Properties

Label 175.7.d.a
Level 175175
Weight 77
Character orbit 175.d
Self dual yes
Analytic conductor 40.25940.259
Analytic rank 00
Dimension 11
CM discriminant -7
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,7,Mod(76,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.76");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 7 7
Character orbit: [χ][\chi] == 175.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 40.259464633540.2594646335
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q9q2+17q4+343q7+423q8+729q9+1962q113087q144895q166561q1817658q22+22734q23+5831q2821222q29+16983q32+12393q36++1430298q99+O(q100) q - 9 q^{2} + 17 q^{4} + 343 q^{7} + 423 q^{8} + 729 q^{9} + 1962 q^{11} - 3087 q^{14} - 4895 q^{16} - 6561 q^{18} - 17658 q^{22} + 22734 q^{23} + 5831 q^{28} - 21222 q^{29} + 16983 q^{32} + 12393 q^{36}+ \cdots + 1430298 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/175Z)×\left(\mathbb{Z}/175\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
76.1
0
−9.00000 0 17.0000 0 0 343.000 423.000 729.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.7.d.a 1
5.b even 2 1 7.7.b.a 1
5.c odd 4 2 175.7.c.a 2
7.b odd 2 1 CM 175.7.d.a 1
15.d odd 2 1 63.7.d.a 1
20.d odd 2 1 112.7.c.a 1
35.c odd 2 1 7.7.b.a 1
35.f even 4 2 175.7.c.a 2
35.i odd 6 2 49.7.d.a 2
35.j even 6 2 49.7.d.a 2
40.e odd 2 1 448.7.c.b 1
40.f even 2 1 448.7.c.a 1
105.g even 2 1 63.7.d.a 1
140.c even 2 1 112.7.c.a 1
280.c odd 2 1 448.7.c.a 1
280.n even 2 1 448.7.c.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.7.b.a 1 5.b even 2 1
7.7.b.a 1 35.c odd 2 1
49.7.d.a 2 35.i odd 6 2
49.7.d.a 2 35.j even 6 2
63.7.d.a 1 15.d odd 2 1
63.7.d.a 1 105.g even 2 1
112.7.c.a 1 20.d odd 2 1
112.7.c.a 1 140.c even 2 1
175.7.c.a 2 5.c odd 4 2
175.7.c.a 2 35.f even 4 2
175.7.d.a 1 1.a even 1 1 trivial
175.7.d.a 1 7.b odd 2 1 CM
448.7.c.a 1 40.f even 2 1
448.7.c.a 1 280.c odd 2 1
448.7.c.b 1 40.e odd 2 1
448.7.c.b 1 280.n even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2+9 T_{2} + 9 acting on S7new(175,[χ])S_{7}^{\mathrm{new}}(175, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+9 T + 9 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T343 T - 343 Copy content Toggle raw display
1111 T1962 T - 1962 Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T22734 T - 22734 Copy content Toggle raw display
2929 T+21222 T + 21222 Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T+101194 T + 101194 Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T126614 T - 126614 Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T+50346 T + 50346 Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T53926 T - 53926 Copy content Toggle raw display
7171 T+242478 T + 242478 Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T929378 T - 929378 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less