Properties

Label 176.4.m.e.113.1
Level $176$
Weight $4$
Character 176.113
Analytic conductor $10.384$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,4,Mod(49,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 176.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3843361610\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 60 x^{14} - 83 x^{13} + 1685 x^{12} - 14618 x^{11} + 106543 x^{10} - 521269 x^{9} + \cdots + 2025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 113.1
Root \(2.43785 - 7.50293i\) of defining polynomial
Character \(\chi\) \(=\) 176.113
Dual form 176.4.m.e.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71205 - 5.26914i) q^{3} +(5.02952 + 3.65416i) q^{5} +(3.12006 - 9.60257i) q^{7} +(-2.98931 + 2.17186i) q^{9} +(17.8737 - 31.8046i) q^{11} +(-16.0519 + 11.6624i) q^{13} +(10.6435 - 32.7574i) q^{15} +(-0.0229293 - 0.0166591i) q^{17} +(-22.3778 - 68.8719i) q^{19} -55.9390 q^{21} -92.3700 q^{23} +(-26.6839 - 82.1247i) q^{25} +(-104.458 - 75.8930i) q^{27} +(25.7455 - 79.2365i) q^{29} +(-139.196 + 101.132i) q^{31} +(-198.184 - 39.7278i) q^{33} +(50.7818 - 36.8951i) q^{35} +(55.1183 - 169.637i) q^{37} +(88.9324 + 64.6131i) q^{39} +(-72.8262 - 224.136i) q^{41} +69.3945 q^{43} -22.9711 q^{45} +(133.810 + 411.825i) q^{47} +(195.018 + 141.689i) q^{49} +(-0.0485233 + 0.149339i) q^{51} +(485.316 - 352.603i) q^{53} +(206.115 - 94.6487i) q^{55} +(-324.584 + 235.824i) q^{57} +(112.856 - 347.336i) q^{59} +(554.647 + 402.975i) q^{61} +(11.5286 + 35.4814i) q^{63} -123.349 q^{65} -224.941 q^{67} +(158.142 + 486.711i) q^{69} +(-206.018 - 149.681i) q^{71} +(-272.652 + 839.136i) q^{73} +(-387.043 + 281.203i) q^{75} +(-249.639 - 270.865i) q^{77} +(313.056 - 227.449i) q^{79} +(-251.883 + 775.217i) q^{81} +(982.393 + 713.750i) q^{83} +(-0.0544484 - 0.167575i) q^{85} -461.586 q^{87} -1236.77 q^{89} +(61.9059 + 190.527i) q^{91} +(771.188 + 560.301i) q^{93} +(139.119 - 428.165i) q^{95} +(721.245 - 524.015i) q^{97} +(15.6453 + 133.893i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{3} - q^{5} + 13 q^{7} + 7 q^{9} - 83 q^{11} + 69 q^{13} - 93 q^{15} - 217 q^{17} - 126 q^{19} + 34 q^{21} + 92 q^{23} + 307 q^{25} - 158 q^{27} - 553 q^{29} - 205 q^{31} - 198 q^{33} - 7 q^{35}+ \cdots + 3265 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.71205 5.26914i −0.329484 1.01405i −0.969376 0.245582i \(-0.921021\pi\)
0.639892 0.768465i \(-0.278979\pi\)
\(4\) 0 0
\(5\) 5.02952 + 3.65416i 0.449854 + 0.326838i 0.789538 0.613702i \(-0.210320\pi\)
−0.339684 + 0.940540i \(0.610320\pi\)
\(6\) 0 0
\(7\) 3.12006 9.60257i 0.168468 0.518490i −0.830807 0.556560i \(-0.812121\pi\)
0.999275 + 0.0380698i \(0.0121209\pi\)
\(8\) 0 0
\(9\) −2.98931 + 2.17186i −0.110715 + 0.0804392i
\(10\) 0 0
\(11\) 17.8737 31.8046i 0.489919 0.871768i
\(12\) 0 0
\(13\) −16.0519 + 11.6624i −0.342461 + 0.248812i −0.745699 0.666282i \(-0.767885\pi\)
0.403238 + 0.915095i \(0.367885\pi\)
\(14\) 0 0
\(15\) 10.6435 32.7574i 0.183210 0.563861i
\(16\) 0 0
\(17\) −0.0229293 0.0166591i −0.000327128 0.000237673i 0.587622 0.809136i \(-0.300064\pi\)
−0.587949 + 0.808898i \(0.700064\pi\)
\(18\) 0 0
\(19\) −22.3778 68.8719i −0.270202 0.831595i −0.990449 0.137878i \(-0.955972\pi\)
0.720248 0.693717i \(-0.244028\pi\)
\(20\) 0 0
\(21\) −55.9390 −0.581281
\(22\) 0 0
\(23\) −92.3700 −0.837412 −0.418706 0.908122i \(-0.637516\pi\)
−0.418706 + 0.908122i \(0.637516\pi\)
\(24\) 0 0
\(25\) −26.6839 82.1247i −0.213472 0.656998i
\(26\) 0 0
\(27\) −104.458 75.8930i −0.744552 0.540949i
\(28\) 0 0
\(29\) 25.7455 79.2365i 0.164856 0.507374i −0.834170 0.551508i \(-0.814053\pi\)
0.999026 + 0.0441335i \(0.0140527\pi\)
\(30\) 0 0
\(31\) −139.196 + 101.132i −0.806462 + 0.585929i −0.912803 0.408401i \(-0.866087\pi\)
0.106341 + 0.994330i \(0.466087\pi\)
\(32\) 0 0
\(33\) −198.184 39.7278i −1.04543 0.209567i
\(34\) 0 0
\(35\) 50.7818 36.8951i 0.245248 0.178183i
\(36\) 0 0
\(37\) 55.1183 169.637i 0.244902 0.753732i −0.750750 0.660586i \(-0.770308\pi\)
0.995652 0.0931458i \(-0.0296923\pi\)
\(38\) 0 0
\(39\) 88.9324 + 64.6131i 0.365143 + 0.265292i
\(40\) 0 0
\(41\) −72.8262 224.136i −0.277404 0.853761i −0.988573 0.150740i \(-0.951834\pi\)
0.711170 0.703020i \(-0.248166\pi\)
\(42\) 0 0
\(43\) 69.3945 0.246106 0.123053 0.992400i \(-0.460731\pi\)
0.123053 + 0.992400i \(0.460731\pi\)
\(44\) 0 0
\(45\) −22.9711 −0.0760962
\(46\) 0 0
\(47\) 133.810 + 411.825i 0.415281 + 1.27810i 0.912000 + 0.410191i \(0.134538\pi\)
−0.496719 + 0.867911i \(0.665462\pi\)
\(48\) 0 0
\(49\) 195.018 + 141.689i 0.568566 + 0.413088i
\(50\) 0 0
\(51\) −0.0485233 + 0.149339i −0.000133228 + 0.000410033i
\(52\) 0 0
\(53\) 485.316 352.603i 1.25780 0.913844i 0.259150 0.965837i \(-0.416557\pi\)
0.998647 + 0.0519933i \(0.0165574\pi\)
\(54\) 0 0
\(55\) 206.115 94.6487i 0.505319 0.232044i
\(56\) 0 0
\(57\) −324.584 + 235.824i −0.754249 + 0.547994i
\(58\) 0 0
\(59\) 112.856 347.336i 0.249028 0.766429i −0.745920 0.666035i \(-0.767990\pi\)
0.994948 0.100393i \(-0.0320101\pi\)
\(60\) 0 0
\(61\) 554.647 + 402.975i 1.16418 + 0.845830i 0.990301 0.138937i \(-0.0443685\pi\)
0.173883 + 0.984766i \(0.444368\pi\)
\(62\) 0 0
\(63\) 11.5286 + 35.4814i 0.0230550 + 0.0709561i
\(64\) 0 0
\(65\) −123.349 −0.235379
\(66\) 0 0
\(67\) −224.941 −0.410164 −0.205082 0.978745i \(-0.565746\pi\)
−0.205082 + 0.978745i \(0.565746\pi\)
\(68\) 0 0
\(69\) 158.142 + 486.711i 0.275914 + 0.849176i
