Properties

Label 175.7.d.a.76.1
Level 175175
Weight 77
Character 175.76
Self dual yes
Analytic conductor 40.25940.259
Analytic rank 00
Dimension 11
CM discriminant -7
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,7,Mod(76,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.76");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 7 7
Character orbit: [χ][\chi] == 175.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 40.259464633540.2594646335
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 76.1
Character χ\chi == 175.76

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q9.00000q2+17.0000q4+343.000q7+423.000q8+729.000q9+1962.00q113087.00q144895.00q166561.00q1817658.0q22+22734.0q23+5831.00q2821222.0q29+16983.0q32+12393.0q36101194.q37+126614.q43+33354.0q44204606.q46+117649.q4950346.0q53+145089.q56+190998.q58+250047.q63+160433.q64+53926.0q67242478.q71+308367.q72+910746.q74+672966.q77+929378.q79+531441.q811.13953e6q86+829926.q88+386478.q921.05884e6q98+1.43030e6q99+O(q100)q-9.00000 q^{2} +17.0000 q^{4} +343.000 q^{7} +423.000 q^{8} +729.000 q^{9} +1962.00 q^{11} -3087.00 q^{14} -4895.00 q^{16} -6561.00 q^{18} -17658.0 q^{22} +22734.0 q^{23} +5831.00 q^{28} -21222.0 q^{29} +16983.0 q^{32} +12393.0 q^{36} -101194. q^{37} +126614. q^{43} +33354.0 q^{44} -204606. q^{46} +117649. q^{49} -50346.0 q^{53} +145089. q^{56} +190998. q^{58} +250047. q^{63} +160433. q^{64} +53926.0 q^{67} -242478. q^{71} +308367. q^{72} +910746. q^{74} +672966. q^{77} +929378. q^{79} +531441. q^{81} -1.13953e6 q^{86} +829926. q^{88} +386478. q^{92} -1.05884e6 q^{98} +1.43030e6 q^{99} +O(q^{100})

Character values

We give the values of χ\chi on generators for (Z/175Z)×\left(\mathbb{Z}/175\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −9.00000 −1.12500 −0.562500 0.826797i 0.690160π-0.690160\pi
−0.562500 + 0.826797i 0.690160π0.690160\pi
33 0 0 1.00000 00
−1.00000 π\pi
44 17.0000 0.265625
55 0 0
66 0 0
77 343.000 1.00000
88 423.000 0.826172
99 729.000 1.00000
1010 0 0
1111 1962.00 1.47408 0.737040 0.675849i 0.236223π-0.236223\pi
0.737040 + 0.675849i 0.236223π0.236223\pi
1212 0 0
1313 0 0 1.00000 00
−1.00000 π\pi
1414 −3087.00 −1.12500
1515 0 0
1616 −4895.00 −1.19507
1717 0 0 1.00000 00
−1.00000 π\pi
1818 −6561.00 −1.12500
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 0 0
2222 −17658.0 −1.65834
2323 22734.0 1.86850 0.934248 0.356623i 0.116072π-0.116072\pi
0.934248 + 0.356623i 0.116072π0.116072\pi
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 5831.00 0.265625
2929 −21222.0 −0.870146 −0.435073 0.900395i 0.643278π-0.643278\pi
−0.435073 + 0.900395i 0.643278π0.643278\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 16983.0 0.518280
3333 0 0
3434 0 0
3535 0 0
3636 12393.0 0.265625
3737 −101194. −1.99779 −0.998894 0.0470096i 0.985031π-0.985031\pi
−0.998894 + 0.0470096i 0.985031π0.985031\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 126614. 1.59249 0.796244 0.604975i 0.206817π-0.206817\pi
0.796244 + 0.604975i 0.206817π0.206817\pi
4444 33354.0 0.391552
4545 0 0
4646 −204606. −2.10206
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 117649. 1.00000
5050 0 0
5151 0 0
5252 0 0
5353 −50346.0 −0.338172 −0.169086 0.985601i 0.554082π-0.554082\pi
−0.169086 + 0.985601i 0.554082π0.554082\pi
5454 0 0
5555 0 0
5656 145089. 0.826172
5757 0 0
5858 190998. 0.978915
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 250047. 1.00000
6464 160433. 0.612003
6565 0 0
6666 0 0
6767 53926.0 0.179297 0.0896487 0.995973i 0.471426π-0.471426\pi
0.0896487 + 0.995973i 0.471426π0.471426\pi
6868 0 0
6969 0 0
