Properties

Label 968.4.a.o.1.7
Level $968$
Weight $4$
Character 968.1
Self dual yes
Analytic conductor $57.114$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,4,Mod(1,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 968.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.1138488856\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 87x^{6} + 12x^{5} + 2157x^{4} + 2939x^{3} - 5906x^{2} - 3030x + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 11 \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(7.88904\) of defining polynomial
Character \(\chi\) \(=\) 968.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.54031 q^{3} -6.21683 q^{5} +10.0967 q^{7} +3.69499 q^{9} -19.8412 q^{13} -34.4431 q^{15} -0.0283422 q^{17} -72.4162 q^{19} +55.9390 q^{21} +92.3700 q^{23} -86.3511 q^{25} -129.117 q^{27} -83.3142 q^{29} -172.056 q^{31} -62.7697 q^{35} +178.367 q^{37} -109.926 q^{39} +235.671 q^{41} +69.3945 q^{43} -22.9711 q^{45} -433.018 q^{47} -241.056 q^{49} -0.157025 q^{51} -599.884 q^{53} -401.208 q^{57} -365.211 q^{59} +685.581 q^{61} +37.3073 q^{63} +123.349 q^{65} +224.941 q^{67} +511.758 q^{69} -254.652 q^{71} +882.320 q^{73} -478.411 q^{75} -386.959 q^{79} -815.112 q^{81} -1214.30 q^{83} +0.176199 q^{85} -461.586 q^{87} -1236.77 q^{89} -200.332 q^{91} -953.241 q^{93} +450.199 q^{95} -891.507 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} - 13 q^{5} + 9 q^{7} + 36 q^{9} - 7 q^{13} - 66 q^{15} - 94 q^{17} + 92 q^{19} - 17 q^{21} - 46 q^{23} + 101 q^{25} + 124 q^{27} - 241 q^{29} - 265 q^{31} + 664 q^{35} - 469 q^{37} - 788 q^{39}+ \cdots - 4702 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.54031 1.06623 0.533116 0.846042i \(-0.321021\pi\)
0.533116 + 0.846042i \(0.321021\pi\)
\(4\) 0 0
\(5\) −6.21683 −0.556050 −0.278025 0.960574i \(-0.589680\pi\)
−0.278025 + 0.960574i \(0.589680\pi\)
\(6\) 0 0
\(7\) 10.0967 0.545173 0.272586 0.962131i \(-0.412121\pi\)
0.272586 + 0.962131i \(0.412121\pi\)
\(8\) 0 0
\(9\) 3.69499 0.136851
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −19.8412 −0.423305 −0.211652 0.977345i \(-0.567885\pi\)
−0.211652 + 0.977345i \(0.567885\pi\)
\(14\) 0 0
\(15\) −34.4431 −0.592878
\(16\) 0 0
\(17\) −0.0283422 −0.000404353 0 −0.000202176 1.00000i \(-0.500064\pi\)
−0.000202176 1.00000i \(0.500064\pi\)
\(18\) 0 0
\(19\) −72.4162 −0.874391 −0.437195 0.899367i \(-0.644028\pi\)
−0.437195 + 0.899367i \(0.644028\pi\)
\(20\) 0 0
\(21\) 55.9390 0.581281
\(22\) 0 0
\(23\) 92.3700 0.837412 0.418706 0.908122i \(-0.362484\pi\)
0.418706 + 0.908122i \(0.362484\pi\)
\(24\) 0 0
\(25\) −86.3511 −0.690808
