Properties

Label 448.6.a.u.1.1
Level $448$
Weight $6$
Character 448.1
Self dual yes
Analytic conductor $71.852$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,6,Mod(1,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.8519512762\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.27492\) of defining polynomial
Character \(\chi\) \(=\) 448.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-25.6495 q^{3} -28.7492 q^{5} -49.0000 q^{7} +414.897 q^{9} -270.090 q^{11} -300.640 q^{13} +737.402 q^{15} +613.106 q^{17} -1700.95 q^{19} +1256.83 q^{21} -3188.15 q^{23} -2298.49 q^{25} -4409.07 q^{27} -4299.28 q^{29} -2028.46 q^{31} +6927.67 q^{33} +1408.71 q^{35} -5154.46 q^{37} +7711.26 q^{39} -7146.21 q^{41} -19584.3 q^{43} -11927.9 q^{45} -19998.4 q^{47} +2401.00 q^{49} -15725.9 q^{51} -3948.82 q^{53} +7764.86 q^{55} +43628.5 q^{57} -29707.6 q^{59} +50519.3 q^{61} -20330.0 q^{63} +8643.14 q^{65} +5053.56 q^{67} +81774.5 q^{69} -32853.3 q^{71} -11115.0 q^{73} +58955.0 q^{75} +13234.4 q^{77} -81889.4 q^{79} +12270.6 q^{81} +118234. q^{83} -17626.3 q^{85} +110274. q^{87} -41695.4 q^{89} +14731.3 q^{91} +52028.9 q^{93} +48900.9 q^{95} +43682.8 q^{97} -112059. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 18 q^{5} - 98 q^{7} + 558 q^{9} + 396 q^{11} + 350 q^{13} + 1656 q^{15} + 1800 q^{17} - 3266 q^{19} + 294 q^{21} - 2088 q^{23} - 3238 q^{25} - 6372 q^{27} - 6696 q^{29} + 20 q^{31} + 20016 q^{33}+ \cdots - 16740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −25.6495 −1.64542 −0.822708 0.568464i \(-0.807538\pi\)
−0.822708 + 0.568464i \(0.807538\pi\)
\(4\) 0 0
\(5\) −28.7492 −0.514281 −0.257140 0.966374i \(-0.582780\pi\)
−0.257140 + 0.966374i \(0.582780\pi\)
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) 0 0
\(9\) 414.897 1.70740
\(10\) 0 0
\(11\) −270.090 −0.673018 −0.336509 0.941680i \(-0.609246\pi\)
−0.336509 + 0.941680i \(0.609246\pi\)
\(12\) 0 0
\(13\) −300.640 −0.493387 −0.246694 0.969094i \(-0.579344\pi\)
−0.246694 + 0.969094i \(0.579344\pi\)
\(14\) 0 0
\(15\) 737.402 0.846206
\(16\) 0 0
\(17\) 613.106 0.514533 0.257267 0.966340i \(-0.417178\pi\)
0.257267 + 0.966340i \(0.417178\pi\)
\(18\) 0 0
\(19\) −1700.95 −1.08095 −0.540477 0.841359i \(-0.681756\pi\)
−0.540477 + 0.841359i \(0.681756\pi\)
\(20\) 0 0
\(21\) 1256.83 0.621909
\(22\) 0 0
\(23\) −3188.15 −1.25667 −0.628333 0.777945i \(-0.716262\pi\)
−0.628333 + 0.777945i \(0.716262\pi\)
\(24\) 0 0
\(25\) −2298.49 −0.735515
\(26\) 0 0
\(27\) −4409.07 −1.16396
\(28\) 0 0
\(29\) −4299.28 −0.949294 −0.474647 0.880176i \(-0.657424\pi\)
−0.474647 + 0.880176i \(0.657424\pi\)
\(30\) 0 0
\(31\) −2028.46 −0.379106 −0.189553 0.981870i \(-0.560704\pi\)
−0.189553 + 0.981870i \(0.560704\pi\)
\(32\) 0 0
\(33\) 6927.67 1.10739
\(34\) 0 0
\(35\) 1408.71 0.194380
\(36\) 0 0
\(37\) −5154.46 −0.618983 −0.309491 0.950902i \(-0.600159\pi\)
−0.309491 + 0.950902i \(0.600159\pi\)
\(38\) 0 0
\(39\) 7711.26 0.811827
\(40\) 0 0
\(41\) −7146.21 −0.663921 −0.331960 0.943293i \(-0.607710\pi\)
−0.331960 + 0.943293i \(0.607710\pi\)
\(42\) 0 0
\(43\) −19584.3 −1.61524 −0.807620 0.589703i \(-0.799245\pi\)
−0.807620 + 0.589703i \(0.799245\pi\)
\(44\) 0 0
\(45\) −11927.9 −0.878081
\(46\) 0 0
\(47\) −19998.4 −1.32054 −0.660268 0.751030i \(-0.729557\pi\)
−0.660268 + 0.751030i \(0.729557\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −15725.9 −0.846621
\(52\) 0 0
\(53\) −3948.82 −0.193098 −0.0965489 0.995328i \(-0.530780\pi\)
−0.0965489 + 0.995328i \(0.530780\pi\)
\(54\) 0 0
\(55\) 7764.86 0.346120
\(56\) 0 0
\(57\) 43628.5 1.77862
\(58\) 0 0
\(59\) −29707.6 −1.11106 −0.555530 0.831497i \(-0.687484\pi\)
−0.555530 + 0.831497i \(0.687484\pi\)
\(60\) 0 0
\(61\) 50519.3 1.73833 0.869165 0.494522i \(-0.164657\pi\)
0.869165 + 0.494522i \(0.164657\pi\)
\(62\) 0 0
\(63\) −20330.0 −0.645335
\(64\) 0 0
\(65\) 8643.14 0.253740
\(66\) 0 0
\(67\) 5053.56 0.137534 0.0687671 0.997633i \(-0.478093\pi\)
0.0687671 + 0.997633i \(0.478093\pi\)
\(68\) 0 0
\(69\) 81774.5 2.06774
\(70\) 0 0
\(71\) −32853.3 −0.773453 −0.386726 0.922195i \(-0.626394\pi\)
−0.386726 + 0.922195i \(0.626394\pi\)
\(72\) 0 0
\(73\) −11115.0 −0.244119 −0.122059 0.992523i \(-0.538950\pi\)
−0.122059 + 0.992523i \(0.538950\pi\)
\(74\) 0 0
\(75\) 58955.0 1.21023
\(76\) 0 0
\(77\) 13234.4 0.254377
\(78\) 0 0
