 0.689556
\(195\) 0 0
\(196\) 87574.7 0.162831
\(197\) 364897. 0.669892 0.334946 0.942237i \(-0.391282\pi\)
0.334946 + 0.942237i \(0.391282\pi\)
\(198\) 927282. 1.68093
\(199\) 289307. 0.517877 0.258938 0.965894i \(-0.416627\pi\)
0.258938 + 0.965894i \(0.416627\pi\)
\(200\) 0 0
\(201\) −129621. −0.226301
\(202\) −212236. −0.365965
\(203\) −210665. −0.358799
\(204\) −573589. −0.964997
\(205\) 0 0
\(206\) −118497. −0.194554
\(207\) −1.32276e6 −2.14562
\(208\) 258792. 0.414756
\(209\) 459409. 0.727501
\(210\) 0 0
\(211\) 750147. 1.15995 0.579976 0.814633i \(-0.303062\pi\)
0.579976 + 0.814633i \(0.303062\pi\)
\(212\) −144030. −0.220097
\(213\) 842672. 1.27265
\(214\) 142343. 0.212473
\(215\) 0 0
\(216\) −163242. −0.238066
\(217\) −99394.3 −0.143289
\(218\) 711788. 1.01440
\(219\) 285093. 0.401677
\(220\) 0 0
\(221\) 184324. 0.253864
\(222\) 1.09402e6 1.48985
\(223\) −534398. −0.719619 −0.359810 0.933026i \(-0.617158\pi\)
−0.359810 + 0.933026i \(0.617158\pi\)
\(224\) −407085. −0.542082
\(225\) 0 0
\(226\) 1.13836e6 1.48255
\(227\) 410624. 0.528907 0.264453 0.964398i \(-0.414808\pi\)
0.264453 + 0.964398i \(0.414808\pi\)
\(228\) −1.59132e6 −2.02731
\(229\) 1.03036e6 1.29838 0.649189 0.760627i \(-0.275108\pi\)
0.649189 + 0.760627i \(0.275108\pi\)
\(230\) 0 0
\(231\) 339456. 0.418556
\(232\) −159177. −0.194160
\(233\) 119211. 0.143856 0.0719278 0.997410i \(-0.477085\pi\)
0.0719278 + 0.997410i \(0.477085\pi\)
\(234\) 1.03217e6 1.23228
\(235\) 0 0
\(236\) −1.08356e6 −1.26641
\(237\) 2.10042e6 2.42905
\(238\) −248597. −0.284481
\(239\) −254090. −0.287735 −0.143868 0.989597i \(-0.545954\pi\)
−0.143868 + 0.989597i \(0.545954\pi\)
\(240\) 0 0
\(241\) 1.41251e6 1.56656 0.783282 0.621667i \(-0.213544\pi\)
0.783282 + 0.621667i \(0.213544\pi\)
\(242\) 729041. 0.800228
\(243\) −756671. −0.822037
\(244\) −1.84265e6 −1.98138
\(245\) 0 0
\(246\) 1.51677e6 1.59801
\(247\) 511372. 0.533329
\(248\) −75101.7 −0.0775391
\(249\) −3.03264e6 −3.09972
\(250\) 0 0
\(251\) −1.67542e6 −1.67857 −0.839286 0.543690i \(-0.817027\pi\)
−0.839286 + 0.543690i \(0.817027\pi\)
\(252\) −741520. −0.735566
\(253\) 861087. 0.845758
\(254\) −583937. −0.567913
\(255\) 0 0
\(256\) 697120. 0.664825
\(257\) −726996. −0.686593 −0.343296 0.939227i \(-0.611544\pi\)
−0.343296 + 0.939227i \(0.611544\pi\)
\(258\) −4.15672e6 −3.88778
\(259\) 252568. 0.233953
\(260\) 0 0
\(261\) 1.78376e6 1.62082
\(262\) 1.43746e6 1.29372
\(263\) 225880. 0.201367 0.100684 0.994918i \(-0.467897\pi\)
0.100684 + 0.994918i \(0.467897\pi\)
\(264\) 256491. 0.226497
\(265\) 0 0
\(266\) −689685. −0.597650
\(267\) −1.06947e6 −0.918097
\(268\) −184325. −0.156764
\(269\) 1.80527e6 1.52111 0.760557 0.649272i \(-0.224926\pi\)
0.760557 + 0.649272i \(0.224926\pi\)
\(270\) 0 0
\(271\) −1.71380e6 −1.41754 −0.708771 0.705439i \(-0.750750\pi\)
−0.708771 + 0.705439i \(0.750750\pi\)
\(272\) 527765. 0.432532
\(273\) 377852. 0.306842
\(274\) −16466.6 −0.0132504
\(275\) 0 0
\(276\) −2.98267e6 −2.35685
\(277\) −2.23055e6 −1.74668 −0.873338 0.487115i \(-0.838049\pi\)
−0.873338 + 0.487115i \(0.838049\pi\)
\(278\) −3.03200e6 −2.35298
\(279\) 841600. 0.647285
\(280\) 0 0
\(281\) 1.67140e6 1.26274 0.631371 0.775481i \(-0.282493\pi\)
0.631371 + 0.775481i \(0.282493\pi\)
\(282\) 4.24461e6 3.17845
\(283\) 396152. 0.294033 0.147016 0.989134i \(-0.453033\pi\)
0.147016 + 0.989134i \(0.453033\pi\)
\(284\) 1.19830e6 0.881597
\(285\) 0 0
\(286\) −671920. −0.485739
\(287\) 350164. 0.250938
\(288\) 3.44691e6 2.44877
\(289\) −1.04396e6 −0.735256
\(290\) 0 0
\(291\) −1.12044e6 −0.775634
\(292\) 405410. 0.278251
\(293\) 929465. 0.632505 0.316252 0.948675i \(-0.397575\pi\)
0.316252 + 0.948675i \(0.397575\pi\)
\(294\) −509606. −0.343848
\(295\) 0 0
\(296\) 190839. 0.126601
