Properties

Label 175.8.b.a
Level 175175
Weight 88
Character orbit 175.b
Analytic conductor 54.66754.667
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,8,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 175.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 54.667379459754.6673794597
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+6iq242iq3+92q4+252q6343iq7+1320iq8+423q95568q113864iq125152iq13+2058q14+3856q16+13986iq17+2538iq1855370q19+2355264q99+O(q100) q + 6 i q^{2} - 42 i q^{3} + 92 q^{4} + 252 q^{6} - 343 i q^{7} + 1320 i q^{8} + 423 q^{9} - 5568 q^{11} - 3864 i q^{12} - 5152 i q^{13} + 2058 q^{14} + 3856 q^{16} + 13986 i q^{17} + 2538 i q^{18} - 55370 q^{19} + \cdots - 2355264 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+184q4+504q6+846q911136q11+4116q14+7712q16110740q1928812q21+110880q24+61824q2683220q29+300664q31167832q34+77832q36+4710528q99+O(q100) 2 q + 184 q^{4} + 504 q^{6} + 846 q^{9} - 11136 q^{11} + 4116 q^{14} + 7712 q^{16} - 110740 q^{19} - 28812 q^{21} + 110880 q^{24} + 61824 q^{26} - 83220 q^{29} + 300664 q^{31} - 167832 q^{34} + 77832 q^{36}+ \cdots - 4710528 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/175Z)×\left(\mathbb{Z}/175\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
99.1
1.00000i
1.00000i
6.00000i 42.0000i 92.0000 0 252.000 343.000i 1320.00i 423.000 0
99.2 6.00000i 42.0000i 92.0000 0 252.000 343.000i 1320.00i 423.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.8.b.a 2
5.b even 2 1 inner 175.8.b.a 2
5.c odd 4 1 7.8.a.a 1
5.c odd 4 1 175.8.a.a 1
15.e even 4 1 63.8.a.b 1
20.e even 4 1 112.8.a.c 1
35.f even 4 1 49.8.a.b 1
35.k even 12 2 49.8.c.a 2
35.l odd 12 2 49.8.c.b 2
40.i odd 4 1 448.8.a.g 1
40.k even 4 1 448.8.a.d 1
105.k odd 4 1 441.8.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.8.a.a 1 5.c odd 4 1
49.8.a.b 1 35.f even 4 1
49.8.c.a 2 35.k even 12 2
49.8.c.b 2 35.l odd 12 2
63.8.a.b 1 15.e even 4 1
112.8.a.c 1 20.e even 4 1
175.8.a.a 1 5.c odd 4 1
175.8.b.a 2 1.a even 1 1 trivial
175.8.b.a 2 5.b even 2 1 inner
441.8.a.e 1 105.k odd 4 1
448.8.a.d 1 40.k even 4 1
448.8.a.g 1 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+36 T_{2}^{2} + 36 acting on S8new(175,[χ])S_{8}^{\mathrm{new}}(175, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+36 T^{2} + 36 Copy content Toggle raw display
33 T2+1764 T^{2} + 1764 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+117649 T^{2} + 117649 Copy content Toggle raw display
1111 (T+5568)2 (T + 5568)^{2} Copy content Toggle raw display
1313 T2+26543104 T^{2} + 26543104 Copy content Toggle raw display
1717 T2+195608196 T^{2} + 195608196 Copy content Toggle raw display
1919 (T+55370)2 (T + 55370)^{2} Copy content Toggle raw display
2323 T2+8330577984 T^{2} + 8330577984 Copy content Toggle raw display
2929 (T+41610)2 (T + 41610)^{2} Copy content Toggle raw display
3131 (T150332)2 (T - 150332)^{2} Copy content Toggle raw display
3737 T2+18595685956 T^{2} + 18595685956 Copy content Toggle raw display
4141 (T+510258)2 (T + 510258)^{2} Copy content Toggle raw display
4343 T2+29608773184 T^{2} + 29608773184 Copy content Toggle raw display
4747 T2+269398369296 T^{2} + 269398369296 Copy content Toggle raw display
5353 T2+3504876804 T^{2} + 3504876804 Copy content Toggle raw display
5959 (T+1979250)2 (T + 1979250)^{2} Copy content Toggle raw display
6161 (T+2988748)2 (T + 2988748)^{2} Copy content Toggle raw display
6767 T2+5805227635216 T^{2} + 5805227635216 Copy content Toggle raw display
7171 (T1504512)2 (T - 1504512)^{2} Copy content Toggle raw display
7373 T2+3316121124484 T^{2} + 3316121124484 Copy content Toggle raw display
7979 (T1669240)2 (T - 1669240)^{2} Copy content Toggle raw display
8383 T2+485443840644 T^{2} + 485443840644 Copy content Toggle raw display
8989 (T+5558490)2 (T + 5558490)^{2} Copy content Toggle raw display
9797 T2+97549874506756 T^{2} + 97549874506756 Copy content Toggle raw display
show more
show less