\(70\) 0 0
\(71\) −206.018 149.681i −0.344364 0.250195i 0.402137 0.915580i \(-0.368268\pi\)
−0.746501 + 0.665385i \(0.768268\pi\)
\(72\) 0 0
\(73\) −272.652 + 839.136i −0.437144 + 1.34539i 0.453730 + 0.891139i \(0.350093\pi\)
−0.890874 + 0.454251i \(0.849907\pi\)
\(74\) 0 0
\(75\) −387.043 + 281.203i −0.595891 + 0.432940i
\(76\) 0 0
\(77\) −249.639 270.865i −0.369468 0.400883i
\(78\) 0 0
\(79\) 313.056 227.449i 0.445843 0.323924i −0.342110 0.939660i \(-0.611141\pi\)
0.787952 + 0.615736i \(0.211141\pi\)
\(80\) 0 0
\(81\) −251.883 + 775.217i −0.345519 + 1.06340i
\(82\) 0 0
\(83\) 982.393 + 713.750i 1.29918 + 0.943906i 0.999947 0.0102750i \(-0.00327070\pi\)
0.299229 + 0.954181i \(0.403271\pi\)
\(84\) 0 0
\(85\) −0.0544484 0.167575i −6.94795e−5 0.000213836i
\(86\) 0 0
\(87\) −461.586 −0.568819
\(88\) 0 0
\(89\) −1236.77 −1.47300 −0.736500 0.676438i \(-0.763523\pi\)
−0.736500 + 0.676438i \(0.763523\pi\)
\(90\) 0 0
\(91\) 61.9059 + 190.527i 0.0713132 + 0.219479i
\(92\) 0 0
\(93\) 771.188 + 560.301i 0.859876 + 0.624737i
\(94\) 0 0
\(95\) 139.119 428.165i 0.150246 0.462408i
\(96\) 0 0
\(97\) 721.245 524.015i 0.754962 0.548512i −0.142399 0.989809i \(-0.545482\pi\)
0.897361 + 0.441297i \(0.145482\pi\)
\(98\) 0 0
\(99\) 15.6453 + 133.893i 0.0158829 + 0.135926i
\(100\) 0 0
\(101\) 249.183 181.042i 0.245491 0.178360i −0.458235 0.888831i \(-0.651518\pi\)
0.703726 + 0.710471i \(0.251518\pi\)
\(102\) 0 0
\(103\) 343.910 1058.45i 0.328995 1.01254i −0.640610 0.767867i \(-0.721318\pi\)
0.969605 0.244676i \(-0.0786817\pi\)
\(104\) 0 0
\(105\) −281.346 204.410i −0.261491 0.189985i
\(106\) 0 0
\(107\) 535.793 + 1649.00i 0.484085 + 1.48986i 0.833302 + 0.552818i \(0.186448\pi\)
−0.349217 + 0.937042i \(0.613552\pi\)
\(108\) 0 0
\(109\) 1565.32 1.37550 0.687752 0.725946i \(-0.258598\pi\)
0.687752 + 0.725946i \(0.258598\pi\)
\(110\) 0 0
\(111\) −988.205 −0.845011
\(112\) 0 0
\(113\) 202.758 + 624.025i 0.168795 + 0.519499i 0.999296 0.0375191i \(-0.0119455\pi\)
−0.830501 + 0.557018i \(0.811945\pi\)
\(114\) 0 0
\(115\) −464.577 337.535i −0.376713 0.273698i
\(116\) 0 0
\(117\) 22.6550 69.7248i 0.0179013 0.0550946i
\(118\) 0 0
\(119\) −0.231512 + 0.168203i −0.000178341 + 0.000129573i
\(120\) 0 0
\(121\) −692.065 1136.93i −0.519959 0.854191i
\(122\) 0 0
\(123\) −1056.32 + 767.464i −0.774353 + 0.562601i
\(124\) 0 0
\(125\) 406.028 1249.62i 0.290530 0.894159i
\(126\) 0 0
\(127\) 2159.14 + 1568.71i 1.50860 + 1.09606i 0.966792 + 0.255564i \(0.0822612\pi\)
0.541811 + 0.840500i \(0.317739\pi\)
\(128\) 0 0
\(129\) −118.807 365.650i −0.0810880 0.249563i
\(130\) 0 0
\(131\) −694.820 −0.463410 −0.231705 0.972786i \(-0.574430\pi\)
−0.231705 + 0.972786i \(0.574430\pi\)
\(132\) 0 0
\(133\) −731.168 −0.476694
\(134\) 0 0
\(135\) −248.047 763.411i −0.158137 0.486696i
\(136\) 0 0
\(137\) −2003.96 1455.96i −1.24971 0.907964i −0.251501 0.967857i \(-0.580924\pi\)
−0.998205 + 0.0598929i \(0.980924\pi\)
\(138\) 0 0
\(139\) 678.710 2088.85i 0.414154 1.27463i −0.498851 0.866688i \(-0.666245\pi\)
0.913005 0.407947i \(-0.133755\pi\)
\(140\) 0 0
\(141\) 1940.87 1410.13i 1.15923 0.842228i
\(142\) 0 0
\(143\) 84.0114 + 718.973i 0.0491286 + 0.420444i
\(144\) 0 0
\(145\) 419.030 304.443i 0.239990 0.174363i
\(146\) 0 0
\(147\) 412.699 1270.16i 0.231557 0.712659i
\(148\) 0 0
\(149\) −2702.72 1963.64i −1.48601 1.07965i −0.975558 0.219740i \(-0.929479\pi\)
−0.510449 0.859908i \(-0.670521\pi\)
\(150\) 0 0
\(151\) 225.119 + 692.846i 0.121324 + 0.373398i 0.993213 0.116305i \(-0.0371052\pi\)
−0.871889 + 0.489703i \(0.837105\pi\)
\(152\) 0 0
\(153\) 0.104724 5.53362e−5
\(154\) 0 0
\(155\) −1069.64 −0.554294
\(156\) 0 0
\(157\) 913.092 + 2810.21i 0.464157 + 1.42853i 0.860040 + 0.510227i \(0.170439\pi\)
−0.395883 + 0.918301i \(0.629561\pi\)
\(158\) 0 0
\(159\) −2688.80 1953.53i −1.34110 0.974370i
\(160\) 0 0
\(161\) −288.200 + 886.990i −0.141077 + 0.434190i
\(162\) 0 0
\(163\) −5.14015 + 3.73454i −0.00246999 + 0.00179455i −0.589020 0.808119i \(-0.700486\pi\)
0.586550 + 0.809913i \(0.300486\pi\)
\(164\) 0 0
\(165\) −851.596 924.006i −0.401798 0.435962i
\(166\) 0 0
\(167\) −593.714 + 431.358i −0.275107 + 0.199877i −0.716781 0.697299i \(-0.754385\pi\)
0.441673 + 0.897176i \(0.354385\pi\)
\(168\) 0 0
\(169\) −557.258 + 1715.06i −0.253645 + 0.780639i
\(170\) 0 0
\(171\) 216.474 + 157.278i 0.0968082 + 0.0703353i
\(172\) 0 0
\(173\) 101.780 + 313.246i 0.0447294 + 0.137663i 0.970927 0.239375i \(-0.0769426\pi\)
−0.926198 + 0.377038i \(0.876943\pi\)
\(174\) 0 0
\(175\) −871.864 −0.376610
\(176\) 0 0
\(177\) −2023.38 −0.859245
\(178\) 0 0
\(179\) −825.515 2540.67i −0.344703 1.06089i −0.961743 0.273955i \(-0.911668\pi\)
0.617039 0.786932i \(-0.288332\pi\)
\(180\) 0 0
\(181\) 1250.44 + 908.497i 0.513505 + 0.373083i 0.814152 0.580652i \(-0.197202\pi\)
−0.300647 + 0.953736i \(0.597202\pi\)
\(182\) 0 0
\(183\) 1173.75 3612.43i 0.474131 1.45923i
\(184\) 0 0
\(185\) 897.098 651.780i 0.356519 0.259026i
\(186\) 0 0
\(187\) −0.939668 + 0.431499i −0.000367462 + 0.000168740i
\(188\) 0 0
\(189\) −1054.68 + 766.272i −0.405910 + 0.294911i
\(190\) 0 0
\(191\) −366.453 + 1127.83i −0.138825 + 0.427260i −0.996165 0.0874900i \(-0.972115\pi\)
0.857340 + 0.514750i \(0.172115\pi\)
\(192\) 0 0
\(193\) 1084.84 + 788.182i 0.404603 + 0.293962i 0.771413 0.636334i \(-0.219550\pi\)
−0.366810 + 0.930296i \(0.619550\pi\)
\(194\) 0 0
\(195\) 211.180 + 649.946i 0.0775535 + 0.238685i