\(297\) −1.19085e6 −0.783365
\(298\) −1.16443e6 −0.759582
\(299\) 958485. 0.620022
\(300\) 0 0
\(301\) −959631. −0.610503
\(302\) −414280. −0.261383
\(303\) 657860. 0.411649
\(304\) 1.46418e6 0.908682
\(305\) 0 0
\(306\) 2.10494e6 1.28510
\(307\) −1.83295e6 −1.10995 −0.554976 0.831866i \(-0.687273\pi\)
−0.554976 + 0.831866i \(0.687273\pi\)
\(308\) 482715. 0.289944
\(309\) 367302. 0.218840
\(310\) 0 0
\(311\) −2.29685e6 −1.34658 −0.673289 0.739379i \(-0.735119\pi\)
−0.673289 + 0.739379i \(0.735119\pi\)
\(312\) 285502. 0.166044
\(313\) 3.42470e6 1.97589 0.987943 0.154817i \(-0.0494787\pi\)
0.987943 + 0.154817i \(0.0494787\pi\)
\(314\) −743043. −0.425295
\(315\) 0 0
\(316\) 2.98685e6 1.68266
\(317\) −2.94305e6 −1.64494 −0.822470 0.568808i \(-0.807405\pi\)
−0.822470 + 0.568808i \(0.807405\pi\)
\(318\) 838127. 0.464774
\(319\) −1.16119e6 −0.638891
\(320\) 0 0
\(321\) −441217. −0.238996
\(322\) −1.29270e6 −0.694799
\(323\) 1.04286e6 0.556187
\(324\) 447560. 0.236858
\(325\) 0 0
\(326\) −3.98214e6 −2.07526
\(327\) −2.20631e6 −1.14103
\(328\) 264582. 0.135792
\(329\) 979921. 0.499116
\(330\) 0 0
\(331\) 966164. 0.484709 0.242354 0.970188i \(-0.422080\pi\)
0.242354 + 0.970188i \(0.422080\pi\)
\(332\) −4.31250e6 −2.14725
\(333\) −2.13857e6 −1.05685
\(334\) −716382. −0.351381
\(335\) 0 0
\(336\) 1.08188e6 0.522795
\(337\) −136417. −0.0654327 −0.0327163 0.999465i \(-0.510416\pi\)
−0.0327163 + 0.999465i \(0.510416\pi\)
\(338\) 2.32450e6 1.10672
\(339\) −3.52854e6 −1.66761
\(340\) 0 0
\(341\) −547865. −0.255145
\(342\) 5.83976e6 2.69979
\(343\) −117649. −0.0539949
\(344\) −725091. −0.330367
\(345\) 0 0
\(346\) −481082. −0.216038
\(347\) −355408. −0.158454 −0.0792270 0.996857i \(-0.525245\pi\)
−0.0792270 + 0.996857i \(0.525245\pi\)
\(348\) 4.02218e6 1.78038
\(349\) −140128. −0.0615830 −0.0307915 0.999526i \(-0.509803\pi\)
−0.0307915 + 0.999526i \(0.509803\pi\)
\(350\) 0 0
\(351\) −1.32554e6 −0.574283
\(352\) −2.24387e6 −0.965252
\(353\) −3.48141e6 −1.48703 −0.743514 0.668721i \(-0.766842\pi\)
−0.743514 + 0.668721i \(0.766842\pi\)
\(354\) 6.30536e6 2.67425
\(355\) 0 0
\(356\) −1.52081e6 −0.635988
\(357\) 770568. 0.319993
\(358\) 1.73260e6 0.714482
\(359\) 1.75285e6 0.717810 0.358905 0.933374i \(-0.383150\pi\)
0.358905 + 0.933374i \(0.383150\pi\)
\(360\) 0 0
\(361\) 417127. 0.168461
\(362\) −2.30867e6 −0.925955
\(363\) −2.25979e6 −0.900121
\(364\) 537315. 0.212557
\(365\) 0 0
\(366\) 1.07226e7 4.18405
\(367\) 1.76939e6 0.685738 0.342869 0.939383i \(-0.388601\pi\)
0.342869 + 0.939383i \(0.388601\pi\)
\(368\) 2.74438e6 1.05639
\(369\) −2.96494e6 −1.13357
\(370\) 0 0
\(371\) 193492. 0.0729841
\(372\) 1.89771e6 0.711006
\(373\) 4.16212e6 1.54897 0.774485 0.632592i \(-0.218009\pi\)
0.774485 + 0.632592i \(0.218009\pi\)
\(374\) −1.37027e6 −0.506557
\(375\) 0 0
\(376\) 740422. 0.270091
\(377\) −1.29253e6 −0.468369
\(378\) 1.78775e6 0.643543
\(379\) 618163. 0.221057 0.110529 0.993873i \(-0.464746\pi\)
0.110529 + 0.993873i \(0.464746\pi\)
\(380\) 0 0
\(381\) 1.81001e6 0.638805
\(382\) 3.68343e6 1.29150
\(383\) 4.11163e6 1.43225 0.716123 0.697974i \(-0.245915\pi\)
0.716123 + 0.697974i \(0.245915\pi\)
\(384\) 1.92587e6 0.666498
\(385\) 0 0
\(386\) −6.01430e6 −2.05455
\(387\) 8.12547e6 2.75785
\(388\) −1.59330e6 −0.537301
\(389\) 4.62076e6 1.54824 0.774122 0.633037i \(-0.218192\pi\)
0.774122 + 0.633037i \(0.218192\pi\)
\(390\) 0 0
\(391\) 1.95468e6 0.646596
\(392\) −88894.8 −0.0292187
\(393\) −4.45564e6 −1.45522
\(394\) −3.01949e6 −0.979926
\(395\) 0 0
\(396\) −4.08728e6 −1.30978
\(397\) −5.07349e6 −1.61559 −0.807794 0.589465i \(-0.799339\pi\)
−0.807794 + 0.589465i \(0.799339\pi\)
\(398\) −2.39399e6 −0.757557
\(399\) 2.13780e6 0.672255
\(400\) 0 0
\(401\) −1.48056e6 −0.459795 −0.229898 0.973215i \(-0.573839\pi\)