\(26\) 0 0
\(27\) −129.117 −0.920317
\(28\) 0 0
\(29\) −83.3142 −0.533485 −0.266742 0.963768i \(-0.585947\pi\)
−0.266742 + 0.963768i \(0.585947\pi\)
\(30\) 0 0
\(31\) −172.056 −0.996842 −0.498421 0.866935i \(-0.666087\pi\)
−0.498421 + 0.866935i \(0.666087\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −62.7697 −0.303143
\(36\) 0 0
\(37\) 178.367 0.792521 0.396260 0.918138i \(-0.370308\pi\)
0.396260 + 0.918138i \(0.370308\pi\)
\(38\) 0 0
\(39\) −109.926 −0.451341
\(40\) 0 0
\(41\) 235.671 0.897697 0.448849 0.893608i \(-0.351834\pi\)
0.448849 + 0.893608i \(0.351834\pi\)
\(42\) 0 0
\(43\) 69.3945 0.246106 0.123053 0.992400i \(-0.460731\pi\)
0.123053 + 0.992400i \(0.460731\pi\)
\(44\) 0 0
\(45\) −22.9711 −0.0760962
\(46\) 0 0
\(47\) −433.018 −1.34388 −0.671938 0.740607i \(-0.734538\pi\)
−0.671938 + 0.740607i \(0.734538\pi\)
\(48\) 0 0
\(49\) −241.056 −0.702787
\(50\) 0 0
\(51\) −0.157025 −0.000431134 0
\(52\) 0 0
\(53\) −599.884 −1.55472 −0.777362 0.629054i \(-0.783443\pi\)
−0.777362 + 0.629054i \(0.783443\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −401.208 −0.932303
\(58\) 0 0
\(59\) −365.211 −0.805871 −0.402935 0.915228i \(-0.632010\pi\)
−0.402935 + 0.915228i \(0.632010\pi\)
\(60\) 0 0
\(61\) 685.581 1.43901 0.719506 0.694487i \(-0.244368\pi\)
0.719506 + 0.694487i \(0.244368\pi\)
\(62\) 0 0
\(63\) 37.3073 0.0746076
\(64\) 0 0
\(65\) 123.349 0.235379
\(66\) 0 0
\(67\) 224.941 0.410164 0.205082 0.978745i \(-0.434254\pi\)
0.205082 + 0.978745i \(0.434254\pi\)
\(68\) 0 0
\(69\) 511.758 0.892876
\(70\) 0 0
\(71\) −254.652 −0.425657 −0.212828 0.977090i \(-0.568268\pi\)
−0.212828 + 0.977090i \(0.568268\pi\)
\(72\) 0 0
\(73\) 882.320 1.41463 0.707313 0.706900i \(-0.249907\pi\)
0.707313 + 0.706900i \(0.249907\pi\)
\(74\) 0 0
\(75\) −478.411 −0.736562
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −386.959 −0.551092 −0.275546 0.961288i \(-0.588859\pi\)
−0.275546 + 0.961288i \(0.588859\pi\)
\(80\) 0 0
\(81\) −815.112 −1.11812
\(82\) 0 0
\(83\) −1214.30 −1.60587 −0.802935 0.596067i \(-0.796729\pi\)
−0.802935 + 0.596067i \(0.796729\pi\)
\(84\) 0 0
\(85\) 0.176199 0.000224840 0
\(86\) 0 0
\(87\) −461.586 −0.568819
\(88\) 0 0
\(89\) −1236.77 −1.47300 −0.736500 0.676438i \(-0.763523\pi\)
−0.736500 + 0.676438i \(0.763523\pi\)
\(90\) 0 0
\(91\) −200.332 −0.230774
\(92\) 0 0
\(93\) −953.241 −1.06287
\(94\) 0 0
\(95\) 450.199 0.486205
\(96\) 0 0
\(97\) −891.507 −0.933184 −0.466592 0.884473i \(-0.654518\pi\)
−0.466592 + 0.884473i \(0.654518\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 308.007 0.303444 0.151722 0.988423i \(-0.451518\pi\)
