Properties

Label 175.7.c.a
Level 175175
Weight 77
Character orbit 175.c
Analytic conductor 40.25940.259
Analytic rank 00
Dimension 22
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,7,Mod(174,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.174");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 7 7
Character orbit: [χ][\chi] == 175.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 40.259464633540.2594646335
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+9iq217q4343iq7+423iq8729q9+1962q11+3087q144895q166561iq18+17658iq22+22734iq23+5831iq28+21222q2916983iq32+1430298q99+O(q100) q + 9 i q^{2} - 17 q^{4} - 343 i q^{7} + 423 i q^{8} - 729 q^{9} + 1962 q^{11} + 3087 q^{14} - 4895 q^{16} - 6561 i q^{18} + 17658 i q^{22} + 22734 i q^{23} + 5831 i q^{28} + 21222 q^{29} - 16983 i q^{32} + \cdots - 1430298 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q34q41458q9+3924q11+6174q149790q16+42444q29+24786q3666708q44409212q46235298q49+290178q56320866q64484956q711821492q74+2860596q99+O(q100) 2 q - 34 q^{4} - 1458 q^{9} + 3924 q^{11} + 6174 q^{14} - 9790 q^{16} + 42444 q^{29} + 24786 q^{36} - 66708 q^{44} - 409212 q^{46} - 235298 q^{49} + 290178 q^{56} - 320866 q^{64} - 484956 q^{71} - 1821492 q^{74}+ \cdots - 2860596 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/175Z)×\left(\mathbb{Z}/175\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
174.1
1.00000i
1.00000i
9.00000i 0 −17.0000 0 0 343.000i 423.000i −729.000 0
174.2 9.00000i 0 −17.0000 0 0 343.000i 423.000i −729.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
5.b even 2 1 inner
35.c odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.7.c.a 2
5.b even 2 1 inner 175.7.c.a 2
5.c odd 4 1 7.7.b.a 1
5.c odd 4 1 175.7.d.a 1
7.b odd 2 1 CM 175.7.c.a 2
15.e even 4 1 63.7.d.a 1
20.e even 4 1 112.7.c.a 1
35.c odd 2 1 inner 175.7.c.a 2
35.f even 4 1 7.7.b.a 1
35.f even 4 1 175.7.d.a 1
35.k even 12 2 49.7.d.a 2
35.l odd 12 2 49.7.d.a 2
40.i odd 4 1 448.7.c.a 1
40.k even 4 1 448.7.c.b 1
105.k odd 4 1 63.7.d.a 1
140.j odd 4 1 112.7.c.a 1
280.s even 4 1 448.7.c.a 1
280.y odd 4 1 448.7.c.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.7.b.a 1 5.c odd 4 1
7.7.b.a 1 35.f even 4 1
49.7.d.a 2 35.k even 12 2
49.7.d.a 2 35.l odd 12 2
63.7.d.a 1 15.e even 4 1
63.7.d.a 1 105.k odd 4 1
112.7.c.a 1 20.e even 4 1
112.7.c.a 1 140.j odd 4 1
175.7.c.a 2 1.a even 1 1 trivial
175.7.c.a 2 5.b even 2 1 inner
175.7.c.a 2 7.b odd 2 1 CM
175.7.c.a 2 35.c odd 2 1 inner
175.7.d.a 1 5.c odd 4 1
175.7.d.a 1 35.f even 4 1
448.7.c.a 1 40.i odd 4 1
448.7.c.a 1 280.s even 4 1
448.7.c.b 1 40.k even 4 1
448.7.c.b 1 280.y odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+81 T_{2}^{2} + 81 acting on S7new(175,[χ])S_{7}^{\mathrm{new}}(175, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+81 T^{2} + 81 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+117649 T^{2} + 117649 Copy content Toggle raw display
1111 (T1962)2 (T - 1962)^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2+516834756 T^{2} + 516834756 Copy content Toggle raw display
2929 (T21222)2 (T - 21222)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2+10240225636 T^{2} + 10240225636 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+16031104996 T^{2} + 16031104996 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+2534719716 T^{2} + 2534719716 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2+2908013476 T^{2} + 2908013476 Copy content Toggle raw display
7171 (T+242478)2 (T + 242478)^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 (T+929378)2 (T + 929378)^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less