\(79\) −81889.4 −1.47625 −0.738125 0.674664i \(-0.764288\pi\)
−0.738125 + 0.674664i \(0.764288\pi\)
\(80\) 0 0
\(81\) 12270.6 0.207803
\(82\) 0 0
\(83\) 118234. 1.88385 0.941926 0.335819i \(-0.109013\pi\)
0.941926 + 0.335819i \(0.109013\pi\)
\(84\) 0 0
\(85\) −17626.3 −0.264615
\(86\) 0 0
\(87\) 110274. 1.56198
\(88\) 0 0
\(89\) −41695.4 −0.557972 −0.278986 0.960295i \(-0.589998\pi\)
−0.278986 + 0.960295i \(0.589998\pi\)
\(90\) 0 0
\(91\) 14731.3 0.186483
\(92\) 0 0
\(93\) 52028.9 0.623788
\(94\) 0 0
\(95\) 48900.9 0.555914
\(96\) 0 0
\(97\) 43682.8 0.471391 0.235695 0.971827i \(-0.424263\pi\)
0.235695 + 0.971827i \(0.424263\pi\)
\(98\) 0 0
\(99\) −112059. −1.14911
\(100\) 0 0
\(101\) −25648.1 −0.250179 −0.125090 0.992145i \(-0.539922\pi\)
−0.125090 + 0.992145i \(0.539922\pi\)
\(102\) 0 0
\(103\) 14320.0 0.133000 0.0664999 0.997786i \(-0.478817\pi\)
0.0664999 + 0.997786i \(0.478817\pi\)
\(104\) 0 0
\(105\) −36132.7 −0.319836
\(106\) 0 0
\(107\) 17201.8 0.145249 0.0726247 0.997359i \(-0.476862\pi\)
0.0726247 + 0.997359i \(0.476862\pi\)
\(108\) 0 0
\(109\) 86017.6 0.693459 0.346730 0.937965i \(-0.387292\pi\)
0.346730 + 0.937965i \(0.387292\pi\)
\(110\) 0 0
\(111\) 132209. 1.01848
\(112\) 0 0
\(113\) 137568. 1.01349 0.506745 0.862096i \(-0.330848\pi\)
0.506745 + 0.862096i \(0.330848\pi\)
\(114\) 0 0
\(115\) 91656.8 0.646279
\(116\) 0 0
\(117\) −124734. −0.842407
\(118\) 0 0
\(119\) −30042.2 −0.194475
\(120\) 0 0
\(121\) −88102.5 −0.547047
\(122\) 0 0
\(123\) 183297. 1.09243
\(124\) 0 0
\(125\) 155921. 0.892542
\(126\) 0 0
\(127\) 70567.1 0.388233 0.194117 0.980978i \(-0.437816\pi\)
0.194117 + 0.980978i \(0.437816\pi\)
\(128\) 0 0
\(129\) 502328. 2.65774
\(130\) 0 0
\(131\) −173712. −0.884408 −0.442204 0.896914i \(-0.645803\pi\)
−0.442204 + 0.896914i \(0.645803\pi\)
\(132\) 0 0
\(133\) 83346.5 0.408562
\(134\) 0 0
\(135\) 126757. 0.598602
\(136\) 0 0
\(137\) −1989.94 −0.00905813 −0.00452907 0.999990i \(-0.501442\pi\)
−0.00452907 + 0.999990i \(0.501442\pi\)
\(138\) 0 0
\(139\) 366409. 1.60853 0.804264 0.594272i \(-0.202560\pi\)
0.804264 + 0.594272i \(0.202560\pi\)
\(140\) 0 0
\(141\) 512949. 2.17283
\(142\) 0 0
\(143\) 81199.7 0.332058
\(144\) 0 0
\(145\) 123601. 0.488204
\(146\) 0 0
\(147\) −61584.5 −0.235059
\(148\) 0 0
\(149\) −140719. −0.519261 −0.259631 0.965708i \(-0.583601\pi\)
−0.259631 + 0.965708i \(0.583601\pi\)
\(150\) 0 0
\(151\) −50064.6 −0.178685 −0.0893425 0.996001i \(-0.528477\pi\)
−0.0893425 + 0.996001i \(0.528477\pi\)
\(152\) 0 0
\(153\) 254376. 0.878512
\(154\) 0 0
\(155\) 58316.4 0.194967
\(156\) 0 0
\(157\) 89794.6 0.290738 0.145369 0.989378i \(-0.453563\pi\)
0.145369 + 0.989378i \(0.453563\pi\)
\(158\) 0 0
\(159\) 101285. 0.317726
\(160\) 0 0
\(161\) 156219. 0.474975
\(162\) 0 0
\(163\) −481230. −1.41868 −0.709339 0.704867i \(-0.751006\pi\)
−0.709339 + 0.704867i \(0.751006\pi\)
\(164\) 0 0
\(165\) −199165. −0.569512
\(166\) 0 0
\(167\) 86572.7 0.240209 0.120105 0.992761i \(-0.461677\pi\)
0.120105 + 0.992761i \(0.461677\pi\)
\(168\) 0 0
\(169\) −280909. −0.756569
\(170\) 0 0
\(171\) −705718. −1.84562
\(172\) 0 0
\(173\) 58137.4 0.147686 0.0738432 0.997270i \(-0.476474\pi\)
0.0738432 + 0.997270i \(0.476474\pi\)
\(174\) 0 0
\(175\) 112626. 0.277999
\(176\) 0 0
\(177\) 761985. 1.82816
\(178\) 0 0
\(179\) −209380. −0.488431 −0.244215 0.969721i \(-0.578530\pi\)
−0.244215 + 0.969721i \(0.578530\pi\)
\(180\) 0 0
\(181\) −278996. −0.632996 −0.316498 0.948593i \(-0.602507\pi\)
−0.316498 + 0.948593i \(0.602507\pi\)
\(182\) 0 0
\(183\) −1.29579e6 −2.86028
\(184\) 0 0
\(185\) 148186. 0.318331
\(186\) 0 0
\(187\) −165594. −0.346290
\(188\) 0 0
\(189\) 216045. 0.439935
\(190\) 0 0
\(191\) 445132. 0.882888 0.441444 0.897289i \(-0.354466\pi\)
0.441444 + 0.897289i \(0.354466\pi\)
\(192\) 0 0
\(193\) −726811. −1.40452 −0.702260 0.711920i \(-0.747826\pi\)
−0.702260 + 0.711920i \(0.747826\pi\)
\(194\) 0 0
\(195\) −221692. −0.417507
\(196\) 0 0
\(197\) 364897. 0.669892 0.334946 0.942237i \(-0.391282\pi\)
0.334946 + 0.942237i \(0.391282\pi\)
\(198\) 0 0
\(199\) −289307. −0.517877 −0.258938 0.965894i \(-0.583373\pi\)
−0.258938 + 0.965894i \(0.583373\pi\)
\(200\) 0 0
\(201\) −129621. −0.226301
\(202\) 0 0
\(203\) 210665. 0.358799
\(204\) 0 0
\(205\) 205448. 0.341442
\(206\) 0 0
\(207\) −1.32276e6 −2.14562
\(208\) 0 0
