Properties

Label 176.4.e.b
Level 176176
Weight 44
Character orbit 176.e
Analytic conductor 10.38410.384
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,4,Mod(175,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.175");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 176=2411 176 = 2^{4} \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 176.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.384336161010.3843361610
Analytic rank: 00
Dimension: 22
Coefficient field: Q(19)\Q(\sqrt{-19})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+5 x^{2} - x + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=19\beta = \sqrt{-19}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβq3+7q520q7+8q9+(7β+20)q1120βq137βq15+20βq17140q19+20βq2121βq2376q2535βq27++(56β+160)q99+O(q100) q - \beta q^{3} + 7 q^{5} - 20 q^{7} + 8 q^{9} + ( - 7 \beta + 20) q^{11} - 20 \beta q^{13} - 7 \beta q^{15} + 20 \beta q^{17} - 140 q^{19} + 20 \beta q^{21} - 21 \beta q^{23} - 76 q^{25} - 35 \beta q^{27} + \cdots + ( - 56 \beta + 160) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+14q540q7+16q9+40q11280q19152q25266q33280q35+182q37760q39+560q43+112q45+114q49+760q51+924q53+280q55++320q99+O(q100) 2 q + 14 q^{5} - 40 q^{7} + 16 q^{9} + 40 q^{11} - 280 q^{19} - 152 q^{25} - 266 q^{33} - 280 q^{35} + 182 q^{37} - 760 q^{39} + 560 q^{43} + 112 q^{45} + 114 q^{49} + 760 q^{51} + 924 q^{53} + 280 q^{55}+ \cdots + 320 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/176Z)×\left(\mathbb{Z}/176\mathbb{Z}\right)^\times.

nn 111111 133133 145145
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
175.1
0.500000 + 2.17945i
0.500000 2.17945i
0 4.35890i 0 7.00000 0 −20.0000 0 8.00000 0
175.2 0 4.35890i 0 7.00000 0 −20.0000 0 8.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 176.4.e.b 2
3.b odd 2 1 1584.4.o.a 2
4.b odd 2 1 176.4.e.c yes 2
8.b even 2 1 704.4.e.a 2
8.d odd 2 1 704.4.e.b 2
11.b odd 2 1 176.4.e.c yes 2
12.b even 2 1 1584.4.o.b 2
33.d even 2 1 1584.4.o.b 2
44.c even 2 1 inner 176.4.e.b 2
88.b odd 2 1 704.4.e.b 2
88.g even 2 1 704.4.e.a 2
132.d odd 2 1 1584.4.o.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
176.4.e.b 2 1.a even 1 1 trivial
176.4.e.b 2 44.c even 2 1 inner
176.4.e.c yes 2 4.b odd 2 1
176.4.e.c yes 2 11.b odd 2 1
704.4.e.a 2 8.b even 2 1
704.4.e.a 2 88.g even 2 1
704.4.e.b 2 8.d odd 2 1
704.4.e.b 2 88.b odd 2 1
1584.4.o.a 2 3.b odd 2 1
1584.4.o.a 2 132.d odd 2 1
1584.4.o.b 2 12.b even 2 1
1584.4.o.b 2 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(176,[χ])S_{4}^{\mathrm{new}}(176, [\chi]):

T32+19 T_{3}^{2} + 19 Copy content Toggle raw display
T7+20 T_{7} + 20 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+19 T^{2} + 19 Copy content Toggle raw display
55 (T7)2 (T - 7)^{2} Copy content Toggle raw display
77 (T+20)2 (T + 20)^{2} Copy content Toggle raw display
1111 T240T+1331 T^{2} - 40T + 1331 Copy content Toggle raw display
1313 T2+7600 T^{2} + 7600 Copy content Toggle raw display
1717 T2+7600 T^{2} + 7600 Copy content Toggle raw display
1919 (T+140)2 (T + 140)^{2} Copy content Toggle raw display
2323 T2+8379 T^{2} + 8379 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+31939 T^{2} + 31939 Copy content Toggle raw display
3737 (T91)2 (T - 91)^{2} Copy content Toggle raw display
4141 T2+7600 T^{2} + 7600 Copy content Toggle raw display
4343 (T280)2 (T - 280)^{2} Copy content Toggle raw display
4747 T2+9196 T^{2} + 9196 Copy content Toggle raw display
5353 (T462)2 (T - 462)^{2} Copy content Toggle raw display
5959 T2+636291 T^{2} + 636291 Copy content Toggle raw display
6161 T2+273600 T^{2} + 273600 Copy content Toggle raw display
6767 T2+410571 T^{2} + 410571 Copy content Toggle raw display
7171 T2+209475 T^{2} + 209475 Copy content Toggle raw display
7373 T2+7600 T^{2} + 7600 Copy content Toggle raw display
7979 (T560)2 (T - 560)^{2} Copy content Toggle raw display
8383 (T1120)2 (T - 1120)^{2} Copy content Toggle raw display
8989 (T399)2 (T - 399)^{2} Copy content Toggle raw display
9797 (T959)2 (T - 959)^{2} Copy content Toggle raw display
show more
show less