0.151722 + 0.988423i \(0.451518\pi\)
\(102\) 0 0
\(103\) −1112.92 −1.06465 −0.532325 0.846540i \(-0.678682\pi\)
−0.532325 + 0.846540i \(0.678682\pi\)
\(104\) 0 0
\(105\) −347.763 −0.323221
\(106\) 0 0
\(107\) 1733.86 1.56653 0.783266 0.621687i \(-0.213552\pi\)
0.783266 + 0.621687i \(0.213552\pi\)
\(108\) 0 0
\(109\) −1565.32 −1.37550 −0.687752 0.725946i \(-0.741402\pi\)
−0.687752 + 0.725946i \(0.741402\pi\)
\(110\) 0 0
\(111\) 988.205 0.845011
\(112\) 0 0
\(113\) 656.139 0.546233 0.273117 0.961981i \(-0.411945\pi\)
0.273117 + 0.961981i \(0.411945\pi\)
\(114\) 0 0
\(115\) −574.249 −0.465643
\(116\) 0 0
\(117\) −73.3130 −0.0579298
\(118\) 0 0
\(119\) −0.286164 −0.000220442 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 1305.69 0.957154
\(124\) 0 0
\(125\) 1313.93 0.940174
\(126\) 0 0
\(127\) −2668.84 −1.86474 −0.932368 0.361510i \(-0.882261\pi\)
−0.932368 + 0.361510i \(0.882261\pi\)
\(128\) 0 0
\(129\) 384.467 0.262406
\(130\) 0 0
\(131\) −694.820 −0.463410 −0.231705 0.972786i \(-0.574430\pi\)
−0.231705 + 0.972786i \(0.574430\pi\)
\(132\) 0 0
\(133\) −731.168 −0.476694
\(134\) 0 0
\(135\) 802.697 0.511742
\(136\) 0 0
\(137\) 2477.03 1.54472 0.772361 0.635184i \(-0.219076\pi\)
0.772361 + 0.635184i \(0.219076\pi\)
\(138\) 0 0
\(139\) 2196.35 1.34023 0.670115 0.742257i \(-0.266245\pi\)
0.670115 + 0.742257i \(0.266245\pi\)
\(140\) 0 0
\(141\) −2399.05 −1.43288
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 517.950 0.296644
\(146\) 0 0
\(147\) −1335.52 −0.749334
\(148\) 0 0
\(149\) −3340.74 −1.83681 −0.918403 0.395645i \(-0.870521\pi\)
−0.918403 + 0.395645i \(0.870521\pi\)
\(150\) 0 0
\(151\) 728.502 0.392613 0.196307 0.980543i \(-0.437105\pi\)
0.196307 + 0.980543i \(0.437105\pi\)
\(152\) 0 0
\(153\) −0.104724 −5.53362e−5 0
\(154\) 0 0
\(155\) 1069.64 0.554294
\(156\) 0 0
\(157\) 2954.83 1.50204 0.751022 0.660277i \(-0.229561\pi\)
0.751022 + 0.660277i \(0.229561\pi\)
\(158\) 0 0
\(159\) −3323.54 −1.65770
\(160\) 0 0
\(161\) 932.636 0.456534
\(162\) 0 0
\(163\) −6.35358 −0.00305307 −0.00152654 0.999999i \(-0.500486\pi\)
−0.00152654 + 0.999999i \(0.500486\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 733.870 0.340051 0.170026 0.985440i \(-0.445615\pi\)
0.170026 + 0.985440i \(0.445615\pi\)
\(168\) 0 0
\(169\) −1803.33 −0.820813
\(170\) 0 0
\(171\) −267.577 −0.119661
\(172\) 0 0
\(173\) −329.366 −0.144747 −0.0723736 0.997378i \(-0.523057\pi\)
−0.0723736 + 0.997378i \(0.523057\pi\)
\(174\) 0 0
\(175\) −871.864 −0.376610
\(176\) 0 0
\(177\) −2023.38 −0.859245
\(178\) 0 0
\(179\) 2671.42 1.11548 0.557741 0.830015i \(-0.311668\pi\)