\(209\) 459409. 0.727501
\(210\) 0 0
\(211\) 750147. 1.15995 0.579976 0.814633i \(-0.303062\pi\)
0.579976 + 0.814633i \(0.303062\pi\)
\(212\) 0 0
\(213\) 842672. 1.27265
\(214\) 0 0
\(215\) 563033. 0.830687
\(216\) 0 0
\(217\) 99394.3 0.143289
\(218\) 0 0
\(219\) 285093. 0.401677
\(220\) 0 0
\(221\) −184324. −0.253864
\(222\) 0 0
\(223\) −534398. −0.719619 −0.359810 0.933026i \(-0.617158\pi\)
−0.359810 + 0.933026i \(0.617158\pi\)
\(224\) 0 0
\(225\) −953635. −1.25582
\(226\) 0 0
\(227\) −410624. −0.528907 −0.264453 0.964398i \(-0.585192\pi\)
−0.264453 + 0.964398i \(0.585192\pi\)
\(228\) 0 0
\(229\) −1.03036e6 −1.29838 −0.649189 0.760627i \(-0.724892\pi\)
−0.649189 + 0.760627i \(0.724892\pi\)
\(230\) 0 0
\(231\) −339456. −0.418556
\(232\) 0 0
\(233\) −119211. −0.143856 −0.0719278 0.997410i \(-0.522915\pi\)
−0.0719278 + 0.997410i \(0.522915\pi\)
\(234\) 0 0
\(235\) 574937. 0.679127
\(236\) 0 0
\(237\) 2.10042e6 2.42905
\(238\) 0 0
\(239\) 254090. 0.287735 0.143868 0.989597i \(-0.454046\pi\)
0.143868 + 0.989597i \(0.454046\pi\)
\(240\) 0 0
\(241\) 1.41251e6 1.56656 0.783282 0.621667i \(-0.213544\pi\)
0.783282 + 0.621667i \(0.213544\pi\)
\(242\) 0 0
\(243\) 756671. 0.822037
\(244\) 0 0
\(245\) −69026.8 −0.0734687
\(246\) 0 0
\(247\) 511372. 0.533329
\(248\) 0 0
\(249\) −3.03264e6 −3.09972
\(250\) 0 0
\(251\) −1.67542e6 −1.67857 −0.839286 0.543690i \(-0.817027\pi\)
−0.839286 + 0.543690i \(0.817027\pi\)
\(252\) 0 0
\(253\) 861087. 0.845758
\(254\) 0 0
\(255\) 452106. 0.435401
\(256\) 0 0
\(257\) 726996. 0.686593 0.343296 0.939227i \(-0.388456\pi\)
0.343296 + 0.939227i \(0.388456\pi\)
\(258\) 0 0
\(259\) 252568. 0.233953
\(260\) 0 0
\(261\) −1.78376e6 −1.62082
\(262\) 0 0
\(263\) 225880. 0.201367 0.100684 0.994918i \(-0.467897\pi\)
0.100684 + 0.994918i \(0.467897\pi\)
\(264\) 0 0
\(265\) 113525. 0.0993065
\(266\) 0 0
\(267\) 1.06947e6 0.918097
\(268\) 0 0
\(269\) −1.80527e6 −1.52111 −0.760557 0.649272i \(-0.775074\pi\)
−0.760557 + 0.649272i \(0.775074\pi\)
\(270\) 0 0
\(271\) 1.71380e6 1.41754 0.708771 0.705439i \(-0.249250\pi\)
0.708771 + 0.705439i \(0.249250\pi\)
\(272\) 0 0
\(273\) −377852. −0.306842
\(274\) 0 0
\(275\) 620797. 0.495015
\(276\) 0 0
\(277\) −2.23055e6 −1.74668 −0.873338 0.487115i \(-0.838049\pi\)
−0.873338 + 0.487115i \(0.838049\pi\)
\(278\) 0 0
\(279\) −841600. −0.647285
\(280\) 0 0
\(281\) 1.67140e6 1.26274 0.631371 0.775481i \(-0.282493\pi\)
0.631371 + 0.775481i \(0.282493\pi\)
\(282\) 0 0
\(283\) −396152. −0.294033 −0.147016 0.989134i \(-0.546967\pi\)
−0.147016 + 0.989134i \(0.546967\pi\)
\(284\) 0 0
\(285\) −1.25428e6 −0.914710
\(286\) 0 0
\(287\) 350164. 0.250938
\(288\) 0 0
\(289\) −1.04396e6 −0.735256
\(290\) 0 0
\(291\) −1.12044e6 −0.775634
\(292\) 0 0
\(293\) 929465. 0.632505 0.316252 0.948675i \(-0.397575\pi\)
0.316252 + 0.948675i \(0.397575\pi\)
\(294\) 0 0
\(295\) 854068. 0.571397
\(296\) 0 0
\(297\) 1.19085e6 0.783365
\(298\) 0 0
\(299\) 958485. 0.620022
\(300\) 0 0
\(301\) 959631. 0.610503
\(302\) 0 0
\(303\) 657860. 0.411649
\(304\) 0 0
\(305\) −1.45239e6 −0.893990
\(306\) 0 0
\(307\) 1.83295e6 1.10995 0.554976 0.831866i \(-0.312727\pi\)
0.554976 + 0.831866i \(0.312727\pi\)
\(308\) 0 0
\(309\) −367302. −0.218840
\(310\) 0 0
\(311\) 2.29685e6 1.34658 0.673289 0.739379i \(-0.264881\pi\)
0.673289 + 0.739379i \(0.264881\pi\)
\(312\) 0 0
\(313\) −3.42470e6 −1.97589 −0.987943 0.154817i \(-0.950521\pi\)
−0.987943 + 0.154817i \(0.950521\pi\)
\(314\) 0 0
\(315\) 584469. 0.331883
\(316\) 0 0
\(317\) −2.94305e6 −1.64494 −0.822470 0.568808i \(-0.807405\pi\)
−0.822470 + 0.568808i \(0.807405\pi\)
\(318\) 0 0
\(319\) 1.16119e6 0.638891
\(320\) 0 0
\(321\) −441217. −0.238996
\(322\) 0 0
\(323\) −1.04286e6 −0.556187
\(324\) 0 0
\(325\) 691016. 0.362894
\(326\) 0 0
\(327\) −2.20631e6 −1.14103
\(328\) 0 0
\(329\) 979921. 0.499116
\(330\) 0 0
\(331\) 966164. 0.484709 0.242354 0.970188i \(-0.422080\pi\)
0.242354 + 0.970188i \(0.422080\pi\)
\(332\) 0 0
\(333\) −2.13857e6 −1.05685
\(334\) 0 0
\(335\) −145286. −0.0707312
\(336\) 0 0
\(337\) 136417. 0.0654327 0.0327163 0.999465i \(-0.489584\pi\)
0.0327163 + 0.999465i \(0.489584\pi\)
\(338\) 0 0
\(339\) −3.52854e6 −1.66761
\(340\) 0 0
\(341\) 547865. 0.255145
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 0 0
\(345\) −2.35095e6 −1.06340
\(346\) 0 0