7070 0 0
7171 −242478. −0.677481 −0.338741 0.940880i 0.610001π-0.610001\pi
−0.338741 + 0.940880i 0.610001π0.610001\pi
7272 308367. 0.826172
7373 0 0 1.00000 00
−1.00000 π\pi
7474 910746. 2.24751
7575 0 0
7676 0 0
7777 672966. 1.47408
7878 0 0
7979 929378. 1.88500 0.942499 0.334208i 0.108469π-0.108469\pi
0.942499 + 0.334208i 0.108469π0.108469\pi
8080 0 0
8181 531441. 1.00000
8282 0 0
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0 0
8686 −1.13953e6 −1.79155
8787 0 0
8888 829926. 1.21784
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 386478. 0.496319
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 −1.05884e6 −1.12500
9999 1.43030e6 1.47408
100100 0 0
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 453114. 0.380443
107107 −46314.0 −0.0378060 −0.0189030 0.999821i 0.506017π-0.506017\pi
−0.0189030 + 0.999821i 0.506017π0.506017\pi
108108 0 0
109109 −2.58714e6 −1.99775 −0.998874 0.0474386i 0.984894π-0.984894\pi
−0.998874 + 0.0474386i 0.984894π0.984894\pi
110110 0 0
111111 0 0
112112 −1.67898e6 −1.19507
113113 2.43689e6 1.68889 0.844445 0.535642i 0.179931π-0.179931\pi
0.844445 + 0.535642i 0.179931π0.179931\pi
114114 0 0
115115 0 0
116116 −360774. −0.231133
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 2.07788e6 1.17291
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 −2.25042e6 −1.12500
127127 96766.0 0.0472402 0.0236201 0.999721i 0.492481π-0.492481\pi
0.0236201 + 0.999721i 0.492481π0.492481\pi
128128 −2.53081e6 −1.20678
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 −485334. −0.201709
135135 0 0
136136 0 0
137137 −4.52939e6 −1.76148 −0.880741 0.473598i 0.842955π-0.842955\pi
−0.880741 + 0.473598i 0.842955π0.842955\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 2.18230e6 0.762166
143143 0 0
144144 −3.56846e6 −1.19507
145145 0 0
146146 0 0
147147 0 0
148148 −1.72030e6 −0.530663
149149 −5.95330e6 −1.79970 −0.899848 0.436204i 0.856323π-0.856323\pi
−0.899848 + 0.436204i 0.856323π0.856323\pi
150150 0 0
151151 1.82840e6 0.531057 0.265528 0.964103i 0.414454π-0.414454\pi
0.265528 + 0.964103i 0.414454π0.414454\pi
152152 0 0
153153 0 0
154154 −6.05669e6 −1.65834
155155 0 0
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 −8.36440e6 −2.12062
159159 0 0
160160 0 0
161161 7.79776e6 1.86850
162162 −4.78297e6 −1.12500
163163 5.49309e6 1.26839 0.634197 0.773171i 0.281331π-0.281331\pi
0.634197 + 0.773171i 0.281331π0.281331\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 4.82681e6 1.00000
170170 0 0
171171 0 0
172172 2.15244e6 0.423005
173173 0 0 1.00000 00
−1.00000 π\pi
174174 0 0
175175 0 0
176176 −9.60399e6 −1.76163
177177 0 0
178178 0 0
179179 −7.12762e6 −1.24276 −0.621378 0.783511i 0.713427π-0.713427\pi
−0.621378 + 0.783511i 0.713427π0.713427\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 9.61648e6 1.54370
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 2.64544e6 0.379663 0.189831 0.981817i 0.439206π-0.439206\pi
0.189831 + 0.981817i 0.439206π0.439206\pi
192192 0 0
193193 −6.68999e6 −0.930579 −0.465290 0.885159i 0.654050π-0.654050\pi
−0.465290 + 0.885159i 0.654050π0.654050\pi
194194 0 0
195195 0 0
196196 2.00003e6 0.265625
197197 1.04066e7 1.36117 0.680585 0.732670i 0.261726π-0.261726\pi
0.680585 + 0.732670i 0.261726π0.261726\pi
198198 −1.28727e7 −1.65834
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 0 0
202202 0 0
203203 −7.27915e6 −0.870146
204204 0 0
205205 0 0
206206 0 0
207207 1.65731e7 1.86850
208208 0 0
209209 0 0
210210 0 0
211211 1.56456e7 1.66550 0.832748 0.553652i 0.186766π-0.186766\pi
0.832748 + 0.553652i 0.186766π0.186766\pi