0.557741 + 0.830015i \(0.311668\pi\)
\(180\) 0 0
\(181\) −1545.63 −0.634727 −0.317364 0.948304i \(-0.602798\pi\)
−0.317364 + 0.948304i \(0.602798\pi\)
\(182\) 0 0
\(183\) 3798.33 1.53432
\(184\) 0 0
\(185\) −1108.87 −0.440681
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1303.66 −0.501732
\(190\) 0 0
\(191\) 1185.87 0.449248 0.224624 0.974445i \(-0.427885\pi\)
0.224624 + 0.974445i \(0.427885\pi\)
\(192\) 0 0
\(193\) 1340.94 0.500117 0.250059 0.968231i \(-0.419550\pi\)
0.250059 + 0.968231i \(0.419550\pi\)
\(194\) 0 0
\(195\) 683.394 0.250968
\(196\) 0 0
\(197\) −797.183 −0.288309 −0.144155 0.989555i \(-0.546046\pi\)
−0.144155 + 0.989555i \(0.546046\pi\)
\(198\) 0 0
\(199\) 119.756 0.0426597 0.0213299 0.999772i \(-0.493210\pi\)
0.0213299 + 0.999772i \(0.493210\pi\)
\(200\) 0 0
\(201\) 1246.24 0.437330
\(202\) 0 0
\(203\) −841.202 −0.290841
\(204\) 0 0
\(205\) −1465.12 −0.499164
\(206\) 0 0
\(207\) 341.306 0.114601
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1059.12 −0.345559 −0.172780 0.984961i \(-0.555275\pi\)
−0.172780 + 0.984961i \(0.555275\pi\)
\(212\) 0 0
\(213\) −1410.85 −0.453849
\(214\) 0 0
\(215\) −431.414 −0.136847
\(216\) 0 0
\(217\) −1737.20 −0.543451
\(218\) 0 0
\(219\) 4888.32 1.50832
\(220\) 0 0
\(221\) 0.562344 0.000171165 0
\(222\) 0 0
\(223\) −6175.28 −1.85438 −0.927192 0.374587i \(-0.877785\pi\)
−0.927192 + 0.374587i \(0.877785\pi\)
\(224\) 0 0
\(225\) −319.066 −0.0945380
\(226\) 0 0
\(227\) 4220.64 1.23407 0.617034 0.786936i \(-0.288334\pi\)
0.617034 + 0.786936i \(0.288334\pi\)
\(228\) 0 0
\(229\) −2459.73 −0.709798 −0.354899 0.934905i \(-0.615485\pi\)
−0.354899 + 0.934905i \(0.615485\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1244.39 0.349884 0.174942 0.984579i \(-0.444026\pi\)
0.174942 + 0.984579i \(0.444026\pi\)
\(234\) 0 0
\(235\) 2692.00 0.747263
\(236\) 0 0
\(237\) −2143.87 −0.587592
\(238\) 0 0
\(239\) 3484.12 0.942967 0.471483 0.881875i \(-0.343719\pi\)
0.471483 + 0.881875i \(0.343719\pi\)
\(240\) 0 0
\(241\) −6857.39 −1.83288 −0.916439 0.400174i \(-0.868950\pi\)
−0.916439 + 0.400174i \(0.868950\pi\)
\(242\) 0 0
\(243\) −1029.81 −0.271862
\(244\) 0 0
\(245\) 1498.60 0.390784
\(246\) 0 0
\(247\) 1436.83 0.370134
\(248\) 0 0
\(249\) −6727.61 −1.71223
\(250\) 0 0
\(251\) −5654.75 −1.42201 −0.711005 0.703187i \(-0.751760\pi\)
−0.711005 + 0.703187i \(0.751760\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.976195 0.000239732 0
\(256\) 0 0
\(257\) −3870.41 −0.939416 −0.469708 0.882822i \(-0.655641\pi\)
−0.469708 + 0.882822i \(0.655641\pi\)
\(258\) 0 0
\(259\) 1800.92 0.432061
\(260\) 0 0