−0.229898 + 0.973215i \(0.573839\pi\)
\(402\) 1.07261e6 0.331036
\(403\) −609834. −0.187046
\(404\) 935495. 0.285160
\(405\) 0 0
\(406\) 1.74323e6 0.524856
\(407\) 1.39217e6 0.416586
\(408\) 582236. 0.173160
\(409\) −4.53379e6 −1.34015 −0.670075 0.742294i \(-0.733738\pi\)
−0.670075 + 0.742294i \(0.733738\pi\)
\(410\) 0 0
\(411\) 51041.0 0.0149044
\(412\) 522313. 0.151596
\(413\) 1.45567e6 0.419941
\(414\) 1.09457e7 3.13865
\(415\) 0 0
\(416\) −2.49767e6 −0.707623
\(417\) 9.39820e6 2.64670
\(418\) −3.80157e6 −1.06420
\(419\) 111026. 0.0308952 0.0154476 0.999881i \(-0.495083\pi\)
0.0154476 + 0.999881i \(0.495083\pi\)
\(420\) 0 0
\(421\) −1.41151e6 −0.388132 −0.194066 0.980988i \(-0.562168\pi\)
−0.194066 + 0.980988i \(0.562168\pi\)
\(422\) −6.20740e6 −1.69679
\(423\) −8.29727e6 −2.25468
\(424\) 146201. 0.0394945
\(425\) 0 0
\(426\) −6.97304e6 −1.86165
\(427\) 2.47544e6 0.657027
\(428\) −627422. −0.165558
\(429\) 2.08273e6 0.546374
\(430\) 0 0
\(431\) 1.07640e6 0.279113 0.139557 0.990214i \(-0.455432\pi\)
0.139557 + 0.990214i \(0.455432\pi\)
\(432\) −3.79535e6 −0.978459
\(433\) 310172. 0.0795029 0.0397515 0.999210i \(-0.487343\pi\)
0.0397515 + 0.999210i \(0.487343\pi\)
\(434\) 822480. 0.209605
\(435\) 0 0
\(436\) −3.13743e6 −0.790419
\(437\) 5.42288e6 1.35840
\(438\) −2.35912e6 −0.587578
\(439\) 5.67650e6 1.40579 0.702893 0.711296i \(-0.251891\pi\)
0.702893 + 0.711296i \(0.251891\pi\)
\(440\) 0 0
\(441\) 996168. 0.243914
\(442\) −1.52527e6 −0.371356
\(443\) −4.05966e6 −0.982834 −0.491417 0.870924i \(-0.663521\pi\)
−0.491417 + 0.870924i \(0.663521\pi\)
\(444\) −4.82223e6 −1.16089
\(445\) 0 0
\(446\) 4.42210e6 1.05267
\(447\) 3.60936e6 0.854401
\(448\) 2.01885e6 0.475237
\(449\) −6.96544e6 −1.63054 −0.815272 0.579078i \(-0.803413\pi\)
−0.815272 + 0.579078i \(0.803413\pi\)
\(450\) 0 0
\(451\) 1.93012e6 0.446830
\(452\) −5.01767e6 −1.15520
\(453\) 1.28413e6 0.294011
\(454\) −3.39788e6 −0.773692
\(455\) 0 0
\(456\) 1.61530e6 0.363783
\(457\) −1.79523e6 −0.402096 −0.201048 0.979581i \(-0.564435\pi\)
−0.201048 + 0.979581i \(0.564435\pi\)
\(458\) −8.52616e6 −1.89928
\(459\) −2.70323e6 −0.598896
\(460\) 0 0
\(461\) −2.11294e6 −0.463058 −0.231529 0.972828i \(-0.574373\pi\)
−0.231529 + 0.972828i \(0.574373\pi\)
\(462\) −2.80897e6 −0.612268
\(463\) −1.26223e6 −0.273643 −0.136822 0.990596i \(-0.543689\pi\)
−0.136822 + 0.990596i \(0.543689\pi\)
\(464\) −3.70084e6 −0.798005
\(465\) 0 0
\(466\) −986462. −0.210434
\(467\) 3.58926e6 0.761576 0.380788 0.924662i \(-0.375653\pi\)
0.380788 + 0.924662i \(0.375653\pi\)
\(468\) −4.54960e6 −0.960192
\(469\) 247624. 0.0519830
\(470\) 0 0
\(471\) 2.30319e6 0.478384
\(472\) 1.09990e6 0.227246
\(473\) −5.28952e6 −1.08708
\(474\) −1.73808e7 −3.55324
\(475\) 0 0
\(476\) 1.09577e6 0.221667
\(477\) −1.63835e6 −0.329694
\(478\) 2.10257e6 0.420903
\(479\) −2.41693e6 −0.481311 −0.240655 0.970611i \(-0.577362\pi\)
−0.240655 + 0.970611i \(0.577362\pi\)
\(480\) 0 0
\(481\) 1.54963e6 0.305398
\(482\) −1.16884e7 −2.29159
\(483\) 4.00695e6 0.781531
\(484\) −3.21347e6 −0.623536
\(485\) 0 0
\(486\) 6.26139e6 1.20249
\(487\) 5.19403e6 0.992388 0.496194 0.868212i \(-0.334730\pi\)
0.496194 + 0.868212i \(0.334730\pi\)
\(488\) 1.87043e6 0.355543
\(489\) 1.23433e7 2.33432
\(490\) 0 0
\(491\) 5.38961e6 1.00891 0.504456 0.863437i \(-0.331693\pi\)
0.504456 + 0.863437i \(0.331693\pi\)
\(492\) −6.68561e6 −1.24517
\(493\) −2.63592e6 −0.488443
\(494\) −4.23156e6 −0.780160
\(495\) 0 0
\(496\) −1.74610e6 −0.318688
\(497\) −1.60981e6 −0.292338
\(498\) 2.50949e7 4.53431
\(499\) −3.29606e6 −0.592576 −0.296288 0.955099i \(-0.595749\pi\)
−0.296288 + 0.955099i \(0.595749\pi\)
\(500\) 0 0
\(501\) 2.22055e6 0.395244
\(502\) 1.38640e7 2.45544