212212 −855882. −0.0898269
213213 0 0
214214 416826. 0.0425318
215215 0 0
216216 0 0
217217 0 0
218218 2.32843e7 2.24747
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 5.82517e6 0.518280
225225 0 0
226226 −2.19320e7 −1.90000
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 −8.97691e6 −0.718890
233233 2.92577e6 0.231299 0.115649 0.993290i 0.463105π-0.463105\pi
0.115649 + 0.993290i 0.463105π0.463105\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 2.71015e7 1.98518 0.992591 0.121505i 0.0387721π-0.0387721\pi
0.992591 + 0.121505i 0.0387721π0.0387721\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 −1.87009e7 −1.31952
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 4.25080e6 0.265625
253253 4.46041e7 2.75431
254254 −870894. −0.0531452
255255 0 0
256256 1.25096e7 0.745628
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 −3.47095e7 −1.99779
260260 0 0
261261 −1.54708e7 −0.870146
262262 0 0
263263 −2.01675e7 −1.10863 −0.554313 0.832308i 0.687019π-0.687019\pi
−0.554313 + 0.832308i 0.687019π0.687019\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 916742. 0.0476259
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 4.07645e7 1.98167
275275 0 0
276276 0 0
277277 −1.09282e7 −0.514175 −0.257087 0.966388i 0.582763π-0.582763\pi
−0.257087 + 0.966388i 0.582763π0.582763\pi
278278 0 0
279279 0 0
280280 0 0
281281 −2.55231e7 −1.15031 −0.575155 0.818045i 0.695058π-0.695058\pi
−0.575155 + 0.818045i 0.695058π0.695058\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 −4.12213e6 −0.179956
285285 0 0
286286 0 0
287287 0 0
288288 1.23806e7 0.518280
289289 2.41376e7 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 −4.28051e7 −1.65052
297297 0 0
298298 5.35797e7 2.02466
299299 0 0
300300 0 0
301301 4.34286e7 1.59249
302302 −1.64556e7 −0.597439
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 1.14404e7 0.391552
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 1.57994e7 0.500703
317317 1.51291e7 0.474937 0.237469 0.971395i 0.423682π-0.423682\pi
0.237469 + 0.971395i 0.423682π0.423682\pi
318318 0 0
319319 −4.16376e7 −1.28267
320320 0 0
321321 0 0
322322 −7.01799e7 −2.10206
323323 0 0
324324 9.03450e6 0.265625
325325 0 0
326326 −4.94378e7 −1.42694
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 4.64551e7 1.28100 0.640500 0.767958i 0.278727π-0.278727\pi
0.640500 + 0.767958i 0.278727π0.278727\pi
332332 0 0
333333 −7.37704e7 −1.99779
334334 0 0
335335 0 0
336336 0 0
337337 6.54566e7 1.71027 0.855133 0.518408i 0.173475π-0.173475\pi
0.855133 + 0.518408i 0.173475π0.173475\pi
338338 −4.34413e7 −1.12500
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 4.03536e7 1.00000
344344 5.35577e7 1.31567
345345 0 0
346346 0 0
347347 6.67538e7 1.59767 0.798836 0.601548i 0.205449π-0.205449\pi
0.798836 + 0.601548i 0.205449π0.205449\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0 0
352352 3.33206e7 0.763986
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 6.41486e7 1.39810
359359 −2.68617e7 −0.580565 −0.290282 0.956941i 0.593749π-0.593749\pi
−0.290282 + 0.956941i 0.593749π0.593749\pi
360360 0 0
361361 4.70459e7 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 −1.11283e8 −2.23298
369369 0 0
370370 0 0
371371 −1.72687e7 −0.338172
372372 0 0
373373 −9.13707e7 −1.76068 −0.880340 0.474344i 0.842685π-0.842685\pi
−0.880340 + 0.474344i 0.842685π0.842685\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 3.31112e7 0.608215 0.304107 0.952638i 0.401642π-0.401642\pi
0.304107 + 0.952638i 0.401642π0.401642\pi
380380 0 0
381381 0 0
382382 −2.38090e7 −0.427121