\(347\) 355408. 0.158454 0.0792270 0.996857i \(-0.474755\pi\)
0.0792270 + 0.996857i \(0.474755\pi\)
\(348\) 0 0
\(349\) 140128. 0.0615830 0.0307915 0.999526i \(-0.490197\pi\)
0.0307915 + 0.999526i \(0.490197\pi\)
\(350\) 0 0
\(351\) 1.32554e6 0.574283
\(352\) 0 0
\(353\) 3.48141e6 1.48703 0.743514 0.668721i \(-0.233158\pi\)
0.743514 + 0.668721i \(0.233158\pi\)
\(354\) 0 0
\(355\) 944507. 0.397772
\(356\) 0 0
\(357\) 770568. 0.319993
\(358\) 0 0
\(359\) −1.75285e6 −0.717810 −0.358905 0.933374i \(-0.616850\pi\)
−0.358905 + 0.933374i \(0.616850\pi\)
\(360\) 0 0
\(361\) 417127. 0.168461
\(362\) 0 0
\(363\) 2.25979e6 0.900121
\(364\) 0 0
\(365\) 319546. 0.125546
\(366\) 0 0
\(367\) 1.76939e6 0.685738 0.342869 0.939383i \(-0.388601\pi\)
0.342869 + 0.939383i \(0.388601\pi\)
\(368\) 0 0
\(369\) −2.96494e6 −1.13357
\(370\) 0 0
\(371\) 193492. 0.0729841
\(372\) 0 0
\(373\) 4.16212e6 1.54897 0.774485 0.632592i \(-0.218009\pi\)
0.774485 + 0.632592i \(0.218009\pi\)
\(374\) 0 0
\(375\) −3.99929e6 −1.46860
\(376\) 0 0
\(377\) 1.29253e6 0.468369
\(378\) 0 0
\(379\) 618163. 0.221057 0.110529 0.993873i \(-0.464746\pi\)
0.110529 + 0.993873i \(0.464746\pi\)
\(380\) 0 0
\(381\) −1.81001e6 −0.638805
\(382\) 0 0
\(383\) 4.11163e6 1.43225 0.716123 0.697974i \(-0.245915\pi\)
0.716123 + 0.697974i \(0.245915\pi\)
\(384\) 0 0
\(385\) −380478. −0.130821
\(386\) 0 0
\(387\) −8.12547e6 −2.75785
\(388\) 0 0
\(389\) −4.62076e6 −1.54824 −0.774122 0.633037i \(-0.781808\pi\)
−0.774122 + 0.633037i \(0.781808\pi\)
\(390\) 0 0
\(391\) −1.95468e6 −0.646596
\(392\) 0 0
\(393\) 4.45564e6 1.45522
\(394\) 0 0
\(395\) 2.35425e6 0.759207
\(396\) 0 0
\(397\) −5.07349e6 −1.61559 −0.807794 0.589465i \(-0.799339\pi\)
−0.807794 + 0.589465i \(0.799339\pi\)
\(398\) 0 0
\(399\) −2.13780e6 −0.672255
\(400\) 0 0
\(401\) −1.48056e6 −0.459795 −0.229898 0.973215i \(-0.573839\pi\)
−0.229898 + 0.973215i \(0.573839\pi\)
\(402\) 0 0
\(403\) 609834. 0.187046
\(404\) 0 0
\(405\) −352768. −0.106869
\(406\) 0 0
\(407\) 1.39217e6 0.416586
\(408\) 0 0
\(409\) −4.53379e6 −1.34015 −0.670075 0.742294i \(-0.733738\pi\)
−0.670075 + 0.742294i \(0.733738\pi\)
\(410\) 0 0
\(411\) 51041.0 0.0149044
\(412\) 0 0
\(413\) 1.45567e6 0.419941
\(414\) 0 0
\(415\) −3.39913e6 −0.968829
\(416\) 0 0
\(417\) −9.39820e6 −2.64670
\(418\) 0 0
\(419\) 111026. 0.0308952 0.0154476 0.999881i \(-0.495083\pi\)
0.0154476 + 0.999881i \(0.495083\pi\)
\(420\) 0 0
\(421\) 1.41151e6 0.388132 0.194066 0.980988i \(-0.437832\pi\)
0.194066 + 0.980988i \(0.437832\pi\)
\(422\) 0 0
\(423\) −8.29727e6 −2.25468
\(424\) 0 0
\(425\) −1.40922e6 −0.378447
\(426\) 0 0
\(427\) −2.47544e6 −0.657027
\(428\) 0 0
\(429\) −2.08273e6 −0.546374
\(430\) 0 0
\(431\) −1.07640e6 −0.279113 −0.139557 0.990214i \(-0.544568\pi\)
−0.139557 + 0.990214i \(0.544568\pi\)
\(432\) 0 0
\(433\) −310172. −0.0795029 −0.0397515 0.999210i \(-0.512657\pi\)
−0.0397515 + 0.999210i \(0.512657\pi\)
\(434\) 0 0
\(435\) −3.17030e6 −0.803298
\(436\) 0 0
\(437\) 5.42288e6 1.35840
\(438\) 0 0
\(439\) −5.67650e6 −1.40579 −0.702893 0.711296i \(-0.748109\pi\)
−0.702893 + 0.711296i \(0.748109\pi\)
\(440\) 0 0
\(441\) 996168. 0.243914
\(442\) 0 0
\(443\) 4.05966e6 0.982834 0.491417 0.870924i \(-0.336479\pi\)
0.491417 + 0.870924i \(0.336479\pi\)
\(444\) 0 0
\(445\) 1.19871e6 0.286955
\(446\) 0 0
\(447\) 3.60936e6 0.854401
\(448\) 0 0
\(449\) −6.96544e6 −1.63054 −0.815272 0.579078i \(-0.803413\pi\)
−0.815272 + 0.579078i \(0.803413\pi\)
\(450\) 0 0
\(451\) 1.93012e6 0.446830
\(452\) 0 0
\(453\) 1.28413e6 0.294011
\(454\) 0 0
\(455\) −423514. −0.0959045
\(456\) 0 0
\(457\) 1.79523e6 0.402096 0.201048 0.979581i \(-0.435565\pi\)
0.201048 + 0.979581i \(0.435565\pi\)
\(458\) 0 0
\(459\) −2.70323e6 −0.598896
\(460\) 0 0
\(461\) 2.11294e6 0.463058 0.231529 0.972828i \(-0.425627\pi\)
0.231529 + 0.972828i \(0.425627\pi\)
\(462\) 0 0
\(463\) −1.26223e6 −0.273643 −0.136822 0.990596i \(-0.543689\pi\)
−0.136822 + 0.990596i \(0.543689\pi\)
\(464\) 0 0
\(465\) −1.49579e6 −0.320802
\(466\) 0 0
\(467\) −3.58926e6 −0.761576 −0.380788 0.924662i \(-0.624347\pi\)
−0.380788 + 0.924662i \(0.624347\pi\)
\(468\) 0 0
\(469\) −247624. −0.0519830
\(470\) 0 0
\(471\) −2.30319e6 −0.478384
\(472\) 0 0
\(473\) 5.28952e6 1.08708
\(474\) 0 0
\(475\) 3.90960e6 0.795058
\(476\) 0 0
\(477\) −1.63835e6 −0.329694