\(196\) 0 0
\(197\) 797.183 0.288309 0.144155 0.989555i \(-0.453954\pi\)
0.144155 + 0.989555i \(0.453954\pi\)
\(198\) 0 0
\(199\) −119.756 −0.0426597 −0.0213299 0.999772i \(-0.506790\pi\)
−0.0213299 + 0.999772i \(0.506790\pi\)
\(200\) 0 0
\(201\) 385.111 + 1185.25i 0.135142 + 0.415925i
\(202\) 0 0
\(203\) −680.547 494.446i −0.235296 0.170952i
\(204\) 0 0
\(205\) 452.748 1393.42i 0.154250 0.474734i
\(206\) 0 0
\(207\) 276.122 200.615i 0.0927141 0.0673608i
\(208\) 0 0
\(209\) −2590.42 519.274i −0.857335 0.171861i
\(210\) 0 0
\(211\) 856.848 622.536i 0.279563 0.203115i −0.439164 0.898407i \(-0.644725\pi\)
0.718727 + 0.695293i \(0.244725\pi\)
\(212\) 0 0
\(213\) −435.977 + 1341.80i −0.140247 + 0.431636i
\(214\) 0 0
\(215\) 349.021 + 253.579i 0.110712 + 0.0804368i
\(216\) 0 0
\(217\) 536.825 + 1652.18i 0.167936 + 0.516853i
\(218\) 0 0
\(219\) 4888.32 1.50832
\(220\) 0 0
\(221\) 0.562344 0.000171165
\(222\) 0 0
\(223\) 1908.27 + 5873.04i 0.573036 + 1.76362i 0.642771 + 0.766058i \(0.277785\pi\)
−0.0697353 + 0.997566i \(0.522215\pi\)
\(224\) 0 0
\(225\) 258.130 + 187.542i 0.0764829 + 0.0555681i
\(226\) 0 0
\(227\) 1304.25 4014.07i 0.381348 1.17367i −0.557747 0.830011i \(-0.688334\pi\)
0.939095 0.343658i \(-0.111666\pi\)
\(228\) 0 0
\(229\) 1989.97 1445.80i 0.574239 0.417209i −0.262404 0.964958i \(-0.584515\pi\)
0.836643 + 0.547749i \(0.184515\pi\)
\(230\) 0 0
\(231\) −999.835 + 1779.12i −0.284781 + 0.506742i
\(232\) 0 0
\(233\) 1006.74 731.437i 0.283062 0.205657i −0.437190 0.899369i \(-0.644026\pi\)
0.720252 + 0.693713i \(0.244026\pi\)
\(234\) 0 0
\(235\) −831.874 + 2560.24i −0.230917 + 0.710689i
\(236\) 0 0
\(237\) −1734.43 1260.13i −0.475372 0.345378i
\(238\) 0 0
\(239\) 1076.65 + 3313.60i 0.291393 + 0.896815i 0.984409 + 0.175893i \(0.0562813\pi\)
−0.693017 + 0.720922i \(0.743719\pi\)
\(240\) 0 0
\(241\) 6857.39 1.83288 0.916439 0.400174i \(-0.131050\pi\)
0.916439 + 0.400174i \(0.131050\pi\)
\(242\) 0 0
\(243\) 1029.81 0.271862
\(244\) 0 0
\(245\) 463.094 + 1425.26i 0.120759 + 0.371658i
\(246\) 0 0
\(247\) 1162.42 + 844.545i 0.299445 + 0.217559i
\(248\) 0 0
\(249\) 2078.95 6398.34i 0.529108 1.62843i
\(250\) 0 0
\(251\) −4574.79 + 3323.78i −1.15043 + 0.835837i −0.988538 0.150972i \(-0.951760\pi\)
−0.161892 + 0.986808i \(0.551760\pi\)
\(252\) 0 0
\(253\) −1650.99 + 2937.79i −0.410264 + 0.730029i
\(254\) 0 0
\(255\) −0.789758 + 0.573793i −0.000193947 + 0.000140911i
\(256\) 0 0
\(257\) −1196.02 + 3680.98i −0.290295 + 0.893437i 0.694466 + 0.719526i \(0.255641\pi\)
−0.984761 + 0.173912i \(0.944359\pi\)
\(258\) 0 0
\(259\) −1456.98 1058.55i −0.349545 0.253959i
\(260\) 0 0
\(261\) 95.1293 + 292.778i 0.0225607 + 0.0694348i
\(262\) 0 0
\(263\) 1016.12 0.238239 0.119119 0.992880i \(-0.461993\pi\)
0.119119 + 0.992880i \(0.461993\pi\)
\(264\) 0 0
\(265\) 3729.37 0.864504
\(266\) 0 0
\(267\) 2117.40 + 6516.70i 0.485330 + 1.49369i
\(268\) 0 0
\(269\) −365.765 265.744i −0.0829036 0.0602330i 0.545561 0.838071i \(-0.316316\pi\)
−0.628465 + 0.777838i \(0.716316\pi\)
\(270\) 0 0
\(271\) −137.229 + 422.347i −0.0307604 + 0.0946708i −0.965258 0.261299i \(-0.915849\pi\)
0.934498 + 0.355969i \(0.115849\pi\)
\(272\) 0 0
\(273\) 897.927 652.382i 0.199066 0.144630i
\(274\) 0 0
\(275\) −3088.88 619.197i −0.677333 0.135778i
\(276\) 0 0
\(277\) −6310.61 + 4584.93i −1.36884 + 0.994518i −0.371010 + 0.928629i \(0.620989\pi\)
−0.997827 + 0.0658897i \(0.979011\pi\)
\(278\) 0 0
\(279\) 196.455 604.628i 0.0421558 0.129742i
\(280\) 0 0
\(281\) 3846.65 + 2794.76i 0.816626 + 0.593314i 0.915744 0.401762i \(-0.131602\pi\)
−0.0991178 + 0.995076i \(0.531602\pi\)
\(282\) 0 0
\(283\) 1670.49 + 5141.25i 0.350885 + 1.07991i 0.958357 + 0.285573i \(0.0921838\pi\)
−0.607472 + 0.794341i \(0.707816\pi\)
\(284\) 0 0
\(285\) −2494.24 −0.518407
\(286\) 0 0
\(287\) −2379.51 −0.489400
\(288\) 0 0
\(289\) −1518.20 4672.54i −0.309017 0.951056i
\(290\) 0 0
\(291\) −3995.92 2903.20i −0.804965 0.584841i
\(292\) 0 0
\(293\) 1723.76 5305.18i 0.343696 1.05779i −0.618582 0.785720i \(-0.712293\pi\)
0.962278 0.272067i \(-0.0877074\pi\)
\(294\) 0 0
\(295\) 1836.83 1334.54i 0.362524 0.263389i
\(296\) 0 0
\(297\) −4280.79 + 1965.75i −0.836352 + 0.384056i
\(298\) 0 0
\(299\) 1482.71 1077.25i 0.286781 0.208359i
\(300\) 0 0
\(301\) 216.515 666.366i 0.0414609 0.127604i
\(302\) 0 0
\(303\) −1380.55 1003.03i −0.261750 0.190173i
\(304\) 0 0
\(305\) 1317.07 + 4053.54i 0.247264 + 0.760999i
\(306\) 0 0
\(307\) 7248.81 1.34759 0.673797 0.738916i \(-0.264662\pi\)
0.673797 + 0.738916i \(0.264662\pi\)
\(308\) 0 0
\(309\) −6165.90 −1.13517
\(310\) 0 0
\(311\) −294.551 906.534i −0.0537056 0.165289i 0.920606 0.390492i \(-0.127695\pi\)
−0.974312 + 0.225204i \(0.927695\pi\)
\(312\) 0 0
\(313\) −2722.92 1978.32i −0.491721 0.357256i 0.314125 0.949382i \(-0.398289\pi\)
−0.805846 + 0.592126i \(0.798289\pi\)
\(314\) 0 0
\(315\) −71.6713 + 220.582i −0.0128197 + 0.0394551i
\(316\) 0 0
\(317\) −7121.72 + 5174.23i −1.26182 + 0.916763i −0.998845 0.0480404i \(-0.984702\pi\)
−0.262971 + 0.964804i \(0.584702\pi\)
\(318\) 0 0
\(319\) −2059.92 2235.07i −0.361547 0.392288i
\(320\) 0 0
\(321\) 7771.52 5646.34i 1.35129 0.981770i
\(322\) 0 0
\(323\) −0.634238 + 1.95198i −0.000109257 + 0.000336258i
\(324\) 0 0
\(325\) 1386.10 + 1007.06i 0.236575 + 0.171882i
\(326\) 0 0
\(327\) −2679.90 8247.87i −0.453207 1.39483i
\(328\) 0 0
\(329\) 4372.07 0.732645
\(330\) 0 0