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 6.02099e7 1.04690
387387 9.23016e7 1.59249
388388 0 0
389389 −6.93106e6 −0.117747 −0.0588737 0.998265i 0.518751π-0.518751\pi
−0.0588737 + 0.998265i 0.518751π0.518751\pi
390390 0 0
391391 0 0
392392 4.97655e7 0.826172
393393 0 0
394394 −9.36598e7 −1.53132
395395 0 0
396396 2.43151e7 0.391552
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 0 0
401401 −1.26409e8 −1.96040 −0.980199 0.198016i 0.936550π-0.936550\pi
−0.980199 + 0.198016i 0.936550π0.936550\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 6.55123e7 0.978915
407407 −1.98543e8 −2.94490
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 −1.49158e8 −2.10206
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 8.36917e7 1.12160 0.560798 0.827953i 0.310495π-0.310495\pi
0.560798 + 0.827953i 0.310495π0.310495\pi
422422 −1.40810e8 −1.87368
423423 0 0
424424 −2.12964e7 −0.279388
425425 0 0
426426 0 0
427427 0 0
428428 −787338. −0.0100422
429429 0 0
430430 0 0
431431 −8.60283e7 −1.07451 −0.537254 0.843421i 0.680538π-0.680538\pi
−0.537254 + 0.843421i 0.680538π0.680538\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 −4.39814e7 −0.530652
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 8.57661e7 1.00000
442442 0 0
443443 −1.71340e8 −1.97082 −0.985410 0.170196i 0.945560π-0.945560\pi
−0.985410 + 0.170196i 0.945560π0.945560\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 5.50285e7 0.612003
449449 −1.73823e8 −1.92030 −0.960149 0.279490i 0.909835π-0.909835\pi
−0.960149 + 0.279490i 0.909835π0.909835\pi
450450 0 0
451451 0 0
452452 4.14272e7 0.448611
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 1.26728e8 1.32777 0.663886 0.747834i 0.268906π-0.268906\pi
0.663886 + 0.747834i 0.268906π0.268906\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 1.27272e8 1.28230 0.641151 0.767415i 0.278457π-0.278457\pi
0.641151 + 0.767415i 0.278457π0.278457\pi
464464 1.03882e8 1.03988
465465 0 0
466466 −2.63320e7 −0.260211
467467 0 0 1.00000 00
−1.00000 π\pi
468468 0 0
469469 1.84966e7 0.179297
470470 0 0
471471 0 0
472472 0 0
473473 2.48417e8 2.34746
474474 0 0
475475 0 0
476476 0 0
477477 −3.67022e7 −0.338172
478478 −2.43914e8 −2.23333
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 3.53240e7 0.311554
485485 0 0
486486 0 0
487487 −2.20135e8 −1.90591 −0.952955 0.303113i 0.901974π-0.901974\pi
−0.952955 + 0.303113i 0.901974π0.901974\pi
488488 0 0
489489 0 0
490490 0 0
491491 1.78277e8 1.50609 0.753044 0.657970i 0.228585π-0.228585\pi
0.753044 + 0.657970i 0.228585π0.228585\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 −8.31700e7 −0.677481
498498 0 0
499499 −1.96143e8 −1.57860 −0.789300 0.614008i 0.789556π-0.789556\pi
−0.789300 + 0.614008i 0.789556π0.789556\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 1.05770e8 0.826172
505505 0 0
506506 −4.01437e8 −3.09860
507507 0 0
508508 1.64502e6 0.0125482
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 4.93857e7 0.367952
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 3.12386e8 2.24751
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 1.39238e8 0.978915
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 1.81508e8 1.24720
527527 0 0
528528 0 0
529529 3.68799e8 2.49128
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 2.28107e7 0.148130
537537 0 0
538538 0 0
539539 2.30827e8 1.47408
540540 0 0
541541 −6.45700e7 −0.407792 −0.203896 0.978993i 0.565360π-0.565360\pi
−0.203896 + 0.978993i 0.565360π0.565360\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 1.58854e8 0.970592 0.485296 0.874350i 0.338712π-0.338712\pi