\(478\) 0 0
\(479\) 2.41693e6 0.481311 0.240655 0.970611i \(-0.422638\pi\)
0.240655 + 0.970611i \(0.422638\pi\)
\(480\) 0 0
\(481\) 1.54963e6 0.305398
\(482\) 0 0
\(483\) −4.00695e6 −0.781531
\(484\) 0 0
\(485\) −1.25584e6 −0.242427
\(486\) 0 0
\(487\) 5.19403e6 0.992388 0.496194 0.868212i \(-0.334730\pi\)
0.496194 + 0.868212i \(0.334730\pi\)
\(488\) 0 0
\(489\) 1.23433e7 2.33432
\(490\) 0 0
\(491\) 5.38961e6 1.00891 0.504456 0.863437i \(-0.331693\pi\)
0.504456 + 0.863437i \(0.331693\pi\)
\(492\) 0 0
\(493\) −2.63592e6 −0.488443
\(494\) 0 0
\(495\) 3.22162e6 0.590964
\(496\) 0 0
\(497\) 1.60981e6 0.292338
\(498\) 0 0
\(499\) −3.29606e6 −0.592576 −0.296288 0.955099i \(-0.595749\pi\)
−0.296288 + 0.955099i \(0.595749\pi\)
\(500\) 0 0
\(501\) −2.22055e6 −0.395244
\(502\) 0 0
\(503\) 1.06512e7 1.87706 0.938528 0.345204i \(-0.112190\pi\)
0.938528 + 0.345204i \(0.112190\pi\)
\(504\) 0 0
\(505\) 737361. 0.128662
\(506\) 0 0
\(507\) 7.20517e6 1.24487
\(508\) 0 0
\(509\) 2.74268e6 0.469225 0.234612 0.972089i \(-0.424618\pi\)
0.234612 + 0.972089i \(0.424618\pi\)
\(510\) 0 0
\(511\) 544633. 0.0922682
\(512\) 0 0
\(513\) 7.49961e6 1.25819
\(514\) 0 0
\(515\) −411689. −0.0683992
\(516\) 0 0
\(517\) 5.40136e6 0.888744
\(518\) 0 0
\(519\) −1.49120e6 −0.243006
\(520\) 0 0
\(521\) 4.97077e6 0.802286 0.401143 0.916015i \(-0.368613\pi\)
0.401143 + 0.916015i \(0.368613\pi\)
\(522\) 0 0
\(523\) 2.41579e6 0.386193 0.193096 0.981180i \(-0.438147\pi\)
0.193096 + 0.981180i \(0.438147\pi\)
\(524\) 0 0
\(525\) −2.88880e6 −0.457424
\(526\) 0 0
\(527\) −1.24366e6 −0.195063
\(528\) 0 0
\(529\) 3.72798e6 0.579207
\(530\) 0 0
\(531\) −1.23256e7 −1.89702
\(532\) 0 0
\(533\) 2.14843e6 0.327570
\(534\) 0 0
\(535\) −494537. −0.0746989
\(536\) 0 0
\(537\) 5.37050e6 0.803672
\(538\) 0 0
\(539\) −648485. −0.0961454
\(540\) 0 0
\(541\) −472165. −0.0693587 −0.0346794 0.999398i \(-0.511041\pi\)
−0.0346794 + 0.999398i \(0.511041\pi\)
\(542\) 0 0
\(543\) 7.15610e6 1.04154
\(544\) 0 0
\(545\) −2.47293e6 −0.356633
\(546\) 0 0
\(547\) 7.63716e6 1.09135 0.545675 0.837997i \(-0.316273\pi\)
0.545675 + 0.837997i \(0.316273\pi\)
\(548\) 0 0
\(549\) 2.09603e7 2.96802
\(550\) 0 0
\(551\) 7.31285e6 1.02614
\(552\) 0 0
\(553\) 4.01258e6 0.557970
\(554\) 0 0
\(555\) −3.80091e6 −0.523787
\(556\) 0 0
\(557\) 4.48807e6 0.612946 0.306473 0.951879i \(-0.400851\pi\)
0.306473 + 0.951879i \(0.400851\pi\)
\(558\) 0 0
\(559\) 5.88782e6 0.796938
\(560\) 0 0
\(561\) 4.24740e6 0.569791
\(562\) 0 0
\(563\) −2.16500e6 −0.287864 −0.143932 0.989588i \(-0.545975\pi\)
−0.143932 + 0.989588i \(0.545975\pi\)
\(564\) 0 0
\(565\) −3.95495e6 −0.521219
\(566\) 0 0
\(567\) −601258. −0.0785422
\(568\) 0 0
\(569\) −1.13325e7 −1.46739 −0.733696 0.679478i \(-0.762206\pi\)
−0.733696 + 0.679478i \(0.762206\pi\)
\(570\) 0 0
\(571\) −843773. −0.108302 −0.0541509 0.998533i \(-0.517245\pi\)
−0.0541509 + 0.998533i \(0.517245\pi\)
\(572\) 0 0
\(573\) −1.14174e7 −1.45272
\(574\) 0 0
\(575\) 7.32792e6 0.924296
\(576\) 0 0
\(577\) −2.23784e6 −0.279827 −0.139914 0.990164i \(-0.544682\pi\)
−0.139914 + 0.990164i \(0.544682\pi\)
\(578\) 0 0
\(579\) 1.86423e7 2.31102
\(580\) 0 0
\(581\) −5.79346e6 −0.712029
\(582\) 0 0
\(583\) 1.06653e6 0.129958
\(584\) 0 0
\(585\) 3.58601e6 0.433234
\(586\) 0 0
\(587\) 1.21190e7 1.45168 0.725839 0.687864i \(-0.241452\pi\)
0.725839 + 0.687864i \(0.241452\pi\)
\(588\) 0 0
\(589\) 3.45030e6 0.409797
\(590\) 0 0
\(591\) −9.35942e6 −1.10225
\(592\) 0 0
\(593\) 8.00167e6 0.934424 0.467212 0.884145i \(-0.345258\pi\)
0.467212 + 0.884145i \(0.345258\pi\)
\(594\) 0 0
\(595\) 863689. 0.100015
\(596\) 0 0
\(597\) 7.42058e6 0.852123
\(598\) 0 0
\(599\) −1.45899e7 −1.66144 −0.830719 0.556692i \(-0.812070\pi\)
−0.830719 + 0.556692i \(0.812070\pi\)
\(600\) 0 0
\(601\) −8.67178e6 −0.979314 −0.489657 0.871915i \(-0.662878\pi\)
−0.489657 + 0.871915i \(0.662878\pi\)
\(602\) 0 0
\(603\) 2.09671e6 0.234825
\(604\) 0 0
\(605\) 2.53287e6 0.281336
\(606\) 0 0
\(607\) 1.33059e7 1.46580 0.732898 0.680339i \(-0.238167\pi\)
0.732898 + 0.680339i \(0.238167\pi\)
\(608\) 0 0
\(609\) −5.40344e6 −0.590374
\(610\) 0 0
\(611\) 6.01231e6 0.651536
\(612\) 0 0
\(613\) −2.35101e6 −0.252699 −0.126350 0.991986i \(-0.540326\pi\)
−0.126350 + 0.991986i \(0.540326\pi\)
\(614\) 0 0
\(615\) −5.26963e6 −0.561814