\(503\) 1.06512e7 1.87706 0.938528 0.345204i \(-0.112190\pi\)
0.938528 + 0.345204i \(0.112190\pi\)
\(504\) 752698. 0.131991
\(505\) 0 0
\(506\) −7.12543e6 −1.23718
\(507\) −7.20517e6 −1.24487
\(508\) 2.57388e6 0.442516
\(509\) −2.74268e6 −0.469225 −0.234612 0.972089i \(-0.575382\pi\)
−0.234612 + 0.972089i \(0.575382\pi\)
\(510\) 0 0
\(511\) −544633. −0.0922682
\(512\) −8.17130e6 −1.37758
\(513\) −7.49961e6 −1.25819
\(514\) 6.01583e6 1.00436
\(515\) 0 0
\(516\) 1.83220e7 3.02935
\(517\) 5.40136e6 0.888744
\(518\) −2.08998e6 −0.342230
\(519\) 1.49120e6 0.243006
\(520\) 0 0
\(521\) 4.97077e6 0.802286 0.401143 0.916015i \(-0.368613\pi\)
0.401143 + 0.916015i \(0.368613\pi\)
\(522\) −1.47605e7 −2.37096
\(523\) −2.41579e6 −0.386193 −0.193096 0.981180i \(-0.561853\pi\)
−0.193096 + 0.981180i \(0.561853\pi\)
\(524\) −6.33603e6 −1.00807
\(525\) 0 0
\(526\) −1.86914e6 −0.294563
\(527\) −1.24366e6 −0.195063
\(528\) 5.96337e6 0.930908
\(529\) 3.72798e6 0.579207
\(530\) 0 0
\(531\) −1.23256e7 −1.89702
\(532\) 3.04000e6 0.465688
\(533\) 2.14843e6 0.327570
\(534\) 8.84974e6 1.34300
\(535\) 0 0
\(536\) 187103. 0.0281300
\(537\) −5.37050e6 −0.803672
\(538\) −1.49385e7 −2.22510
\(539\) −648485. −0.0961454
\(540\) 0 0
\(541\) 472165. 0.0693587 0.0346794 0.999398i \(-0.488959\pi\)
0.0346794 + 0.999398i \(0.488959\pi\)
\(542\) 1.41815e7 2.07360
\(543\) 7.15610e6 1.04154
\(544\) −5.09360e6 −0.737951
\(545\) 0 0
\(546\) −3.12669e6 −0.448852
\(547\) −7.63716e6 −1.09135 −0.545675 0.837997i \(-0.683727\pi\)
−0.545675 + 0.837997i \(0.683727\pi\)
\(548\) 72581.6 0.0103246
\(549\) −2.09603e7 −2.96802
\(550\) 0 0
\(551\) −7.31285e6 −1.02614
\(552\) 3.02763e6 0.422917
\(553\) −4.01258e6 −0.557970
\(554\) 1.84576e7 2.55506
\(555\) 0 0
\(556\) 1.33645e7 1.83343
\(557\) 4.48807e6 0.612946 0.306473 0.951879i \(-0.400851\pi\)
0.306473 + 0.951879i \(0.400851\pi\)
\(558\) −6.96417e6 −0.946856
\(559\) −5.88782e6 −0.796938
\(560\) 0 0
\(561\) 4.24740e6 0.569791
\(562\) −1.38307e7 −1.84715
\(563\) 2.16500e6 0.287864 0.143932 0.989588i \(-0.454025\pi\)
0.143932 + 0.989588i \(0.454025\pi\)
\(564\) −1.87094e7 −2.47664
\(565\) 0 0
\(566\) −3.27812e6 −0.430115
\(567\) −601258. −0.0785422
\(568\) −1.21637e6 −0.158195
\(569\) −1.13325e7 −1.46739 −0.733696 0.679478i \(-0.762206\pi\)
−0.733696 + 0.679478i \(0.762206\pi\)
\(570\) 0 0
\(571\) −843773. −0.108302 −0.0541509 0.998533i \(-0.517245\pi\)
−0.0541509 + 0.998533i \(0.517245\pi\)
\(572\) 2.96170e6 0.378487
\(573\) −1.14174e7 −1.45272
\(574\) −2.89758e6 −0.367076
\(575\) 0 0
\(576\) −1.70942e7 −2.14681
\(577\) 2.23784e6 0.279827 0.139914 0.990164i \(-0.455318\pi\)
0.139914 + 0.990164i \(0.455318\pi\)
\(578\) 8.63866e6 1.07554
\(579\) 1.86423e7 2.31102
\(580\) 0 0
\(581\) 5.79346e6 0.712029
\(582\) 9.27156e6 1.13461
\(583\) 1.06653e6 0.129958
\(584\) −411521. −0.0499299
\(585\) 0 0
\(586\) −7.69124e6 −0.925236
\(587\) −1.21190e7 −1.45168 −0.725839 0.687864i \(-0.758548\pi\)
−0.725839 + 0.687864i \(0.758548\pi\)
\(588\) 2.24625e6 0.267926
\(589\) −3.45030e6 −0.409797
\(590\) 0 0
\(591\) 9.35942e6 1.10225
\(592\) 4.43698e6 0.520335
\(593\) −8.00167e6 −0.934424 −0.467212 0.884145i \(-0.654742\pi\)
−0.467212 + 0.884145i \(0.654742\pi\)
\(594\) 9.85415e6 1.14592
\(595\) 0 0
\(596\) 5.13261e6 0.591865
\(597\) 7.42058e6 0.852123
\(598\) −7.93138e6 −0.906976
\(599\) 1.45899e7 1.66144 0.830719 0.556692i \(-0.187930\pi\)
0.830719 + 0.556692i \(0.187930\pi\)
\(600\) 0 0
\(601\) −8.67178e6 −0.979314 −0.489657 0.871915i \(-0.662878\pi\)
−0.489657 + 0.871915i \(0.662878\pi\)
\(602\) 7.94087e6 0.893052
\(603\) −2.09671e6 −0.234825
\(604\) 1.82607e6 0.203669
\(605\) 0 0
\(606\) −5.44374e6 −0.602166
\(607\) 1.33059e7 1.46580 0.732898 0.680339i \(-0.238167\pi\)
0.732898 + 0.680339i \(0.238167\pi\)