\(331\) −1884.62 −0.312955 −0.156478 0.987682i \(-0.550014\pi\)
−0.156478 + 0.987682i \(0.550014\pi\)
\(332\) 0 0
\(333\) 203.661 + 626.805i 0.0335152 + 0.103149i
\(334\) 0 0
\(335\) −1131.35 821.972i −0.184514 0.134057i
\(336\) 0 0
\(337\) 611.773 1882.84i 0.0988883 0.304347i −0.889359 0.457209i \(-0.848849\pi\)
0.988248 + 0.152862i \(0.0488491\pi\)
\(338\) 0 0
\(339\) 2940.95 2136.72i 0.471181 0.342333i
\(340\) 0 0
\(341\) 728.516 + 6234.67i 0.115693 + 0.990106i
\(342\) 0 0
\(343\) 4770.82 3466.21i 0.751021 0.545649i
\(344\) 0 0
\(345\) −983.141 + 3025.80i −0.153422 + 0.472184i
\(346\) 0 0
\(347\) −6908.05 5018.99i −1.06871 0.776466i −0.0930333 0.995663i \(-0.529656\pi\)
−0.975681 + 0.219197i \(0.929656\pi\)
\(348\) 0 0
\(349\) −291.889 898.341i −0.0447692 0.137785i 0.926173 0.377098i \(-0.123078\pi\)
−0.970943 + 0.239312i \(0.923078\pi\)
\(350\) 0 0
\(351\) 2561.84 0.389575
\(352\) 0 0
\(353\) 3709.02 0.559239 0.279619 0.960111i \(-0.409792\pi\)
0.279619 + 0.960111i \(0.409792\pi\)
\(354\) 0 0
\(355\) −489.213 1505.64i −0.0731402 0.225102i
\(356\) 0 0
\(357\) 1.28265 + 0.931896i 0.000190153 + 0.000138155i
\(358\) 0 0
\(359\) 2925.40 9003.47i 0.430075 1.32363i −0.467975 0.883742i \(-0.655016\pi\)
0.898050 0.439893i \(-0.144984\pi\)
\(360\) 0 0
\(361\) 1306.47 949.209i 0.190476 0.138389i
\(362\) 0 0
\(363\) −4805.79 + 5593.07i −0.694872 + 0.808705i
\(364\) 0 0
\(365\) −4437.64 + 3224.14i −0.636375 + 0.462354i
\(366\) 0 0
\(367\) −727.199 + 2238.09i −0.103432 + 0.318330i −0.989359 0.145494i \(-0.953523\pi\)
0.885927 + 0.463824i \(0.153523\pi\)
\(368\) 0 0
\(369\) 704.492 + 511.843i 0.0993886 + 0.0722100i
\(370\) 0 0
\(371\) −1871.68 5760.43i −0.261921 0.806109i
\(372\) 0 0
\(373\) 1447.21 0.200894 0.100447 0.994942i \(-0.467973\pi\)
0.100447 + 0.994942i \(0.467973\pi\)
\(374\) 0 0
\(375\) −7279.59 −1.00244
\(376\) 0 0
\(377\) 510.822 + 1572.15i 0.0697843 + 0.214774i
\(378\) 0 0
\(379\) 6797.44 + 4938.63i 0.921269 + 0.669341i 0.943840 0.330404i \(-0.107185\pi\)
−0.0225706 + 0.999745i \(0.507185\pi\)
\(380\) 0 0
\(381\) 4569.19 14062.5i 0.614401 1.89093i
\(382\) 0 0
\(383\) 5773.30 4194.55i 0.770240 0.559612i −0.131794 0.991277i \(-0.542074\pi\)
0.902034 + 0.431665i \(0.142074\pi\)
\(384\) 0 0
\(385\) −265.779 2274.54i −0.0351827 0.301095i
\(386\) 0 0
\(387\) −207.441 + 150.715i −0.0272476 + 0.0197966i
\(388\) 0 0
\(389\) 3619.44 11139.5i 0.471755 1.45191i −0.378529 0.925589i \(-0.623570\pi\)
0.850284 0.526324i \(-0.176430\pi\)
\(390\) 0 0
\(391\) 2.11798 + 1.53881i 0.000273941 + 0.000199030i
\(392\) 0 0
\(393\) 1189.57 + 3661.11i 0.152686 + 0.469920i
\(394\) 0 0
\(395\) 2405.66 0.306435
\(396\) 0 0
\(397\) −13000.5 −1.64352 −0.821759 0.569835i \(-0.807007\pi\)
−0.821759 + 0.569835i \(0.807007\pi\)
\(398\) 0 0
\(399\) 1251.79 + 3852.63i 0.157063 + 0.483390i
\(400\) 0 0
\(401\) −8948.83 6501.70i −1.11442 0.809675i −0.131067 0.991373i \(-0.541840\pi\)
−0.983354 + 0.181699i \(0.941840\pi\)
\(402\) 0 0
\(403\) 1054.92 3246.71i 0.130395 0.401316i
\(404\) 0 0
\(405\) −4099.62 + 2978.55i −0.502992 + 0.365445i
\(406\) 0 0
\(407\) −4410.06 4785.04i −0.537097 0.582766i
\(408\) 0 0
\(409\) 7556.94 5490.44i 0.913610 0.663776i −0.0283153 0.999599i \(-0.509014\pi\)
0.941925 + 0.335823i \(0.109014\pi\)
\(410\) 0 0
\(411\) −4240.79 + 13051.8i −0.508961 + 1.56642i
\(412\) 0 0
\(413\) −2983.20 2167.42i −0.355433 0.258237i
\(414\) 0 0
\(415\) 2332.81 + 7179.64i 0.275935 + 0.849240i
\(416\) 0 0
\(417\) −12168.5 −1.42900
\(418\) 0 0
\(419\) −2181.92 −0.254400 −0.127200 0.991877i \(-0.540599\pi\)
−0.127200 + 0.991877i \(0.540599\pi\)
\(420\) 0 0
\(421\) 1084.16 + 3336.70i 0.125508 + 0.386273i 0.993993 0.109442i \(-0.0349063\pi\)
−0.868486 + 0.495714i \(0.834906\pi\)
\(422\) 0 0
\(423\) −1294.42 940.454i −0.148787 0.108100i
\(424\) 0 0
\(425\) −0.756282 + 2.32760i −8.63178e−5 + 0.000265659i
\(426\) 0 0
\(427\) 5600.13 4068.73i 0.634682 0.461123i
\(428\) 0 0
\(429\) 3644.54 1673.59i 0.410163 0.188348i
\(430\) 0 0
\(431\) −10405.4 + 7559.96i −1.16290 + 0.844896i −0.990142 0.140068i \(-0.955268\pi\)
−0.172758 + 0.984964i \(0.555268\pi\)
\(432\) 0 0
\(433\) 2519.25 7753.44i 0.279601 0.860523i −0.708364 0.705847i \(-0.750567\pi\)
0.987965 0.154676i \(-0.0494334\pi\)
\(434\) 0 0
\(435\) −2321.56 1686.71i −0.255885 0.185912i
\(436\) 0 0
\(437\) 2067.04 + 6361.70i 0.226270 + 0.696388i
\(438\) 0 0
\(439\) −1617.22 −0.175821 −0.0879107 0.996128i \(-0.528019\pi\)
−0.0879107 + 0.996128i \(0.528019\pi\)
\(440\) 0 0
\(441\) −890.698 −0.0961773
\(442\) 0 0
\(443\) −1466.63 4513.83i −0.157295 0.484105i 0.841091 0.540893i \(-0.181914\pi\)
−0.998386 + 0.0567889i \(0.981914\pi\)
\(444\) 0 0
\(445\) −6220.34 4519.34i −0.662635 0.481432i
\(446\) 0 0
\(447\) −5719.51 + 17602.8i −0.605198 + 1.86261i
\(448\) 0 0
\(449\) −5417.86 + 3936.30i −0.569453 + 0.413732i −0.834907 0.550392i \(-0.814478\pi\)
0.265453 + 0.964124i \(0.414478\pi\)
\(450\) 0 0
\(451\) −8430.23 1689.92i −0.880186 0.176442i
\(452\) 0 0
\(453\) 3265.29 2372.37i 0.338668 0.246057i
\(454\) 0 0
\(455\) −384.858 + 1184.47i −0.0396537 + 0.122042i
\(456\) 0 0
\(457\) 8835.61 + 6419.44i 0.904403 + 0.657087i 0.939593 0.342293i \(-0.111204\pi\)
−0.0351900 + 0.999381i \(0.511204\pi\)
\(458\) 0 0
\(459\) 1.13084 + 3.48035i 0.000114995 + 0.000353919i
\(460\) 0 0
\(461\) 10627.0 1.07365 0.536823 0.843695i \(-0.319624\pi\)
0.536823 + 0.843695i \(0.319624\pi\)
\(462\) 0 0
