Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [704,4,Mod(703,704)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(704, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("704.703");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 704.e (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 176) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
703.1 |
|
0 | − | 4.35890i | 0 | −7.00000 | 0 | 20.0000 | 0 | 8.00000 | 0 | |||||||||||||||||||||||
703.2 | 0 | 4.35890i | 0 | −7.00000 | 0 | 20.0000 | 0 | 8.00000 | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
44.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 704.4.e.b | 2 | |
4.b | odd | 2 | 1 | 704.4.e.a | 2 | ||
8.b | even | 2 | 1 | 176.4.e.c | yes | 2 | |
8.d | odd | 2 | 1 | 176.4.e.b | ✓ | 2 | |
11.b | odd | 2 | 1 | 704.4.e.a | 2 | ||
24.f | even | 2 | 1 | 1584.4.o.a | 2 | ||
24.h | odd | 2 | 1 | 1584.4.o.b | 2 | ||
44.c | even | 2 | 1 | inner | 704.4.e.b | 2 | |
88.b | odd | 2 | 1 | 176.4.e.b | ✓ | 2 | |
88.g | even | 2 | 1 | 176.4.e.c | yes | 2 | |
264.m | even | 2 | 1 | 1584.4.o.a | 2 | ||
264.p | odd | 2 | 1 | 1584.4.o.b | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
176.4.e.b | ✓ | 2 | 8.d | odd | 2 | 1 | |
176.4.e.b | ✓ | 2 | 88.b | odd | 2 | 1 | |
176.4.e.c | yes | 2 | 8.b | even | 2 | 1 | |
176.4.e.c | yes | 2 | 88.g | even | 2 | 1 | |
704.4.e.a | 2 | 4.b | odd | 2 | 1 | ||
704.4.e.a | 2 | 11.b | odd | 2 | 1 | ||
704.4.e.b | 2 | 1.a | even | 1 | 1 | trivial | |
704.4.e.b | 2 | 44.c | even | 2 | 1 | inner | |
1584.4.o.a | 2 | 24.f | even | 2 | 1 | ||
1584.4.o.a | 2 | 264.m | even | 2 | 1 | ||
1584.4.o.b | 2 | 24.h | odd | 2 | 1 | ||
1584.4.o.b | 2 | 264.p | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|