\(608\) −1.41312e7 −1.55032
\(609\) −5.40344e6 −0.590374
\(610\) 0 0
\(611\) 6.01231e6 0.651536
\(612\) −9.27817e6 −1.00135
\(613\) −2.35101e6 −0.252699 −0.126350 0.991986i \(-0.540326\pi\)
−0.126350 + 0.991986i \(0.540326\pi\)
\(614\) 1.51675e7 1.62365
\(615\) 0 0
\(616\) −489991. −0.0520280
\(617\) −9.63523e6 −1.01894 −0.509470 0.860488i \(-0.670159\pi\)
−0.509470 + 0.860488i \(0.670159\pi\)
\(618\) −3.03939e6 −0.320122
\(619\) −4.86148e6 −0.509967 −0.254983 0.966945i \(-0.582070\pi\)
−0.254983 + 0.966945i \(0.582070\pi\)
\(620\) 0 0
\(621\) −1.40568e7 −1.46271
\(622\) 1.90062e7 1.96979
\(623\) 2.04307e6 0.210894
\(624\) 6.63789e6 0.682446
\(625\) 0 0
\(626\) −2.83391e7 −2.89035
\(627\) 1.17836e7 1.19704
\(628\) 3.27519e6 0.331389
\(629\) 3.16023e6 0.318487
\(630\) 0 0
\(631\) −6.59770e6 −0.659659 −0.329829 0.944041i \(-0.606991\pi\)
−0.329829 + 0.944041i \(0.606991\pi\)
\(632\) −3.03188e6 −0.301939
\(633\) 1.92409e7 1.90860
\(634\) 2.43535e7 2.40624
\(635\) 0 0
\(636\) −3.69430e6 −0.362151
\(637\) −721836. −0.0704839
\(638\) 9.60876e6 0.934578
\(639\) 1.36308e7 1.32059
\(640\) 0 0
\(641\) 1.44525e7 1.38930 0.694651 0.719347i \(-0.255559\pi\)
0.694651 + 0.719347i \(0.255559\pi\)
\(642\) 3.65104e6 0.349606
\(643\) 1.54720e7 1.47577 0.737886 0.674926i \(-0.235824\pi\)
0.737886 + 0.674926i \(0.235824\pi\)
\(644\) 5.69799e6 0.541386
\(645\) 0 0
\(646\) −8.62960e6 −0.813597
\(647\) −1.66647e7 −1.56508 −0.782540 0.622601i \(-0.786076\pi\)
−0.782540 + 0.622601i \(0.786076\pi\)
\(648\) −454306. −0.0425022
\(649\) 8.02371e6 0.747762
\(650\) 0 0
\(651\) −2.54941e6 −0.235770
\(652\) 1.75525e7 1.61704
\(653\) 1.33451e7 1.22472 0.612361 0.790578i \(-0.290220\pi\)
0.612361 + 0.790578i \(0.290220\pi\)
\(654\) 1.82570e7 1.66911
\(655\) 0 0
\(656\) 6.15149e6 0.558111
\(657\) 4.61157e6 0.416807
\(658\) −8.10877e6 −0.730113
\(659\) −4.00667e6 −0.359393 −0.179697 0.983722i \(-0.557512\pi\)
−0.179697 + 0.983722i \(0.557512\pi\)
\(660\) 0 0
\(661\) 1.08005e7 0.961478 0.480739 0.876864i \(-0.340368\pi\)
0.480739 + 0.876864i \(0.340368\pi\)
\(662\) −7.99493e6 −0.709038
\(663\) 4.72782e6 0.417712
\(664\) 4.37750e6 0.385307
\(665\) 0 0
\(666\) 1.76965e7 1.54597
\(667\) −1.37068e7 −1.19294
\(668\) 3.15767e6 0.273795
\(669\) −1.37070e7 −1.18407
\(670\) 0 0
\(671\) 1.36447e7 1.16993
\(672\) −1.04415e7 −0.891951
\(673\) −1.09119e7 −0.928676 −0.464338 0.885658i \(-0.653708\pi\)
−0.464338 + 0.885658i \(0.653708\pi\)
\(674\) 1.12884e6 0.0957158
\(675\) 0 0
\(676\) −1.02459e7 −0.862353
\(677\) 1.35765e7 1.13846 0.569229 0.822179i \(-0.307242\pi\)
0.569229 + 0.822179i \(0.307242\pi\)
\(678\) 2.91984e7 2.43941
\(679\) 2.14046e6 0.178169
\(680\) 0 0
\(681\) 1.05323e7 0.870272
\(682\) 4.53354e6 0.373230
\(683\) 1.26726e7 1.03948 0.519738 0.854326i \(-0.326030\pi\)
0.519738 + 0.854326i \(0.326030\pi\)
\(684\) −2.57406e7 −2.10367
\(685\) 0 0
\(686\) 973536. 0.0789845
\(687\) 2.64283e7 2.13637
\(688\) −1.68583e7 −1.35782
\(689\) 1.18717e6 0.0952720
\(690\) 0 0
\(691\) 7.11964e6 0.567235 0.283617 0.958938i \(-0.408465\pi\)
0.283617 + 0.958938i \(0.408465\pi\)
\(692\) 2.12052e6 0.168336
\(693\) 5.49091e6 0.434322
\(694\) 2.94097e6 0.231789
\(695\) 0 0
\(696\) −4.08281e6 −0.319474
\(697\) 4.38139e6 0.341609
\(698\) 1.15955e6 0.0900844
\(699\) 3.05770e6 0.236702
\(700\) 0 0
\(701\) −1.00155e7 −0.769803 −0.384902 0.922958i \(-0.625765\pi\)
−0.384902 + 0.922958i \(0.625765\pi\)
\(702\) 1.09687e7 0.840068
\(703\) 8.76746e6 0.669092
\(704\) 1.11280e7 0.846224
\(705\) 0 0
\(706\) 2.88084e7 2.17524
\(707\) −1.25676e6 −0.0945589
\(708\) −2.77928e7 −2.08377
\(709\) −8.84454e6 −0.660784 −0.330392 0.943844i \(-0.607181\pi\)
−0.330392 + 0.943844i \(0.607181\pi\)
\(710\) 0 0
\(711\) 3.39757e7 2.52054