0.485296 + 0.874350i 0.338712π0.338712\pi
548548 −7.69997e7 −0.467894
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 3.18777e8 1.88500
554554 9.83541e7 0.578447
555555 0 0
556556 0 0
557557 −7.34035e7 −0.424767 −0.212384 0.977186i 0.568123π-0.568123\pi
−0.212384 + 0.977186i 0.568123π0.568123\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 2.29708e8 1.29410
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 0 0
566566 0 0
567567 1.82284e8 1.00000
568568 −1.02568e8 −0.559716
569569 3.55493e8 1.92972 0.964859 0.262767i 0.0846349π-0.0846349\pi
0.964859 + 0.262767i 0.0846349π0.0846349\pi
570570 0 0
571571 −3.26262e8 −1.75250 −0.876250 0.481857i 0.839963π-0.839963\pi
−0.876250 + 0.481857i 0.839963π0.839963\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 1.16956e8 0.612003
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −2.17238e8 −1.12500
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 −9.87789e7 −0.498492
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 4.95345e8 2.38749
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 −1.01206e8 −0.478044
597597 0 0
598598 0 0
599599 1.82026e8 0.846941 0.423471 0.905910i 0.360812π-0.360812\pi
0.423471 + 0.905910i 0.360812π0.360812\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 −3.90857e8 −1.79155
603603 3.93121e7 0.179297
604604 3.10828e7 0.141062
605605 0 0
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 2.35393e8 1.02191 0.510954 0.859608i 0.329292π-0.329292\pi
0.510954 + 0.859608i 0.329292π0.329292\pi
614614 0 0
615615 0 0
616616 2.84665e8 1.21784
617617 −4.63532e8 −1.97344 −0.986721 0.162423i 0.948069π-0.948069\pi
−0.986721 + 0.162423i 0.948069π0.948069\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 1.83542e8 0.730544 0.365272 0.930901i 0.380976π-0.380976\pi
0.365272 + 0.930901i 0.380976π0.380976\pi
632632 3.93127e8 1.55733
633633 0 0
634634 −1.36162e8 −0.534304
635635 0 0
636636 0 0
637637 0 0
638638 3.74738e8 1.44300
639639 −1.76766e8 −0.677481
640640 0 0
641641 −4.47931e8 −1.70073 −0.850367 0.526189i 0.823620π-0.823620\pi
−0.850367 + 0.526189i 0.823620π0.823620\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 1.32562e8 0.496319
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 2.24800e8 0.826172
649649 0 0
650650 0 0
651651 0 0
652652 9.33826e7 0.336917
653653 −1.74812e8 −0.627816 −0.313908 0.949453i 0.601638π-0.601638\pi
−0.313908 + 0.949453i 0.601638π0.601638\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 −5.69128e8 −1.98863 −0.994314 0.106485i 0.966040π-0.966040\pi
−0.994314 + 0.106485i 0.966040π0.966040\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 −4.18096e8 −1.44113
663663 0 0
664664 0 0
665665 0 0
666666 6.63934e8 2.24751
667667 −4.82461e8 −1.62587
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −5.17302e8 −1.69707 −0.848534 0.529141i 0.822514π-0.822514\pi
−0.848534 + 0.529141i 0.822514π0.822514\pi
674674 −5.89109e8 −1.92405
675675 0 0
676676 8.20558e7 0.265625
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 −5.22860e8 −1.64105 −0.820527 0.571607i 0.806320π-0.806320\pi
−0.820527 + 0.571607i 0.806320π0.806320\pi
684684 0 0
685685 0 0
686686 −3.63182e8 −1.12500
687687 0 0
688688 −6.19776e8 −1.90313
689689 0 0
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 0 0
693693 4.90592e8 1.47408
694694 −6.00785e8 −1.79738
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 −6.71321e8 −1.94884 −0.974420 0.224735i 0.927848π-0.927848\pi
−0.974420 + 0.224735i 0.927848π0.927848\pi
702702 0 0
703703 0 0
704704 3.14770e8 0.902142