\(463\) −3046.02 −0.305746 −0.152873 0.988246i \(-0.548853\pi\)
−0.152873 + 0.988246i \(0.548853\pi\)
\(464\) 0 0
\(465\) 1831.28 + 5636.09i 0.182631 + 0.562080i
\(466\) 0 0
\(467\) 6375.92 + 4632.37i 0.631782 + 0.459017i 0.857017 0.515288i \(-0.172315\pi\)
−0.225235 + 0.974304i \(0.572315\pi\)
\(468\) 0 0
\(469\) −701.832 + 2160.02i −0.0690993 + 0.212666i
\(470\) 0 0
\(471\) 13244.1 9622.42i 1.29566 0.941354i
\(472\) 0 0
\(473\) 1240.33 2207.06i 0.120572 0.214547i
\(474\) 0 0
\(475\) −5058.96 + 3675.55i −0.488676 + 0.355044i
\(476\) 0 0
\(477\) −684.955 + 2108.08i −0.0657483 + 0.202352i
\(478\) 0 0
\(479\) 10325.6 + 7501.99i 0.984945 + 0.715605i 0.958808 0.284054i \(-0.0916794\pi\)
0.0261371 + 0.999658i \(0.491679\pi\)
\(480\) 0 0
\(481\) 1093.61 + 3365.80i 0.103668 + 0.319059i
\(482\) 0 0
\(483\) 5167.09 0.486772
\(484\) 0 0
\(485\) 5542.35 0.518897
\(486\) 0 0
\(487\) 1324.80 + 4077.31i 0.123270 + 0.379385i 0.993582 0.113115i \(-0.0360830\pi\)
−0.870312 + 0.492500i \(0.836083\pi\)
\(488\) 0 0
\(489\) 28.4780 + 20.6905i 0.00263358 + 0.00191341i
\(490\) 0 0
\(491\) 534.577 1645.26i 0.0491347 0.151221i −0.923479 0.383649i \(-0.874667\pi\)
0.972614 + 0.232428i \(0.0746671\pi\)
\(492\) 0 0
\(493\) −1.91034 + 1.38794i −0.000174518 + 0.000126795i
\(494\) 0 0
\(495\) −410.577 + 730.586i −0.0372810 + 0.0663382i
\(496\) 0 0
\(497\) −2080.11 + 1511.29i −0.187738 + 0.136399i
\(498\) 0 0
\(499\) 4096.75 12608.5i 0.367526 1.13113i −0.580857 0.814005i \(-0.697283\pi\)
0.948384 0.317125i \(-0.102717\pi\)
\(500\) 0 0
\(501\) 3289.35 + 2389.86i 0.293328 + 0.213116i
\(502\) 0 0
\(503\) −40.7844 125.521i −0.00361528 0.0111267i 0.949233 0.314575i \(-0.101862\pi\)
−0.952848 + 0.303448i \(0.901862\pi\)
\(504\) 0 0
\(505\) 1914.82 0.168730
\(506\) 0 0
\(507\) 9990.98 0.875177
\(508\) 0 0
\(509\) 2524.36 + 7769.18i 0.219824 + 0.676548i 0.998776 + 0.0494645i \(0.0157515\pi\)
−0.778952 + 0.627083i \(0.784249\pi\)
\(510\) 0 0
\(511\) 7207.17 + 5236.32i 0.623927 + 0.453309i
\(512\) 0 0
\(513\) −2889.36 + 8892.53i −0.248671 + 0.765331i
\(514\) 0 0
\(515\) 5597.44 4066.78i 0.478937 0.347968i
\(516\) 0 0
\(517\) 15489.6 + 3105.04i 1.31766 + 0.264138i
\(518\) 0 0
\(519\) 1476.29 1072.59i 0.124859 0.0907153i
\(520\) 0 0
\(521\) 782.119 2407.12i 0.0657683 0.202414i −0.912772 0.408469i \(-0.866063\pi\)
0.978540 + 0.206055i \(0.0660627\pi\)
\(522\) 0 0
\(523\) −1261.68 916.661i −0.105486 0.0766401i 0.533792 0.845616i \(-0.320767\pi\)
−0.639278 + 0.768976i \(0.720767\pi\)
\(524\) 0 0
\(525\) 1492.67 + 4593.98i 0.124087 + 0.381900i
\(526\) 0 0
\(527\) 4.87644 0.000403076
\(528\) 0 0
\(529\) −3634.78 −0.298741
\(530\) 0 0
\(531\) 417.002 + 1283.40i 0.0340798 + 0.104887i
\(532\) 0 0
\(533\) 3782.96 + 2748.48i 0.307426 + 0.223358i
\(534\) 0 0
\(535\) −3330.93 + 10251.6i −0.269175 + 0.828437i
\(536\) 0 0
\(537\) −11973.9 + 8699.51i −0.962216 + 0.699091i
\(538\) 0 0
\(539\) 7992.05 3669.98i 0.638668 0.293278i
\(540\) 0 0
\(541\) −12006.5 + 8723.20i −0.954155 + 0.693234i −0.951786 0.306763i \(-0.900754\pi\)
−0.00236886 + 0.999997i \(0.500754\pi\)
\(542\) 0 0
\(543\) 2646.19 8144.14i 0.209132 0.643643i
\(544\) 0 0
\(545\) 7872.78 + 5719.91i 0.618776 + 0.449567i
\(546\) 0 0
\(547\) −1385.68 4264.69i −0.108314 0.333355i 0.882180 0.470912i \(-0.156075\pi\)
−0.990494 + 0.137557i \(0.956075\pi\)
\(548\) 0 0
\(549\) −2533.21 −0.196931
\(550\) 0 0
\(551\) −6033.30 −0.466474
\(552\) 0 0
\(553\) −1207.34 3715.80i −0.0928411 0.285736i
\(554\) 0 0
\(555\) −4970.20 3611.06i −0.380132 0.276182i
\(556\) 0 0
\(557\) 1642.68 5055.66i 0.124960 0.384587i −0.868934 0.494928i \(-0.835194\pi\)
0.993894 + 0.110341i \(0.0351943\pi\)
\(558\) 0 0
\(559\) −1113.91 + 809.305i −0.0842817 + 0.0612343i
\(560\) 0 0
\(561\) 3.88239 + 4.21250i 0.000292183 + 0.000317027i
\(562\) 0 0
\(563\) 3723.62 2705.37i 0.278742 0.202518i −0.439626 0.898181i \(-0.644889\pi\)
0.718369 + 0.695663i \(0.244889\pi\)
\(564\) 0 0
\(565\) −1260.51 + 3879.46i −0.0938587 + 0.288867i
\(566\) 0 0
\(567\) 6658.19 + 4837.46i 0.493153 + 0.358296i
\(568\) 0 0
\(569\) 2389.41 + 7353.85i 0.176045 + 0.541809i 0.999680 0.0253108i \(-0.00805752\pi\)
−0.823635 + 0.567120i \(0.808058\pi\)
\(570\) 0 0
\(571\) −18830.2 −1.38007 −0.690033 0.723778i \(-0.742404\pi\)
−0.690033 + 0.723778i \(0.742404\pi\)
\(572\) 0 0
\(573\) 6570.07 0.479003
\(574\) 0 0
\(575\) 2464.80 + 7585.86i 0.178764 + 0.550178i
\(576\) 0 0
\(577\) −11249.0 8172.86i −0.811614 0.589672i 0.102684 0.994714i \(-0.467257\pi\)
−0.914298 + 0.405042i \(0.867257\pi\)
\(578\) 0 0
\(579\) 2295.75 7065.58i 0.164781 0.507142i
\(580\) 0 0
\(581\) 9918.96 7206.55i 0.708275 0.514592i
\(582\) 0 0
\(583\) −2540.02 21737.6i −0.180441 1.54422i
\(584\) 0 0
\(585\) 368.729 267.897i 0.0260600 0.0189337i
\(586\) 0 0
\(587\) −7908.73 + 24340.6i −0.556096 + 1.71149i 0.136937 + 0.990580i \(0.456274\pi\)
−0.693032 + 0.720907i \(0.743726\pi\)
\(588\) 0 0
\(589\) 10080.0 + 7323.58i 0.705163 + 0.512331i
\(590\) 0 0
\(591\) −1364.82 4200.47i −0.0949933 0.292359i
\(592\) 0 0
\(593\) −14766.2 −1.02256 −0.511279 0.859415i \(-0.670828\pi\)
−0.511279 + 0.859415i \(0.670828\pi\)
\(594\) 0 0
\(595\) −1.77903 −0.000122577
\(596\) 0 0
\(597\) 205.028 + 631.012i 0.0140557 + 0.0432590i
\(598\) 0 0
\(599\) −1515.41 1101.01i −0.103369 0.0751020i 0.534900 0.844915i \(-0.320349\pi\)
−0.638269 + 0.769813i \(0.720349\pi\)
\(600\) 0 0