\(712\) 1.54373e6 0.114123
\(713\) −6.46703e6 −0.476410
\(714\) −6.37638e6 −0.468090
\(715\) 0 0
\(716\) −7.63698e6 −0.556723
\(717\) −6.51728e6 −0.473444
\(718\) −1.45047e7 −1.05002
\(719\) 6.58086e6 0.474745 0.237373 0.971419i \(-0.423714\pi\)
0.237373 + 0.971419i \(0.423714\pi\)
\(720\) 0 0
\(721\) −701682. −0.0502692
\(722\) −3.45169e6 −0.246427
\(723\) 3.62301e7 2.57765
\(724\) 1.01762e7 0.721502
\(725\) 0 0
\(726\) 1.86995e7 1.31671
\(727\) −1.88401e7 −1.32205 −0.661023 0.750365i \(-0.729878\pi\)
−0.661023 + 0.750365i \(0.729878\pi\)
\(728\) −545414. −0.0381415
\(729\) −2.23900e7 −1.56040
\(730\) 0 0
\(731\) −1.20073e7 −0.831095
\(732\) −4.72631e7 −3.26020
\(733\) 2.78330e6 0.191337 0.0956687 0.995413i \(-0.469501\pi\)
0.0956687 + 0.995413i \(0.469501\pi\)
\(734\) −1.46416e7 −1.00311
\(735\) 0 0
\(736\) −2.64867e7 −1.80233
\(737\) 1.36491e6 0.0925629
\(738\) 2.45346e7 1.65821
\(739\) −2.48970e7 −1.67701 −0.838505 0.544894i \(-0.816570\pi\)
−0.838505 + 0.544894i \(0.816570\pi\)
\(740\) 0 0
\(741\) 1.31164e7 0.877548
\(742\) −1.60113e6 −0.106762
\(743\) 3.86085e6 0.256573 0.128286 0.991737i \(-0.459052\pi\)
0.128286 + 0.991737i \(0.459052\pi\)
\(744\) −1.92632e6 −0.127584
\(745\) 0 0
\(746\) −3.44412e7 −2.26585
\(747\) −4.90549e7 −3.21648
\(748\) 6.03991e6 0.394708
\(749\) 842888. 0.0548991
\(750\) 0 0
\(751\) 6.72737e6 0.435257 0.217628 0.976032i \(-0.430168\pi\)
0.217628 + 0.976032i \(0.430168\pi\)
\(752\) 1.72147e7 1.11008
\(753\) −4.29737e7 −2.76195
\(754\) 1.06956e7 0.685136
\(755\) 0 0
\(756\) −7.88007e6 −0.501447
\(757\) −2.17782e7 −1.38128 −0.690642 0.723197i \(-0.742672\pi\)
−0.690642 + 0.723197i \(0.742672\pi\)
\(758\) −5.11525e6 −0.323366
\(759\) 2.20865e7 1.39162
\(760\) 0 0
\(761\) −2.57074e7 −1.60915 −0.804575 0.593851i \(-0.797607\pi\)
−0.804575 + 0.593851i \(0.797607\pi\)
\(762\) −1.49777e7 −0.934453
\(763\) 4.21486e6 0.262103
\(764\) −1.62359e7 −1.00633
\(765\) 0 0
\(766\) −3.40234e7 −2.09511
\(767\) 8.93127e6 0.548182
\(768\) 1.78808e7 1.09391
\(769\) −1.34375e7 −0.819413 −0.409706 0.912217i \(-0.634369\pi\)
−0.409706 + 0.912217i \(0.634369\pi\)
\(770\) 0 0
\(771\) −1.86471e7 −1.12973
\(772\) 2.65099e7 1.60090
\(773\) −3.05572e7 −1.83935 −0.919674 0.392682i \(-0.871547\pi\)
−0.919674 + 0.392682i \(0.871547\pi\)
\(774\) −6.72376e7 −4.03422
\(775\) 0 0
\(776\) 1.61731e6 0.0964140
\(777\) 6.47825e6 0.384951
\(778\) −3.82364e7 −2.26479
\(779\) 1.21553e7 0.717667
\(780\) 0 0
\(781\) −8.87335e6 −0.520547
\(782\) −1.61748e7 −0.945849
\(783\) 1.89558e7 1.10494
\(784\) −2.06679e6 −0.120090
\(785\) 0 0
\(786\) 3.68700e7 2.12871
\(787\) 2.07672e6 0.119520 0.0597602 0.998213i \(-0.480966\pi\)
0.0597602 + 0.998213i \(0.480966\pi\)
\(788\) 1.33093e7 0.763556
\(789\) 5.79372e6 0.331333
\(790\) 0 0
\(791\) 6.74081e6 0.383064
\(792\) 4.14890e6 0.235028
\(793\) 1.51881e7 0.857670
\(794\) 4.19827e7 2.36330
\(795\) 0 0
\(796\) 1.05523e7 0.590286
\(797\) 5.98563e6 0.333783 0.166892 0.985975i \(-0.446627\pi\)
0.166892 + 0.985975i \(0.446627\pi\)
\(798\) −1.76901e7 −0.983383
\(799\) 1.22611e7 0.679460
\(800\) 0 0
\(801\) −1.72993e7 −0.952679
\(802\) 1.22515e7 0.672594
\(803\) −3.00204e6 −0.164296
\(804\) −4.72784e6 −0.257942
\(805\) 0 0
\(806\) 5.04633e6 0.273614
\(807\) 4.63043e7 2.50286
\(808\) −949597. −0.0511695
\(809\) 1.96864e7 1.05754 0.528769 0.848766i \(-0.322654\pi\)
0.528769 + 0.848766i \(0.322654\pi\)
\(810\) 0 0
\(811\) 8.50101e6 0.453856 0.226928 0.973912i \(-0.427132\pi\)
0.226928 + 0.973912i \(0.427132\pi\)
\(812\) −7.68384e6 −0.408967
\(813\) −4.39580e7 −2.33245
\(814\) −1.15201e7 −0.609387
\(815\) 0 0
\(816\) 1.35369e7 0.711695
\(817\) −3.33119e7 −1.74600
\(818\) 3.75168e7 1.96039
\(819\) 6.11199e6 0.318400
\(820\) 0 0