\(616\) 0 0
\(617\) 9.63523e6 1.01894 0.509470 0.860488i \(-0.329841\pi\)
0.509470 + 0.860488i \(0.329841\pi\)
\(618\) 0 0
\(619\) −4.86148e6 −0.509967 −0.254983 0.966945i \(-0.582070\pi\)
−0.254983 + 0.966945i \(0.582070\pi\)
\(620\) 0 0
\(621\) 1.40568e7 1.46271
\(622\) 0 0
\(623\) 2.04307e6 0.210894
\(624\) 0 0
\(625\) 2.70017e6 0.276498
\(626\) 0 0
\(627\) −1.17836e7 −1.19704
\(628\) 0 0
\(629\) −3.16023e6 −0.318487
\(630\) 0 0
\(631\) 6.59770e6 0.659659 0.329829 0.944041i \(-0.393009\pi\)
0.329829 + 0.944041i \(0.393009\pi\)
\(632\) 0 0
\(633\) −1.92409e7 −1.90860
\(634\) 0 0
\(635\) −2.02874e6 −0.199661
\(636\) 0 0
\(637\) −721836. −0.0704839
\(638\) 0 0
\(639\) −1.36308e7 −1.32059
\(640\) 0 0
\(641\) 1.44525e7 1.38930 0.694651 0.719347i \(-0.255559\pi\)
0.694651 + 0.719347i \(0.255559\pi\)
\(642\) 0 0
\(643\) −1.54720e7 −1.47577 −0.737886 0.674926i \(-0.764176\pi\)
−0.737886 + 0.674926i \(0.764176\pi\)
\(644\) 0 0
\(645\) −1.44415e7 −1.36683
\(646\) 0 0
\(647\) −1.66647e7 −1.56508 −0.782540 0.622601i \(-0.786076\pi\)
−0.782540 + 0.622601i \(0.786076\pi\)
\(648\) 0 0
\(649\) 8.02371e6 0.747762
\(650\) 0 0
\(651\) −2.54941e6 −0.235770
\(652\) 0 0
\(653\) 1.33451e7 1.22472 0.612361 0.790578i \(-0.290220\pi\)
0.612361 + 0.790578i \(0.290220\pi\)
\(654\) 0 0
\(655\) 4.99409e6 0.454834
\(656\) 0 0
\(657\) −4.61157e6 −0.416807
\(658\) 0 0
\(659\) −4.00667e6 −0.359393 −0.179697 0.983722i \(-0.557512\pi\)
−0.179697 + 0.983722i \(0.557512\pi\)
\(660\) 0 0
\(661\) −1.08005e7 −0.961478 −0.480739 0.876864i \(-0.659632\pi\)
−0.480739 + 0.876864i \(0.659632\pi\)
\(662\) 0 0
\(663\) 4.72782e6 0.417712
\(664\) 0 0
\(665\) −2.39614e6 −0.210116
\(666\) 0 0
\(667\) 1.37068e7 1.19294
\(668\) 0 0
\(669\) 1.37070e7 1.18407
\(670\) 0 0
\(671\) −1.36447e7 −1.16993
\(672\) 0 0
\(673\) 1.09119e7 0.928676 0.464338 0.885658i \(-0.346292\pi\)
0.464338 + 0.885658i \(0.346292\pi\)
\(674\) 0 0
\(675\) 1.01342e7 0.856110
\(676\) 0 0
\(677\) 1.35765e7 1.13846 0.569229 0.822179i \(-0.307242\pi\)
0.569229 + 0.822179i \(0.307242\pi\)
\(678\) 0 0
\(679\) −2.14046e6 −0.178169
\(680\) 0 0
\(681\) 1.05323e7 0.870272
\(682\) 0 0
\(683\) −1.26726e7 −1.03948 −0.519738 0.854326i \(-0.673970\pi\)
−0.519738 + 0.854326i \(0.673970\pi\)
\(684\) 0 0
\(685\) 57209.2 0.00465843
\(686\) 0 0
\(687\) 2.64283e7 2.13637
\(688\) 0 0
\(689\) 1.18717e6 0.0952720
\(690\) 0 0
\(691\) 7.11964e6 0.567235 0.283617 0.958938i \(-0.408465\pi\)
0.283617 + 0.958938i \(0.408465\pi\)
\(692\) 0 0
\(693\) 5.49091e6 0.434322
\(694\) 0 0
\(695\) −1.05339e7 −0.827235
\(696\) 0 0
\(697\) −4.38139e6 −0.341609
\(698\) 0 0
\(699\) 3.05770e6 0.236702
\(700\) 0 0
\(701\) 1.00155e7 0.769803 0.384902 0.922958i \(-0.374235\pi\)
0.384902 + 0.922958i \(0.374235\pi\)
\(702\) 0 0
\(703\) 8.76746e6 0.669092
\(704\) 0 0
\(705\) −1.47469e7 −1.11745
\(706\) 0 0
\(707\) 1.25676e6 0.0945589
\(708\) 0 0
\(709\) 8.84454e6 0.660784 0.330392 0.943844i \(-0.392819\pi\)
0.330392 + 0.943844i \(0.392819\pi\)
\(710\) 0 0
\(711\) −3.39757e7 −2.52054
\(712\) 0 0
\(713\) 6.46703e6 0.476410
\(714\) 0 0
\(715\) −2.33442e6 −0.170771
\(716\) 0 0
\(717\) −6.51728e6 −0.473444
\(718\) 0 0
\(719\) −6.58086e6 −0.474745 −0.237373 0.971419i \(-0.576286\pi\)
−0.237373 + 0.971419i \(0.576286\pi\)
\(720\) 0 0
\(721\) −701682. −0.0502692
\(722\) 0 0
\(723\) −3.62301e7 −2.57765
\(724\) 0 0
\(725\) 9.88183e6 0.698220
\(726\) 0 0
\(727\) −1.88401e7 −1.32205 −0.661023 0.750365i \(-0.729878\pi\)
−0.661023 + 0.750365i \(0.729878\pi\)
\(728\) 0 0
\(729\) −2.23900e7 −1.56040
\(730\) 0 0
\(731\) −1.20073e7 −0.831095
\(732\) 0 0
\(733\) 2.78330e6 0.191337 0.0956687 0.995413i \(-0.469501\pi\)
0.0956687 + 0.995413i \(0.469501\pi\)
\(734\) 0 0
\(735\) 1.77050e6 0.120887
\(736\) 0 0
\(737\) −1.36491e6 −0.0925629
\(738\) 0 0
\(739\) −2.48970e7 −1.67701 −0.838505 0.544894i \(-0.816570\pi\)
−0.838505 + 0.544894i \(0.816570\pi\)
\(740\) 0 0
\(741\) −1.31164e7 −0.877548
\(742\) 0 0
\(743\) 3.86085e6 0.256573 0.128286 0.991737i \(-0.459052\pi\)
0.128286 + 0.991737i \(0.459052\pi\)
\(744\) 0 0
\(745\) 4.04554e6 0.267046
\(746\) 0 0
\(747\) 4.90549e7 3.21648
\(748\) 0 0
\(749\) −842888. −0.0548991
\(750\) 0 0
\(751\) −6.72737e6 −0.435257 −0.217628 0.976032i \(-0.569832\pi\)
−0.217628 + 0.976032i \(0.569832\pi\)
\(752\) 0 0