\(601\) −528.913 + 1627.83i −0.0358982 + 0.110483i −0.967400 0.253254i \(-0.918499\pi\)
0.931502 + 0.363737i \(0.118499\pi\)
\(602\) 0 0
\(603\) 672.419 488.541i 0.0454113 0.0329932i
\(604\) 0 0
\(605\) 673.764 8247.12i 0.0452767 0.554204i
\(606\) 0 0
\(607\) −10732.2 + 7797.37i −0.717635 + 0.521393i −0.885628 0.464396i \(-0.846272\pi\)
0.167993 + 0.985788i \(0.446272\pi\)
\(608\) 0 0
\(609\) −1440.18 + 4432.41i −0.0958276 + 0.294927i
\(610\) 0 0
\(611\) −6950.76 5050.02i −0.460225 0.334373i
\(612\) 0 0
\(613\) −7781.79 23949.9i −0.512730 1.57802i −0.787374 0.616476i \(-0.788560\pi\)
0.274644 0.961546i \(-0.411440\pi\)
\(614\) 0 0
\(615\) −8117.23 −0.532225
\(616\) 0 0
\(617\) −4896.84 −0.319513 −0.159756 0.987156i \(-0.551071\pi\)
−0.159756 + 0.987156i \(0.551071\pi\)
\(618\) 0 0
\(619\) 909.502 + 2799.16i 0.0590565 + 0.181757i 0.976233 0.216724i \(-0.0695373\pi\)
−0.917176 + 0.398482i \(0.869537\pi\)
\(620\) 0 0
\(621\) 9648.77 + 7010.24i 0.623497 + 0.452997i
\(622\) 0 0
\(623\) −3858.79 + 11876.1i −0.248153 + 0.763736i
\(624\) 0 0
\(625\) −2123.98 + 1543.16i −0.135935 + 0.0987625i
\(626\) 0 0
\(627\) 1698.79 + 14538.3i 0.108203 + 0.926003i
\(628\) 0 0
\(629\) −4.08983 + 2.97143i −0.000259256 + 0.000188361i
\(630\) 0 0
\(631\) 9424.29 29005.0i 0.594572 1.82990i 0.0377276 0.999288i \(-0.487988\pi\)
0.556845 0.830617i \(-0.312012\pi\)
\(632\) 0 0
\(633\) −4747.20 3449.04i −0.298079 0.216567i
\(634\) 0 0
\(635\) 5127.13 + 15779.7i 0.320416 + 0.986138i
\(636\) 0 0
\(637\) −4782.84 −0.297493
\(638\) 0 0
\(639\) 940.936 0.0582517
\(640\) 0 0
\(641\) −7776.77 23934.4i −0.479195 1.47481i −0.840215 0.542253i \(-0.817571\pi\)
0.361020 0.932558i \(-0.382429\pi\)
\(642\) 0 0
\(643\) −4987.62 3623.72i −0.305898 0.222248i 0.424236 0.905552i \(-0.360543\pi\)
−0.730135 + 0.683303i \(0.760543\pi\)
\(644\) 0 0
\(645\) 738.601 2273.18i 0.0450890 0.138770i
\(646\) 0 0
\(647\) −10522.1 + 7644.77i −0.639362 + 0.464524i −0.859631 0.510915i \(-0.829307\pi\)
0.220269 + 0.975439i \(0.429307\pi\)
\(648\) 0 0
\(649\) −9029.73 9797.51i −0.546144 0.592582i
\(650\) 0 0
\(651\) 7786.49 5657.21i 0.468781 0.340589i
\(652\) 0 0
\(653\) 5688.39 17507.1i 0.340894 1.04917i −0.622851 0.782341i \(-0.714026\pi\)
0.963745 0.266824i \(-0.0859744\pi\)
\(654\) 0 0
\(655\) −3494.61 2538.98i −0.208467 0.151460i
\(656\) 0 0
\(657\) −1007.44 3100.60i −0.0598237 0.184118i
\(658\) 0 0
\(659\) 13817.0 0.816745 0.408372 0.912815i \(-0.366096\pi\)
0.408372 + 0.912815i \(0.366096\pi\)
\(660\) 0 0
\(661\) −4130.31 −0.243042 −0.121521 0.992589i \(-0.538777\pi\)
−0.121521 + 0.992589i \(0.538777\pi\)
\(662\) 0 0
\(663\) −0.962761 2.96307i −5.63960e−5 0.000173569i
\(664\) 0 0
\(665\) −3677.42 2671.80i −0.214443 0.155802i
\(666\) 0 0
\(667\) −2378.11 + 7319.08i −0.138052 + 0.424881i
\(668\) 0 0
\(669\) 27678.9 20109.9i 1.59959 1.16217i
\(670\) 0 0
\(671\) 22730.0 10437.7i 1.30772 0.600511i
\(672\) 0 0
\(673\) −7437.64 + 5403.76i −0.426003 + 0.309509i −0.780049 0.625719i \(-0.784806\pi\)
0.354046 + 0.935228i \(0.384806\pi\)
\(674\) 0 0
\(675\) −3445.35 + 10603.7i −0.196462 + 0.604646i
\(676\) 0 0
\(677\) −3603.19 2617.87i −0.204552 0.148616i 0.480793 0.876834i \(-0.340349\pi\)
−0.685345 + 0.728218i \(0.740349\pi\)
\(678\) 0 0
\(679\) −2781.56 8560.76i −0.157211 0.483847i
\(680\) 0 0
\(681\) −23383.6 −1.31580
\(682\) 0 0
\(683\) 12898.6 0.722620 0.361310 0.932446i \(-0.382330\pi\)
0.361310 + 0.932446i \(0.382330\pi\)
\(684\) 0 0
\(685\) −4758.63 14645.6i −0.265428 0.816902i
\(686\) 0 0
\(687\) −11025.0 8010.15i −0.612272 0.444842i
\(688\) 0 0
\(689\) −3678.05 + 11319.9i −0.203371 + 0.625912i
\(690\) 0 0
\(691\) −23583.5 + 17134.4i −1.29835 + 0.943306i −0.999938 0.0111312i \(-0.996457\pi\)
−0.298411 + 0.954437i \(0.596457\pi\)
\(692\) 0 0
\(693\) 1334.53 + 267.519i 0.0731523 + 0.0146641i
\(694\) 0 0
\(695\) 11046.6 8025.82i 0.602908 0.438038i
\(696\) 0 0
\(697\) −2.06406 + 6.35252i −0.000112169 + 0.000345221i
\(698\) 0 0
\(699\) −5577.63 4052.38i −0.301810 0.219278i
\(700\) 0 0
\(701\) −47.7400 146.929i −0.00257220 0.00791642i 0.949762 0.312973i \(-0.101325\pi\)
−0.952334 + 0.305056i \(0.901325\pi\)
\(702\) 0 0
\(703\) −12916.6 −0.692973
\(704\) 0 0
\(705\) 14914.5 0.796755
\(706\) 0 0
\(707\) −961.001 2957.66i −0.0511204 0.157333i
\(708\) 0 0
\(709\) 15193.4 + 11038.6i 0.804794 + 0.584717i 0.912317 0.409485i \(-0.134292\pi\)
−0.107522 + 0.994203i \(0.534292\pi\)
\(710\) 0 0
\(711\) −441.834 + 1359.83i −0.0233053 + 0.0717264i
\(712\) 0 0
\(713\) 12857.5 9341.54i 0.675341 0.490664i
\(714\) 0 0
\(715\) −2204.71 + 3923.08i −0.115317 + 0.205196i
\(716\) 0 0
\(717\) 15616.5 11346.1i 0.813403 0.590972i
\(718\) 0 0
\(719\) 3373.36 10382.1i 0.174972 0.538509i −0.824660 0.565629i \(-0.808634\pi\)
0.999632 + 0.0271198i \(0.00863355\pi\)
\(720\) 0 0
\(721\) −9090.80 6604.85i −0.469569 0.341162i
\(722\) 0 0
\(723\) −11740.2 36132.6i −0.603904 1.85862i
\(724\) 0 0
\(725\) −7194.27 −0.368536
\(726\) 0 0
\(727\) −19277.1 −0.983424 −0.491712 0.870758i \(-0.663629\pi\)
−0.491712 + 0.870758i \(0.663629\pi\)
\(728\) 0 0
\(729\) 5037.76 + 15504.6i 0.255945 + 0.787717i
\(730\) 0 0
\(731\) −1.59117 1.15605i −8.05083e−5 5.84927e-5i
\(732\) 0 0
\(733\) −10680.4 + 32870.8i −0.538183 + 1.65636i 0.198487 + 0.980104i \(0.436397\pi\)
−0.736669 + 0.676253i \(0.763603\pi\)
\(734\) 0 0
\(735\) 6717.04 4880.21i 0.337091 0.244911i
\(736\) 0 0
\(737\) −4020.52 + 7154.17i −0.200947 + 0.357568i