\(821\) −1.36199e6 −0.0705204 −0.0352602 0.999378i \(-0.511226\pi\)
−0.0352602 + 0.999378i \(0.511226\pi\)
\(822\) −422360. −0.0218023
\(823\) 1.35934e6 0.0699566 0.0349783 0.999388i \(-0.488864\pi\)
0.0349783 + 0.999388i \(0.488864\pi\)
\(824\) −530186. −0.0272026
\(825\) 0 0
\(826\) −1.20456e7 −0.614295
\(827\) −1.00727e7 −0.512132 −0.256066 0.966659i \(-0.582426\pi\)
−0.256066 + 0.966659i \(0.582426\pi\)
\(828\) −4.82465e7 −2.44563
\(829\) −5.63984e6 −0.285023 −0.142512 0.989793i \(-0.545518\pi\)
−0.142512 + 0.989793i \(0.545518\pi\)
\(830\) 0 0
\(831\) −5.72125e7 −2.87401
\(832\) 1.23867e7 0.620364
\(833\) −1.47207e6 −0.0735048
\(834\) −7.77693e7 −3.87163
\(835\) 0 0
\(836\) 1.67566e7 0.829220
\(837\) 8.94361e6 0.441265
\(838\) −918733. −0.0451938
\(839\) −1.16351e7 −0.570642 −0.285321 0.958432i \(-0.592100\pi\)
−0.285321 + 0.958432i \(0.592100\pi\)
\(840\) 0 0
\(841\) −2.02735e6 −0.0988413
\(842\) 1.16801e7 0.567764
\(843\) 4.28706e7 2.07774
\(844\) 2.73610e7 1.32214
\(845\) 0 0
\(846\) 6.86592e7 3.29817
\(847\) 4.31702e6 0.206764
\(848\) 3.39916e6 0.162324
\(849\) 1.01611e7 0.483806
\(850\) 0 0
\(851\) 1.64332e7 0.777854
\(852\) 3.07358e7 1.45059
\(853\) −2.85205e7 −1.34210 −0.671049 0.741413i \(-0.734156\pi\)
−0.671049 + 0.741413i \(0.734156\pi\)
\(854\) −2.04841e7 −0.961108
\(855\) 0 0
\(856\) 636880. 0.0297080
\(857\) 9.95725e6 0.463113 0.231557 0.972821i \(-0.425618\pi\)
0.231557 + 0.972821i \(0.425618\pi\)
\(858\) −1.72344e7 −0.799243
\(859\) −1.49322e7 −0.690463 −0.345232 0.938517i \(-0.612200\pi\)
−0.345232 + 0.938517i \(0.612200\pi\)
\(860\) 0 0
\(861\) 8.98154e6 0.412898
\(862\) −8.90711e6 −0.408290
\(863\) −3.84933e7 −1.75937 −0.879687 0.475553i \(-0.842248\pi\)
−0.879687 + 0.475553i \(0.842248\pi\)
\(864\) 3.66300e7 1.66937
\(865\) 0 0
\(866\) −2.56665e6 −0.116298
\(867\) −2.67770e7 −1.20980
\(868\) −3.62533e6 −0.163323
\(869\) −2.21175e7 −0.993542
\(870\) 0 0
\(871\) 1.51930e6 0.0678576
\(872\) 3.18472e6 0.141834
\(873\) −1.81239e7 −0.804850
\(874\) −4.48739e7 −1.98708
\(875\) 0 0
\(876\) 1.03986e7 0.457839
\(877\) −9.40311e6 −0.412831 −0.206416 0.978464i \(-0.566180\pi\)
−0.206416 + 0.978464i \(0.566180\pi\)
\(878\) −4.69726e7 −2.05640
\(879\) 2.38403e7 1.04073
\(880\) 0 0
\(881\) 1.10395e6 0.0479194 0.0239597 0.999713i \(-0.492373\pi\)
0.0239597 + 0.999713i \(0.492373\pi\)
\(882\) −8.24321e6 −0.356800
\(883\) −8.06579e6 −0.348133 −0.174067 0.984734i \(-0.555691\pi\)
−0.174067 + 0.984734i \(0.555691\pi\)
\(884\) 6.72308e6 0.289359
\(885\) 0 0
\(886\) 3.35933e7 1.43770
\(887\) 1.49902e7 0.639732 0.319866 0.947463i \(-0.396362\pi\)
0.319866 + 0.947463i \(0.396362\pi\)
\(888\) 4.89493e6 0.208312
\(889\) −3.45779e6 −0.146738
\(890\) 0 0
\(891\) −3.31415e6 −0.139855
\(892\) −1.94918e7 −0.820237
\(893\) 3.40162e7 1.42744
\(894\) −2.98672e7 −1.24983
\(895\) 0 0
\(896\) −3.67912e6 −0.153100
\(897\) 2.45847e7 1.02019
\(898\) 5.76384e7 2.38518
\(899\) 8.72090e6 0.359883
\(900\) 0 0
\(901\) 2.42104e6 0.0993553
\(902\) −1.59716e7 −0.653629
\(903\) −2.46141e7 −1.00453
\(904\) 5.09331e6 0.207290
\(905\) 0 0
\(906\) −1.06261e7 −0.430083
\(907\) −4.12622e6 −0.166546 −0.0832730 0.996527i \(-0.526537\pi\)
−0.0832730 + 0.996527i \(0.526537\pi\)
\(908\) 1.49772e7 0.602859
\(909\) 1.06413e7 0.427155
\(910\) 0 0
\(911\) 4.04272e7 1.61391 0.806953 0.590616i \(-0.201115\pi\)
0.806953 + 0.590616i \(0.201115\pi\)
\(912\) 3.75556e7 1.49516
\(913\) 3.19338e7 1.26787
\(914\) 1.48554e7 0.588191
\(915\) 0 0
\(916\) 3.75817e7 1.47992
\(917\) 8.51191e6 0.334275
\(918\) 2.23690e7 0.876072
\(919\) 2.18546e7 0.853600 0.426800 0.904346i \(-0.359641\pi\)
0.426800 + 0.904346i \(0.359641\pi\)
\(920\) 0 0
\(921\) −4.70142e7 −1.82633
\(922\) 1.74844e7 0.677366
\(923\) −9.87702e6 −0.381612