\(753\) 4.29737e7 2.76195
\(754\) 0 0
\(755\) 1.43932e6 0.0918943
\(756\) 0 0
\(757\) −2.17782e7 −1.38128 −0.690642 0.723197i \(-0.742672\pi\)
−0.690642 + 0.723197i \(0.742672\pi\)
\(758\) 0 0
\(759\) −2.20865e7 −1.39162
\(760\) 0 0
\(761\) −2.57074e7 −1.60915 −0.804575 0.593851i \(-0.797607\pi\)
−0.804575 + 0.593851i \(0.797607\pi\)
\(762\) 0 0
\(763\) −4.21486e6 −0.262103
\(764\) 0 0
\(765\) −7.31310e6 −0.451802
\(766\) 0 0
\(767\) 8.93127e6 0.548182
\(768\) 0 0
\(769\) −1.34375e7 −0.819413 −0.409706 0.912217i \(-0.634369\pi\)
−0.409706 + 0.912217i \(0.634369\pi\)
\(770\) 0 0
\(771\) −1.86471e7 −1.12973
\(772\) 0 0
\(773\) −3.05572e7 −1.83935 −0.919674 0.392682i \(-0.871547\pi\)
−0.919674 + 0.392682i \(0.871547\pi\)
\(774\) 0 0
\(775\) 4.66237e6 0.278839
\(776\) 0 0
\(777\) −6.47825e6 −0.384951
\(778\) 0 0
\(779\) 1.21553e7 0.717667
\(780\) 0 0
\(781\) 8.87335e6 0.520547
\(782\) 0 0
\(783\) 1.89558e7 1.10494
\(784\) 0 0
\(785\) −2.58152e6 −0.149521
\(786\) 0 0
\(787\) −2.07672e6 −0.119520 −0.0597602 0.998213i \(-0.519034\pi\)
−0.0597602 + 0.998213i \(0.519034\pi\)
\(788\) 0 0
\(789\) −5.79372e6 −0.331333
\(790\) 0 0
\(791\) −6.74081e6 −0.383064
\(792\) 0 0
\(793\) −1.51881e7 −0.857670
\(794\) 0 0
\(795\) −2.91187e6 −0.163401
\(796\) 0 0
\(797\) 5.98563e6 0.333783 0.166892 0.985975i \(-0.446627\pi\)
0.166892 + 0.985975i \(0.446627\pi\)
\(798\) 0 0
\(799\) −1.22611e7 −0.679460
\(800\) 0 0
\(801\) −1.72993e7 −0.952679
\(802\) 0 0
\(803\) 3.00204e6 0.164296
\(804\) 0 0
\(805\) −4.49118e6 −0.244270
\(806\) 0 0
\(807\) 4.63043e7 2.50286
\(808\) 0 0
\(809\) 1.96864e7 1.05754 0.528769 0.848766i \(-0.322654\pi\)
0.528769 + 0.848766i \(0.322654\pi\)
\(810\) 0 0
\(811\) 8.50101e6 0.453856 0.226928 0.973912i \(-0.427132\pi\)
0.226928 + 0.973912i \(0.427132\pi\)
\(812\) 0 0
\(813\) −4.39580e7 −2.33245
\(814\) 0 0
\(815\) 1.38350e7 0.729599
\(816\) 0 0
\(817\) 3.33119e7 1.74600
\(818\) 0 0
\(819\) 6.11199e6 0.318400
\(820\) 0 0
\(821\) 1.36199e6 0.0705204 0.0352602 0.999378i \(-0.488774\pi\)
0.0352602 + 0.999378i \(0.488774\pi\)
\(822\) 0 0
\(823\) 1.35934e6 0.0699566 0.0349783 0.999388i \(-0.488864\pi\)
0.0349783 + 0.999388i \(0.488864\pi\)
\(824\) 0 0
\(825\) −1.59231e7 −0.814505
\(826\) 0 0
\(827\) 1.00727e7 0.512132 0.256066 0.966659i \(-0.417574\pi\)
0.256066 + 0.966659i \(0.417574\pi\)
\(828\) 0 0
\(829\) 5.63984e6 0.285023 0.142512 0.989793i \(-0.454482\pi\)
0.142512 + 0.989793i \(0.454482\pi\)
\(830\) 0 0
\(831\) 5.72125e7 2.87401
\(832\) 0 0
\(833\) 1.47207e6 0.0735048
\(834\) 0 0
\(835\) −2.48889e6 −0.123535
\(836\) 0 0
\(837\) 8.94361e6 0.441265
\(838\) 0 0
\(839\) 1.16351e7 0.570642 0.285321 0.958432i \(-0.407900\pi\)
0.285321 + 0.958432i \(0.407900\pi\)
\(840\) 0 0
\(841\) −2.02735e6 −0.0988413
\(842\) 0 0
\(843\) −4.28706e7 −2.07774
\(844\) 0 0
\(845\) 8.07590e6 0.389089
\(846\) 0 0
\(847\) 4.31702e6 0.206764
\(848\) 0 0
\(849\) 1.01611e7 0.483806
\(850\) 0 0
\(851\) 1.64332e7 0.777854
\(852\) 0 0
\(853\) −2.85205e7 −1.34210 −0.671049 0.741413i \(-0.734156\pi\)
−0.671049 + 0.741413i \(0.734156\pi\)
\(854\) 0 0
\(855\) 2.02888e7 0.949165
\(856\) 0 0
\(857\) −9.95725e6 −0.463113 −0.231557 0.972821i \(-0.574382\pi\)
−0.231557 + 0.972821i \(0.574382\pi\)
\(858\) 0 0
\(859\) −1.49322e7 −0.690463 −0.345232 0.938517i \(-0.612200\pi\)
−0.345232 + 0.938517i \(0.612200\pi\)
\(860\) 0 0
\(861\) −8.98154e6 −0.412898
\(862\) 0 0
\(863\) −3.84933e7 −1.75937 −0.879687 0.475553i \(-0.842248\pi\)
−0.879687 + 0.475553i \(0.842248\pi\)
\(864\) 0 0
\(865\) −1.67140e6 −0.0759523
\(866\) 0 0
\(867\) 2.67770e7 1.20980
\(868\) 0 0
\(869\) 2.21175e7 0.993542
\(870\) 0 0
\(871\) −1.51930e6 −0.0678576
\(872\) 0 0
\(873\) 1.81239e7 0.804850
\(874\) 0 0
\(875\) −7.64011e6 −0.337349
\(876\) 0 0
\(877\) −9.40311e6 −0.412831 −0.206416 0.978464i \(-0.566180\pi\)
−0.206416 + 0.978464i \(0.566180\pi\)
\(878\) 0 0
\(879\) −2.38403e7 −1.04073
\(880\) 0 0
\(881\) 1.10395e6 0.0479194 0.0239597 0.999713i \(-0.492373\pi\)
0.0239597 + 0.999713i \(0.492373\pi\)
\(882\) 0 0
\(883\) 8.06579e6 0.348133 0.174067 0.984734i \(-0.444309\pi\)
0.174067 + 0.984734i \(0.444309\pi\)
\(884\) 0 0
\(885\) −2.19064e7 −0.940185
\(886\) 0 0
\(887\) 1.49902e7 0.639732 0.319866 0.947463i \(-0.396362\pi\)
0.319866 + 0.947463i \(0.396362\pi\)
\(888\) 0 0
\(889\) −3.45779e6 −0.146738