\(738\) 0 0
\(739\) 15484.8 11250.4i 0.770796 0.560016i −0.131406 0.991329i \(-0.541949\pi\)
0.902203 + 0.431312i \(0.141949\pi\)
\(740\) 0 0
\(741\) 2459.92 7570.84i 0.121953 0.375333i
\(742\) 0 0
\(743\) 14722.8 + 10696.7i 0.726953 + 0.528163i 0.888598 0.458686i \(-0.151680\pi\)
−0.161645 + 0.986849i \(0.551680\pi\)
\(744\) 0 0
\(745\) −6417.92 19752.3i −0.315616 0.971368i
\(746\) 0 0
\(747\) −4486.84 −0.219765
\(748\) 0 0
\(749\) 17506.4 0.854031
\(750\) 0 0
\(751\) −7756.96 23873.5i −0.376905 1.15999i −0.942185 0.335094i \(-0.891232\pi\)
0.565280 0.824899i \(-0.308768\pi\)
\(752\) 0 0
\(753\) 25345.7 + 18414.7i 1.22663 + 0.891196i
\(754\) 0 0
\(755\) −1399.53 + 4307.31i −0.0674623 + 0.207628i
\(756\) 0 0
\(757\) −24907.3 + 18096.2i −1.19587 + 0.868847i −0.993872 0.110539i \(-0.964742\pi\)
−0.201994 + 0.979387i \(0.564742\pi\)
\(758\) 0 0
\(759\) 18306.2 + 3669.66i 0.875459 + 0.175494i
\(760\) 0 0
\(761\) −18579.9 + 13499.1i −0.885048 + 0.643025i −0.934582 0.355747i \(-0.884226\pi\)
0.0495340 + 0.998772i \(0.484226\pi\)
\(762\) 0 0
\(763\) 4883.88 15031.1i 0.231728 0.713186i
\(764\) 0 0
\(765\) 0.526712 + 0.382679i 2.48932e−5 + 1.80860e-5i
\(766\) 0 0
\(767\) 2239.21 + 6891.57i 0.105415 + 0.324433i
\(768\) 0 0
\(769\) 28729.3 1.34721 0.673605 0.739091i \(-0.264745\pi\)
0.673605 + 0.739091i \(0.264745\pi\)
\(770\) 0 0
\(771\) 21443.3 1.00164
\(772\) 0 0
\(773\) −5946.90 18302.7i −0.276708 0.851620i −0.988762 0.149495i \(-0.952235\pi\)
0.712054 0.702124i \(-0.247765\pi\)
\(774\) 0 0
\(775\) 12019.7 + 8732.84i 0.557111 + 0.404765i
\(776\) 0 0
\(777\) −3083.26 + 9489.31i −0.142357 + 0.438130i
\(778\) 0 0
\(779\) −13807.0 + 10031.4i −0.635028 + 0.461375i
\(780\) 0 0
\(781\) −8442.83 + 3876.97i −0.386822 + 0.177630i
\(782\) 0 0
\(783\) −8702.82 + 6322.97i −0.397207 + 0.288588i
\(784\) 0 0
\(785\) −5676.53 + 17470.6i −0.258094 + 0.794333i
\(786\) 0 0
\(787\) −23680.9 17205.2i −1.07260 0.779287i −0.0962197 0.995360i \(-0.530675\pi\)
−0.976377 + 0.216073i \(0.930675\pi\)
\(788\) 0 0
\(789\) −1739.65 5354.09i −0.0784958 0.241585i
\(790\) 0 0
\(791\) 6624.87 0.297792
\(792\) 0 0
\(793\) −13602.8 −0.609141
\(794\) 0 0
\(795\) −6384.87 19650.6i −0.284840 0.876648i
\(796\) 0 0
\(797\) 10139.0 + 7366.42i 0.450617 + 0.327393i 0.789840 0.613314i \(-0.210164\pi\)
−0.339222 + 0.940706i \(0.610164\pi\)
\(798\) 0 0
\(799\) 3.79247 11.6720i 0.000167920 0.000516804i
\(800\) 0 0
\(801\) 3697.07 2686.08i 0.163083 0.118487i
\(802\) 0 0
\(803\) 21815.1 + 23670.0i 0.958703 + 1.04022i
\(804\) 0 0
\(805\) −4690.71 + 3408.00i −0.205374 + 0.149213i
\(806\) 0 0
\(807\) −774.034 + 2382.23i −0.0337637 + 0.103914i
\(808\) 0 0
\(809\) −29078.0 21126.4i −1.26369 0.918128i −0.264762 0.964314i \(-0.585293\pi\)
−0.998933 + 0.0461861i \(0.985293\pi\)
\(810\) 0 0
\(811\) 6684.03 + 20571.3i 0.289406 + 0.890700i 0.985043 + 0.172307i \(0.0551220\pi\)
−0.695637 + 0.718393i \(0.744878\pi\)
\(812\) 0 0
\(813\) 2460.35 0.106136
\(814\) 0 0
\(815\) −39.4991 −0.00169766
\(816\) 0 0
\(817\) −1552.90 4779.33i −0.0664983 0.204661i
\(818\) 0 0
\(819\) −598.853 435.092i −0.0255502 0.0185633i
\(820\) 0 0
\(821\) −9723.86 + 29927.0i −0.413356 + 1.27218i 0.500358 + 0.865819i \(0.333202\pi\)
−0.913713 + 0.406359i \(0.866798\pi\)
\(822\) 0 0
\(823\) −28504.2 + 20709.5i −1.20728 + 0.877142i −0.994981 0.100062i \(-0.968096\pi\)
−0.212302 + 0.977204i \(0.568096\pi\)
\(824\) 0 0
\(825\) 2025.68 + 17335.9i 0.0854851 + 0.731585i
\(826\) 0 0
\(827\) −7678.07 + 5578.44i −0.322845 + 0.234560i −0.737388 0.675469i \(-0.763941\pi\)
0.414544 + 0.910029i \(0.363941\pi\)
\(828\) 0 0
\(829\) −11876.6 + 36552.5i −0.497579 + 1.53139i 0.315320 + 0.948985i \(0.397888\pi\)
−0.812899 + 0.582405i \(0.802112\pi\)
\(830\) 0 0
\(831\) 34962.7 + 25401.9i 1.45950 + 1.06039i
\(832\) 0 0
\(833\) −2.11122 6.49767i −8.78145e−5 0.000270265i
\(834\) 0 0
\(835\) −4562.34 −0.189086
\(836\) 0 0
\(837\) 22215.3 0.917411
\(838\) 0 0
\(839\) −2994.13 9215.00i −0.123205 0.379186i 0.870365 0.492408i \(-0.163883\pi\)
−0.993570 + 0.113222i \(0.963883\pi\)
\(840\) 0 0
\(841\) 14115.5 + 10255.5i 0.578766 + 0.420498i
\(842\) 0 0
\(843\) 8140.32 25053.3i 0.332583 1.02359i
\(844\) 0 0
\(845\) −9069.86 + 6589.64i −0.369246 + 0.268273i
\(846\) 0 0
\(847\) −13076.7 + 3098.31i −0.530486 + 0.125690i
\(848\) 0 0
\(849\) 24230.0 17604.1i 0.979472 0.711628i
\(850\) 0 0
\(851\) −5091.28 + 15669.3i −0.205084 + 0.631185i
\(852\) 0 0
\(853\) −19981.2 14517.2i −0.802043 0.582719i 0.109469 0.993990i \(-0.465085\pi\)
−0.911513 + 0.411272i \(0.865085\pi\)
\(854\) 0 0
\(855\) 514.043 + 1582.06i 0.0205613 + 0.0632812i
\(856\) 0 0
\(857\) 15732.3 0.627079 0.313539 0.949575i \(-0.398485\pi\)
0.313539 + 0.949575i \(0.398485\pi\)
\(858\) 0 0
\(859\) 34609.5 1.37469 0.687347 0.726329i \(-0.258775\pi\)
0.687347 + 0.726329i \(0.258775\pi\)
\(860\) 0 0
\(861\) 4073.83 + 12538.0i 0.161249 + 0.496275i
\(862\) 0 0
\(863\) −2205.96 1602.73i −0.0870126 0.0632183i 0.543428 0.839456i \(-0.317126\pi\)
−0.630441 + 0.776237i \(0.717126\pi\)
\(864\) 0 0
\(865\) −632.748 + 1947.40i −0.0248718 + 0.0765474i
\(866\) 0 0
\(867\) −22021.1 + 15999.2i −0.862600 + 0.626716i
\(868\) 0 0
\(869\) −1638.46 14022.0i −0.0639595 0.547368i
\(870\) 0 0
\(871\) 3610.73 2623.35i 0.140465 0.102054i
\(872\) 0 0
\(873\) −1017.93 + 3132.88i −0.0394638 + 0.121457i
\(874\) 0 0
\(875\) −10732.8 7797.82i −0.414668 0.301274i