\(924\) 1.23814e7 0.477078
\(925\) 0 0
\(926\) 1.04448e7 0.400289
\(927\) 5.94134e6 0.227083
\(928\) 3.57178e7 1.36149
\(929\) 1.06843e7 0.406169 0.203085 0.979161i \(-0.434903\pi\)
0.203085 + 0.979161i \(0.434903\pi\)
\(930\) 0 0
\(931\) −4.08398e6 −0.154422
\(932\) 4.34813e6 0.163970
\(933\) −5.89130e7 −2.21568
\(934\) −2.97009e7 −1.11404
\(935\) 0 0
\(936\) 4.61818e6 0.172298
\(937\) 3.99105e7 1.48504 0.742521 0.669823i \(-0.233630\pi\)
0.742521 + 0.669823i \(0.233630\pi\)
\(938\) −2.04907e6 −0.0760414
\(939\) 8.78419e7 3.25116
\(940\) 0 0
\(941\) 1.32350e6 0.0487248 0.0243624 0.999703i \(-0.492244\pi\)
0.0243624 + 0.999703i \(0.492244\pi\)
\(942\) −1.90587e7 −0.699787
\(943\) 2.27832e7 0.834326
\(944\) 2.55724e7 0.933990
\(945\) 0 0
\(946\) 4.37703e7 1.59020
\(947\) 2.76322e7 1.00124 0.500622 0.865666i \(-0.333105\pi\)
0.500622 + 0.865666i \(0.333105\pi\)
\(948\) 7.66113e7 2.76868
\(949\) −3.34160e6 −0.120445
\(950\) 0 0
\(951\) −7.54879e7 −2.70661
\(952\) −1.11229e6 −0.0397763
\(953\) 3.07901e7 1.09819 0.549096 0.835759i \(-0.314972\pi\)
0.549096 + 0.835759i \(0.314972\pi\)
\(954\) 1.35572e7 0.482281
\(955\) 0 0
\(956\) −9.26775e6 −0.327966
\(957\) −2.97840e7 −1.05124
\(958\) 1.99999e7 0.704068
\(959\) −97507.1 −0.00342365
\(960\) 0 0
\(961\) −2.45145e7 −0.856278
\(962\) −1.28231e7 −0.446740
\(963\) −7.13697e6 −0.247998
\(964\) 5.15202e7 1.78560
\(965\) 0 0
\(966\) −3.31572e7 −1.14323
\(967\) −2.92557e6 −0.100611 −0.0503055 0.998734i \(-0.516019\pi\)
−0.0503055 + 0.998734i \(0.516019\pi\)
\(968\) 3.26192e6 0.111888
\(969\) 2.67489e7 0.915159
\(970\) 0 0
\(971\) 2.78109e6 0.0946601 0.0473301 0.998879i \(-0.484929\pi\)
0.0473301 + 0.998879i \(0.484929\pi\)
\(972\) −2.75990e7 −0.936975
\(973\) −1.79540e7 −0.607967
\(974\) −4.29801e7 −1.45168
\(975\) 0 0
\(976\) 4.34872e7 1.46129
\(977\) −7.48673e6 −0.250932 −0.125466 0.992098i \(-0.540043\pi\)
−0.125466 + 0.992098i \(0.540043\pi\)
\(978\) −1.02140e8 −3.41467
\(979\) 1.12615e7 0.375525
\(980\) 0 0
\(981\) −3.56884e7 −1.18401
\(982\) −4.45985e7 −1.47585
\(983\) −1.79815e7 −0.593528 −0.296764 0.954951i \(-0.595907\pi\)
−0.296764 + 0.954951i \(0.595907\pi\)
\(984\) 6.78639e6 0.223435
\(985\) 0 0
\(986\) 2.18120e7 0.714501
\(987\) 2.51345e7 0.821253
\(988\) 1.86519e7 0.607899
\(989\) −6.24378e7 −2.02982
\(990\) 0 0
\(991\) 3.72778e7 1.20578 0.602888 0.797826i \(-0.294017\pi\)
0.602888 + 0.797826i \(0.294017\pi\)
\(992\) 1.68521e7 0.543720
\(993\) 2.47816e7 0.797548
\(994\) 1.33211e7 0.427635
\(995\) 0 0
\(996\) −1.10613e8 −3.53313
\(997\) −4.87422e7 −1.55298 −0.776492 0.630128i \(-0.783003\pi\)
−0.776492 + 0.630128i \(0.783003\pi\)
\(998\) 2.72747e7 0.866828
\(999\) −2.27264e7 −0.720471
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.6.a.c.1.1 2
5.2 odd 4 175.6.b.c.99.1 4
5.3 odd 4 175.6.b.c.99.4 4
5.4 even 2 7.6.a.b.1.2 2
15.14 odd 2 63.6.a.f.1.1 2
20.19 odd 2 112.6.a.h.1.2 2
35.4 even 6 49.6.c.e.30.1 4
35.9 even 6 49.6.c.e.18.1 4
35.19 odd 6 49.6.c.d.18.1 4
35.24 odd 6 49.6.c.d.30.1 4
35.34 odd 2 49.6.a.f.1.2 2
40.19 odd 2 448.6.a.u.1.1 2
40.29 even 2 448.6.a.w.1.2 2
55.54 odd 2 847.6.a.c.1.1 2
60.59 even 2 1008.6.a.bq.1.1 2
105.104 even 2 441.6.a.l.1.1 2
140.139 even 2 784.6.a.v.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.6.a.b.1.2 2 5.4 even 2
49.6.a.f.1.2 2 35.34 odd 2
49.6.c.d.18.1 4 35.19 odd 6
49.6.c.d.30.1 4 35.24 odd 6
49.6.c.e.18.1 4 35.9 even 6
49.6.c.e.30.1 4 35.4 even 6
63.6.a.f.1.1 2 15.14 odd 2
112.6.a.h.1.2 2 20.19 odd 2
175.6.a.c.1.1 2 1.1 even 1 trivial
175.6.b.c.99.1 4 5.2 odd 4
175.6.b.c.99.4 4 5.3 odd 4
441.6.a.l.1.1 2 105.104 even 2
448.6.a.u.1.1 2 40.19 odd 2
448.6.a.w.1.2 2 40.29 even 2
784.6.a.v.1.1 2 140.139 even 2
847.6.a.c.1.1 2 55.54 odd 2
1008.6.a.bq.1.1 2 60.59 even 2