\(890\) 0 0
\(891\) −3.31415e6 −0.139855
\(892\) 0 0
\(893\) 3.40162e7 1.42744
\(894\) 0 0
\(895\) 6.01950e6 0.251190
\(896\) 0 0
\(897\) −2.45847e7 −1.02019
\(898\) 0 0
\(899\) 8.72090e6 0.359883
\(900\) 0 0
\(901\) −2.42104e6 −0.0993553
\(902\) 0 0
\(903\) −2.46141e7 −1.00453
\(904\) 0 0
\(905\) 8.02089e6 0.325538
\(906\) 0 0
\(907\) 4.12622e6 0.166546 0.0832730 0.996527i \(-0.473463\pi\)
0.0832730 + 0.996527i \(0.473463\pi\)
\(908\) 0 0
\(909\) −1.06413e7 −0.427155
\(910\) 0 0
\(911\) −4.04272e7 −1.61391 −0.806953 0.590616i \(-0.798885\pi\)
−0.806953 + 0.590616i \(0.798885\pi\)
\(912\) 0 0
\(913\) −3.19338e7 −1.26787
\(914\) 0 0
\(915\) 3.72530e7 1.47099
\(916\) 0 0
\(917\) 8.51191e6 0.334275
\(918\) 0 0
\(919\) −2.18546e7 −0.853600 −0.426800 0.904346i \(-0.640359\pi\)
−0.426800 + 0.904346i \(0.640359\pi\)
\(920\) 0 0
\(921\) −4.70142e7 −1.82633
\(922\) 0 0
\(923\) 9.87702e6 0.381612
\(924\) 0 0
\(925\) 1.18474e7 0.455271
\(926\) 0 0
\(927\) 5.94134e6 0.227083
\(928\) 0 0
\(929\) 1.06843e7 0.406169 0.203085 0.979161i \(-0.434903\pi\)
0.203085 + 0.979161i \(0.434903\pi\)
\(930\) 0 0
\(931\) −4.08398e6 −0.154422
\(932\) 0 0
\(933\) −5.89130e7 −2.21568
\(934\) 0 0
\(935\) 4.76068e6 0.178090
\(936\) 0 0
\(937\) −3.99105e7 −1.48504 −0.742521 0.669823i \(-0.766370\pi\)
−0.742521 + 0.669823i \(0.766370\pi\)
\(938\) 0 0
\(939\) 8.78419e7 3.25116
\(940\) 0 0
\(941\) −1.32350e6 −0.0487248 −0.0243624 0.999703i \(-0.507756\pi\)
−0.0243624 + 0.999703i \(0.507756\pi\)
\(942\) 0 0
\(943\) 2.27832e7 0.834326
\(944\) 0 0
\(945\) −6.21110e6 −0.226250
\(946\) 0 0
\(947\) −2.76322e7 −1.00124 −0.500622 0.865666i \(-0.666895\pi\)
−0.500622 + 0.865666i \(0.666895\pi\)
\(948\) 0 0
\(949\) 3.34160e6 0.120445
\(950\) 0 0
\(951\) 7.54879e7 2.70661
\(952\) 0 0
\(953\) −3.07901e7 −1.09819 −0.549096 0.835759i \(-0.685028\pi\)
−0.549096 + 0.835759i \(0.685028\pi\)
\(954\) 0 0
\(955\) −1.27972e7 −0.454053
\(956\) 0 0
\(957\) −2.97840e7 −1.05124
\(958\) 0 0
\(959\) 97507.1 0.00342365
\(960\) 0 0
\(961\) −2.45145e7 −0.856278
\(962\) 0 0
\(963\) 7.13697e6 0.247998
\(964\) 0 0
\(965\) 2.08952e7 0.722318
\(966\) 0 0
\(967\) −2.92557e6 −0.100611 −0.0503055 0.998734i \(-0.516019\pi\)
−0.0503055 + 0.998734i \(0.516019\pi\)
\(968\) 0 0
\(969\) 2.67489e7 0.915159
\(970\) 0 0
\(971\) 2.78109e6 0.0946601 0.0473301 0.998879i \(-0.484929\pi\)
0.0473301 + 0.998879i \(0.484929\pi\)
\(972\) 0 0
\(973\) −1.79540e7 −0.607967
\(974\) 0 0
\(975\) −1.77242e7 −0.597111
\(976\) 0 0
\(977\) 7.48673e6 0.250932 0.125466 0.992098i \(-0.459957\pi\)
0.125466 + 0.992098i \(0.459957\pi\)
\(978\) 0 0
\(979\) 1.12615e7 0.375525
\(980\) 0 0
\(981\) 3.56884e7 1.18401
\(982\) 0 0
\(983\) −1.79815e7 −0.593528 −0.296764 0.954951i \(-0.595907\pi\)
−0.296764 + 0.954951i \(0.595907\pi\)
\(984\) 0 0
\(985\) −1.04905e7 −0.344512
\(986\) 0 0
\(987\) −2.51345e7 −0.821253
\(988\) 0 0
\(989\) 6.24378e7 2.02982
\(990\) 0 0
\(991\) −3.72778e7 −1.20578 −0.602888 0.797826i \(-0.705983\pi\)
−0.602888 + 0.797826i \(0.705983\pi\)
\(992\) 0 0
\(993\) −2.47816e7 −0.797548
\(994\) 0 0
\(995\) 8.31734e6 0.266334
\(996\) 0 0
\(997\) −4.87422e7 −1.55298 −0.776492 0.630128i \(-0.783003\pi\)
−0.776492 + 0.630128i \(0.783003\pi\)
\(998\) 0 0
\(999\) 2.27264e7 0.720471
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.6.a.u.1.1 2
4.3 odd 2 448.6.a.w.1.2 2
8.3 odd 2 7.6.a.b.1.2 2
8.5 even 2 112.6.a.h.1.2 2
24.5 odd 2 1008.6.a.bq.1.1 2
24.11 even 2 63.6.a.f.1.1 2
40.3 even 4 175.6.b.c.99.1 4
40.19 odd 2 175.6.a.c.1.1 2
40.27 even 4 175.6.b.c.99.4 4
56.3 even 6 49.6.c.d.30.1 4
56.11 odd 6 49.6.c.e.30.1 4
56.13 odd 2 784.6.a.v.1.1 2
56.19 even 6 49.6.c.d.18.1 4
56.27 even 2 49.6.a.f.1.2 2
56.51 odd 6 49.6.c.e.18.1 4
88.43 even 2 847.6.a.c.1.1 2
168.83 odd 2 441.6.a.l.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.6.a.b.1.2 2 8.3 odd 2
49.6.a.f.1.2 2 56.27 even 2
49.6.c.d.18.1 4 56.19 even 6
49.6.c.d.30.1 4 56.3 even 6
49.6.c.e.18.1 4 56.51 odd 6
49.6.c.e.30.1 4 56.11 odd 6
63.6.a.f.1.1 2 24.11 even 2
112.6.a.h.1.2 2 8.5 even 2
175.6.a.c.1.1 2 40.19 odd 2
175.6.b.c.99.1 4 40.3 even 4
175.6.b.c.99.4 4 40.27 even 4
441.6.a.l.1.1 2 168.83 odd 2
448.6.a.u.1.1 2 1.1 even 1 trivial
448.6.a.w.1.2 2 4.3 odd 2
784.6.a.v.1.1 2 56.13 odd 2
847.6.a.c.1.1 2 88.43 even 2
1008.6.a.bq.1.1 2 24.5 odd 2