\(876\) 0 0
\(877\) 760.484 + 2340.53i 0.0292813 + 0.0901187i 0.964629 0.263611i \(-0.0849134\pi\)
−0.935348 + 0.353729i \(0.884913\pi\)
\(878\) 0 0
\(879\) −30904.9 −1.18589
\(880\) 0 0
\(881\) 25163.9 0.962307 0.481153 0.876636i \(-0.340218\pi\)
0.481153 + 0.876636i \(0.340218\pi\)
\(882\) 0 0
\(883\) −2664.16 8199.45i −0.101536 0.312495i 0.887366 0.461066i \(-0.152533\pi\)
−0.988902 + 0.148570i \(0.952533\pi\)
\(884\) 0 0
\(885\) −10176.6 7393.75i −0.386535 0.280834i
\(886\) 0 0
\(887\) −13158.9 + 40498.9i −0.498120 + 1.53306i 0.313918 + 0.949450i \(0.398358\pi\)
−0.812038 + 0.583605i \(0.801642\pi\)
\(888\) 0 0
\(889\) 21800.3 15838.8i 0.822450 0.597545i
\(890\) 0 0
\(891\) 20153.4 + 21867.0i 0.757760 + 0.822191i
\(892\) 0 0
\(893\) 25368.8 18431.5i 0.950654 0.690691i
\(894\) 0 0
\(895\) 5132.08 15794.9i 0.191672 0.589906i
\(896\) 0 0
\(897\) −8214.68 5968.32i −0.305775 0.222159i
\(898\) 0 0
\(899\) 4429.66 + 13633.1i 0.164335 + 0.505772i
\(900\) 0 0
\(901\) −17.0020 −0.000628657
\(902\) 0 0
\(903\) −3881.86 −0.143057
\(904\) 0 0
\(905\) 2969.31 + 9138.61i 0.109064 + 0.335666i
\(906\) 0 0
\(907\) 7691.95 + 5588.53i 0.281596 + 0.204591i 0.719613 0.694375i \(-0.244319\pi\)
−0.438018 + 0.898966i \(0.644319\pi\)
\(908\) 0 0
\(909\) −351.686 + 1082.38i −0.0128324 + 0.0394942i
\(910\) 0 0
\(911\) 9283.56 6744.90i 0.337627 0.245300i −0.406033 0.913858i \(-0.633088\pi\)
0.743660 + 0.668558i \(0.233088\pi\)
\(912\) 0 0
\(913\) 40259.5 18487.3i 1.45936 0.670142i
\(914\) 0 0
\(915\) 19103.8 13879.7i 0.690220 0.501474i
\(916\) 0 0
\(917\) −2167.88 + 6672.06i −0.0780696 + 0.240274i
\(918\) 0 0
\(919\) 34255.3 + 24887.9i 1.22957 + 0.893338i 0.996858 0.0792073i \(-0.0252389\pi\)
0.232716 + 0.972545i \(0.425239\pi\)
\(920\) 0 0
\(921\) −12410.3 38195.0i −0.444011 1.36652i
\(922\) 0 0
\(923\) 5052.61 0.180183
\(924\) 0 0
\(925\) −15402.1 −0.547480
\(926\) 0 0
\(927\) 1270.74 + 3910.95i 0.0450234 + 0.138568i
\(928\) 0 0
\(929\) 34450.9 + 25030.0i 1.21668 + 0.883970i 0.995820 0.0913357i \(-0.0291136\pi\)
0.220860 + 0.975306i \(0.429114\pi\)
\(930\) 0 0
\(931\) 5394.31 16602.0i 0.189894 0.584434i
\(932\) 0 0
\(933\) −4272.37 + 3104.06i −0.149916 + 0.108920i
\(934\) 0 0
\(935\) −6.30284 1.26347i −0.000220455 4.41923e-5i
\(936\) 0 0
\(937\) 6729.55 4889.31i 0.234626 0.170466i −0.464260 0.885699i \(-0.653680\pi\)
0.698886 + 0.715233i \(0.253680\pi\)
\(938\) 0 0
\(939\) −5762.27 + 17734.4i −0.200260 + 0.616338i
\(940\) 0 0
\(941\) −25906.8 18822.4i −0.897490 0.652064i 0.0403304 0.999186i \(-0.487159\pi\)
−0.937820 + 0.347122i \(0.887159\pi\)
\(942\) 0 0
\(943\) 6726.96 + 20703.5i 0.232301 + 0.714950i
\(944\) 0 0
\(945\) −8104.63 −0.278988
\(946\) 0 0
\(947\) 28430.6 0.975575 0.487788 0.872962i \(-0.337804\pi\)
0.487788 + 0.872962i \(0.337804\pi\)
\(948\) 0 0
\(949\) −5409.75 16649.5i −0.185045 0.569510i
\(950\) 0 0
\(951\) 39456.5 + 28666.8i 1.34539 + 0.977483i
\(952\) 0 0
\(953\) −2103.09 + 6472.65i −0.0714856 + 0.220010i −0.980416 0.196938i \(-0.936900\pi\)
0.908930 + 0.416948i \(0.136900\pi\)
\(954\) 0 0
\(955\) −5964.35 + 4333.35i −0.202096 + 0.146831i
\(956\) 0 0
\(957\) −8250.23 + 14680.6i −0.278675 + 0.495878i
\(958\) 0 0
\(959\) −20233.4 + 14700.5i −0.681306 + 0.494997i
\(960\) 0 0
\(961\) −58.0511 + 178.663i −0.00194861 + 0.00599721i
\(962\) 0 0
\(963\) −5183.05 3765.70i −0.173439 0.126011i
\(964\) 0 0
\(965\) 2576.08 + 7928.35i 0.0859346 + 0.264479i
\(966\) 0 0
\(967\) −41912.2 −1.39380 −0.696901 0.717167i \(-0.745438\pi\)
−0.696901 + 0.717167i \(0.745438\pi\)
\(968\) 0 0
\(969\) 11.3711 0.000376980
\(970\) 0 0
\(971\) −15655.9 48184.0i −0.517428 1.59248i −0.778821 0.627246i \(-0.784182\pi\)
0.261393 0.965232i \(-0.415818\pi\)
\(972\) 0 0
\(973\) −17940.8 13034.7i −0.591114 0.429470i
\(974\) 0 0
\(975\) 2933.27 9027.68i 0.0963486 0.296530i
\(976\) 0 0
\(977\) −6856.91 + 4981.84i −0.224536 + 0.163135i −0.694366 0.719622i \(-0.744315\pi\)
0.469830 + 0.882757i \(0.344315\pi\)
\(978\) 0 0
\(979\) −22105.5 + 39334.9i −0.721651 + 1.28411i
\(980\) 0 0
\(981\) −4679.21 + 3399.64i −0.152289 + 0.110644i
\(982\) 0 0
\(983\) 8009.88 24651.9i 0.259894 0.799871i −0.732932 0.680302i \(-0.761849\pi\)
0.992826 0.119569i \(-0.0381513\pi\)
\(984\) 0 0
\(985\) 4009.45 + 2913.03i 0.129697 + 0.0942304i
\(986\) 0 0
\(987\) −7485.20 23037.1i −0.241395 0.742937i
\(988\) 0 0
\(989\) −6409.97 −0.206092
\(990\) 0 0
\(991\) 52359.2 1.67835 0.839174 0.543863i \(-0.183039\pi\)
0.839174 + 0.543863i \(0.183039\pi\)
\(992\) 0 0
\(993\) 3226.56 + 9930.34i 0.103114 + 0.317351i
\(994\) 0 0
\(995\) −602.316 437.608i −0.0191906 0.0139428i
\(996\) 0 0
\(997\) −4775.03 + 14696.0i −0.151682 + 0.466828i −0.997810 0.0661517i \(-0.978928\pi\)
0.846128 + 0.532980i \(0.178928\pi\)
\(998\) 0 0
\(999\) −18631.8 + 13536.8i −0.590073 + 0.428713i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.4.m.e.113.1 16
4.3 odd 2 88.4.i.a.25.4 16
11.2 odd 10 1936.4.a.bv.1.2 8
11.4 even 5 inner 176.4.m.e.81.1 16
11.9 even 5 1936.4.a.bw.1.2 8
44.15 odd 10 88.4.i.a.81.4 yes 16
44.31 odd 10 968.4.a.n.1.7 8
44.35 even 10 968.4.a.o.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.i.a.25.4 16 4.3 odd 2
88.4.i.a.81.4 yes 16 44.15 odd 10
176.4.m.e.81.1 16 11.4 even 5 inner
176.4.m.e.113.1 16 1.1 even 1 trivial
968.4.a.n.1.7 8 44.31 odd 10
968.4.a.o.1.7 8 44.35 even 10
1936.4.a.bv.1.2 8 11.2 odd 10
1936.4.a.bw.1.2 8 11.9 even 5