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −5.55400e8 −1.55836 −0.779178 0.626802i 0.784363π-0.784363\pi
−0.779178 + 0.626802i 0.784363π0.784363\pi
710710 0 0
711711 6.77517e8 1.88500
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 −1.21170e8 −0.330107
717717 0 0
718718 2.41756e8 0.653136
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 −4.23413e8 −1.12500
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 3.87420e8 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 3.86092e8 0.968405
737737 1.05803e8 0.264299
738738 0 0
739739 −1.65862e8 −0.410973 −0.205486 0.978660i 0.565878π-0.565878\pi
−0.205486 + 0.978660i 0.565878π0.565878\pi
740740 0 0
741741 0 0
742742 1.55418e8 0.380443
743743 1.87319e8 0.456684 0.228342 0.973581i 0.426670π-0.426670\pi
0.228342 + 0.973581i 0.426670π0.426670\pi
744744 0 0
745745 0 0
746746 8.22336e8 1.98076
747747 0 0
748748 0 0
749749 −1.58857e7 −0.0378060
750750 0 0
751751 −8.41137e8 −1.98585 −0.992926 0.118736i 0.962116π-0.962116\pi
−0.992926 + 0.118736i 0.962116π0.962116\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −3.45533e8 −0.796529 −0.398264 0.917271i 0.630387π-0.630387\pi
−0.398264 + 0.917271i 0.630387π0.630387\pi
758758 −2.98001e8 −0.684242
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 −8.87390e8 −1.99775
764764 4.49725e7 0.100848
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 −1.13730e8 −0.247185
773773 0 0 1.00000 00
−1.00000 π\pi
774774 −8.30714e8 −1.79155
775775 0 0
776776 0 0
777777 0 0
778778 6.23796e7 0.132466
779779 0 0
780780 0 0
781781 −4.75742e8 −0.998661
782782 0 0
783783 0 0
784784 −5.75892e8 −1.19507
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 1.76913e8 0.361561
789789 0 0
790790 0 0
791791 8.35855e8 1.68889
792792 6.05016e8 1.21784
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 1.13768e9 2.20545
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 3.36371e8 0.635292 0.317646 0.948209i 0.397108π-0.397108\pi
0.317646 + 0.948209i 0.397108π0.397108\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 −1.23745e8 −0.231133
813813 0 0
814814 1.78688e9 3.31301
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 7.88782e8 1.42537 0.712685 0.701484i 0.247479π-0.247479\pi
0.712685 + 0.701484i 0.247479π0.247479\pi
822822 0 0
823823 −1.02325e9 −1.83563 −0.917813 0.397014i 0.870046π-0.870046\pi
−0.917813 + 0.397014i 0.870046π0.870046\pi
824824 0 0
825825 0 0
826826 0 0
827827 5.56178e8 0.983326 0.491663 0.870786i 0.336389π-0.336389\pi
0.491663 + 0.870786i 0.336389π0.336389\pi
828828 2.81742e8 0.496319
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 −1.44450e8 −0.242845
842842 −7.53225e8 −1.26179
843843 0 0
844844 2.65975e8 0.442398
845845 0 0
846846 0 0
847847 7.12714e8 1.17291
848848 2.46444e8 0.404138
849849 0 0
850850 0 0
851851 −2.30054e9 −3.73286
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 −1.95908e7 −0.0312343
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 7.74255e8 1.20882
863863 8.77431e8 1.36515 0.682576 0.730815i 0.260860π-0.260860\pi
0.682576 + 0.730815i 0.260860π0.260860\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 1.82344e9 2.77864
870870 0 0
871871 0 0
872872 −1.09436e9 −1.65048
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 1.30615e9 1.93640 0.968198 0.250185i 0.0804915π-0.0804915\pi
0.968198 + 0.250185i 0.0804915π0.0804915\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 −7.71895e8 −1.12500
883883 4.73327e8 0.687510 0.343755 0.939059i 0.388301π-0.388301\pi
0.343755 + 0.939059i 0.388301π0.388301\pi
884884 0 0
885885 0 0
886886 1.54206e9 2.21717
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 3.31907e7 0.0472402
