Properties

Label 704.4.e.b
Level $704$
Weight $4$
Character orbit 704.e
Analytic conductor $41.537$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,4,Mod(703,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.703");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.5373446440\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-19}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 176)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-19}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} - 7 q^{5} + 20 q^{7} + 8 q^{9} + ( - 7 \beta + 20) q^{11} + 20 \beta q^{13} + 7 \beta q^{15} + 20 \beta q^{17} - 140 q^{19} - 20 \beta q^{21} + 21 \beta q^{23} - 76 q^{25} - 35 \beta q^{27} + \cdots + ( - 56 \beta + 160) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{5} + 40 q^{7} + 16 q^{9} + 40 q^{11} - 280 q^{19} - 152 q^{25} - 266 q^{33} - 280 q^{35} - 182 q^{37} + 760 q^{39} + 560 q^{43} - 112 q^{45} + 114 q^{49} + 760 q^{51} - 924 q^{53} - 280 q^{55}+ \cdots + 320 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
703.1
0.500000 + 2.17945i
0.500000 2.17945i
0 4.35890i 0 −7.00000 0 20.0000 0 8.00000 0
703.2 0 4.35890i 0 −7.00000 0 20.0000 0 8.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.4.e.b 2
4.b odd 2 1 704.4.e.a 2
8.b even 2 1 176.4.e.c yes 2
8.d odd 2 1 176.4.e.b 2
11.b odd 2 1 704.4.e.a 2
24.f even 2 1 1584.4.o.a 2
24.h odd 2 1 1584.4.o.b 2
44.c even 2 1 inner 704.4.e.b 2
88.b odd 2 1 176.4.e.b 2
88.g even 2 1 176.4.e.c yes 2
264.m even 2 1 1584.4.o.a 2
264.p odd 2 1 1584.4.o.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
176.4.e.b 2 8.d odd 2 1
176.4.e.b 2 88.b odd 2 1
176.4.e.c yes 2 8.b even 2 1
176.4.e.c yes 2 88.g even 2 1
704.4.e.a 2 4.b odd 2 1
704.4.e.a 2 11.b odd 2 1
704.4.e.b 2 1.a even 1 1 trivial
704.4.e.b 2 44.c even 2 1 inner
1584.4.o.a 2 24.f even 2 1
1584.4.o.a 2 264.m even 2 1
1584.4.o.b 2 24.h odd 2 1
1584.4.o.b 2 264.p odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(704, [\chi])\):

\( T_{3}^{2} + 19 \) Copy content Toggle raw display
\( T_{7} - 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 19 \) Copy content Toggle raw display
$5$ \( (T + 7)^{2} \) Copy content Toggle raw display
$7$ \( (T - 20)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 40T + 1331 \) Copy content Toggle raw display
$13$ \( T^{2} + 7600 \) Copy content Toggle raw display
$17$ \( T^{2} + 7600 \) Copy content Toggle raw display
$19$ \( (T + 140)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 8379 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 31939 \) Copy content Toggle raw display
$37$ \( (T + 91)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 7600 \) Copy content Toggle raw display
$43$ \( (T - 280)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 9196 \) Copy content Toggle raw display
$53$ \( (T + 462)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 636291 \) Copy content Toggle raw display
$61$ \( T^{2} + 273600 \) Copy content Toggle raw display
$67$ \( T^{2} + 410571 \) Copy content Toggle raw display
$71$ \( T^{2} + 209475 \) Copy content Toggle raw display
$73$ \( T^{2} + 7600 \) Copy content Toggle raw display
$79$ \( (T + 560)^{2} \) Copy content Toggle raw display
$83$ \( (T - 1120)^{2} \) Copy content Toggle raw display
$89$ \( (T - 399)^{2} \) Copy content Toggle raw display
$97$ \( (T - 959)^{2} \) Copy content Toggle raw display
show more
show less