890890 0 0
891891 1.04269e9 1.47408
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 −8.68067e8 −1.20678
897897 0 0
898898 1.56441e9 2.16033
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 1.03081e9 1.39531
905905 0 0
906906 0 0
907907 −1.28922e9 −1.72785 −0.863925 0.503621i 0.832001π-0.832001\pi
−0.863925 + 0.503621i 0.832001π0.832001\pi
908908 0 0
909909 0 0
910910 0 0
911911 5.85794e7 0.0774800 0.0387400 0.999249i 0.487666π-0.487666\pi
0.0387400 + 0.999249i 0.487666π0.487666\pi
912912 0 0
913913 0 0
914914 −1.14055e9 −1.49374
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 −1.07950e9 −1.39084 −0.695419 0.718604i 0.744781π-0.744781\pi
−0.695419 + 0.718604i 0.744781π0.744781\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 −1.14545e9 −1.44259
927927 0 0
928928 −3.60413e8 −0.450979
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 4.97382e7 0.0614387
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 −1.66470e8 −0.201709
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 −2.23575e9 −2.64089
947947 −6.84836e8 −0.806374 −0.403187 0.915118i 0.632098π-0.632098\pi
−0.403187 + 0.915118i 0.632098π0.632098\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 8.73142e8 1.00880 0.504401 0.863469i 0.331713π-0.331713\pi
0.504401 + 0.863469i 0.331713π0.331713\pi
954954 3.30320e8 0.380443
955955 0 0
956956 4.60726e8 0.527314
957957 0 0
958958 0 0
959959 −1.55358e9 −1.76148
960960 0 0
961961 8.87504e8 1.00000
962962 0 0
963963 −3.37629e7 −0.0378060
964964 0 0
965965 0 0
966966 0 0
967967 −8.99699e8 −0.994988 −0.497494 0.867467i 0.665746π-0.665746\pi
−0.497494 + 0.867467i 0.665746π0.665746\pi
968968 8.78945e8 0.969026
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 1.98121e9 2.14415
975975 0 0
976976 0 0
977977 4.59650e8 0.492882 0.246441 0.969158i 0.420739π-0.420739\pi
0.246441 + 0.969158i 0.420739π0.420739\pi
978978 0 0
979979 0 0
980980 0 0
981981 −1.88603e9 −1.99775
982982 −1.60449e9 −1.69435
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 2.87844e9 2.97556
990990 0 0
991991 1.36299e9 1.40046 0.700230 0.713918i 0.253081π-0.253081\pi
0.700230 + 0.713918i 0.253081π0.253081\pi
992992 0 0
993993 0 0
994994 7.48530e8 0.762166
995995 0 0
996996 0 0
997997 0 0 1.00000 00
−1.00000 π\pi
998998 1.76529e9 1.77592
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.7.d.a.76.1 1
5.2 odd 4 175.7.c.a.174.1 2
5.3 odd 4 175.7.c.a.174.2 2
5.4 even 2 7.7.b.a.6.1 1
7.6 odd 2 CM 175.7.d.a.76.1 1
15.14 odd 2 63.7.d.a.55.1 1
20.19 odd 2 112.7.c.a.97.1 1
35.4 even 6 49.7.d.a.19.1 2
35.9 even 6 49.7.d.a.31.1 2
35.13 even 4 175.7.c.a.174.2 2
35.19 odd 6 49.7.d.a.31.1 2
35.24 odd 6 49.7.d.a.19.1 2
35.27 even 4 175.7.c.a.174.1 2
35.34 odd 2 7.7.b.a.6.1 1
40.19 odd 2 448.7.c.b.321.1 1
40.29 even 2 448.7.c.a.321.1 1
105.104 even 2 63.7.d.a.55.1 1
140.139 even 2 112.7.c.a.97.1 1
280.69 odd 2 448.7.c.a.321.1 1
280.139 even 2 448.7.c.b.321.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.7.b.a.6.1 1 5.4 even 2
7.7.b.a.6.1 1 35.34 odd 2
49.7.d.a.19.1 2 35.4 even 6
49.7.d.a.19.1 2 35.24 odd 6
49.7.d.a.31.1 2 35.9 even 6
49.7.d.a.31.1 2 35.19 odd 6
63.7.d.a.55.1 1 15.14 odd 2
63.7.d.a.55.1 1 105.104 even 2
112.7.c.a.97.1 1 20.19 odd 2
112.7.c.a.97.1 1 140.139 even 2
175.7.c.a.174.1 2 5.2 odd 4
175.7.c.a.174.1 2 35.27 even 4
175.7.c.a.174.2 2 5.3 odd 4
175.7.c.a.174.2 2 35.13 even 4
175.7.d.a.76.1 1 1.1 even 1 trivial
175.7.d.a.76.1 1 7.6 odd 2 CM
448.7.c.a.321.1 1 40.29 even 2
448.7.c.a.321.1 1 280.69 odd 2
448.7.c.b.321.1 1 40.19 odd 2
448.7.c.b.321.1 1 280.139 even 2