\(261\) −307.845 −0.0730081
\(262\) 0 0
\(263\) 1016.12 0.238239 0.119119 0.992880i \(-0.461993\pi\)
0.119119 + 0.992880i \(0.461993\pi\)
\(264\) 0 0
\(265\) 3729.37 0.864504
\(266\) 0 0
\(267\) −6852.06 −1.57056
\(268\) 0 0
\(269\) 452.110 0.102474 0.0512372 0.998687i \(-0.483684\pi\)
0.0512372 + 0.998687i \(0.483684\pi\)
\(270\) 0 0
\(271\) −444.082 −0.0995428 −0.0497714 0.998761i \(-0.515849\pi\)
−0.0497714 + 0.998761i \(0.515849\pi\)
\(272\) 0 0
\(273\) −1109.90 −0.246059
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −7800.35 −1.69198 −0.845988 0.533202i \(-0.820989\pi\)
−0.845988 + 0.533202i \(0.820989\pi\)
\(278\) 0 0
\(279\) −635.743 −0.136419
\(280\) 0 0
\(281\) 4754.72 1.00941 0.504703 0.863293i \(-0.331602\pi\)
0.504703 + 0.863293i \(0.331602\pi\)
\(282\) 0 0
\(283\) 5405.83 1.13549 0.567744 0.823205i \(-0.307816\pi\)
0.567744 + 0.823205i \(0.307816\pi\)
\(284\) 0 0
\(285\) 2494.24 0.518407
\(286\) 0 0
\(287\) 2379.51 0.489400
\(288\) 0 0
\(289\) −4913.00 −1.00000
\(290\) 0 0
\(291\) −4939.22 −0.994991
\(292\) 0 0
\(293\) −5578.19 −1.11222 −0.556112 0.831107i \(-0.687707\pi\)
−0.556112 + 0.831107i \(0.687707\pi\)
\(294\) 0 0
\(295\) 2270.45 0.448104
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1832.73 −0.354481
\(300\) 0 0
\(301\) 700.658 0.134170
\(302\) 0 0
\(303\) 1706.45 0.323541
\(304\) 0 0
\(305\) −4262.14 −0.800162
\(306\) 0 0
\(307\) 7248.81 1.34759 0.673797 0.738916i \(-0.264662\pi\)
0.673797 + 0.738916i \(0.264662\pi\)
\(308\) 0 0
\(309\) −6165.90 −1.13517
\(310\) 0 0
\(311\) 953.186 0.173795 0.0868975 0.996217i \(-0.472305\pi\)
0.0868975 + 0.996217i \(0.472305\pi\)
\(312\) 0 0
\(313\) 3365.71 0.607800 0.303900 0.952704i \(-0.401711\pi\)
0.303900 + 0.952704i \(0.401711\pi\)
\(314\) 0 0
\(315\) −231.933 −0.0414856
\(316\) 0 0
\(317\) 8802.93 1.55969 0.779845 0.625972i \(-0.215298\pi\)
0.779845 + 0.625972i \(0.215298\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 9606.13 1.67029
\(322\) 0 0
\(323\) 2.05244 0.000353562 0
\(324\) 0 0
\(325\) 1713.31 0.292423
\(326\) 0 0
\(327\) −8672.32 −1.46661
\(328\) 0 0
\(329\) −4372.07 −0.732645
\(330\) 0 0
\(331\) 1884.62 0.312955 0.156478 0.987682i \(-0.449986\pi\)
0.156478 + 0.987682i \(0.449986\pi\)
\(332\) 0 0
\(333\) 659.062 0.108458
\(334\) 0 0
\(335\) −1398.42 −0.228071
\(336\) 0 0
\(337\) −1979.74 −0.320009 −0.160005 0.987116i \(-0.551151\pi\)
−0.160005 + 0.987116i \(0.551151\pi\)
\(338\) 0 0
\(339\) 3635.21 0.582412
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −5897.06 −0.928313
\(344\) 0 0
\(345\) −3181.51 −0.496484
\(346\) 0 0
\(347\) 8538.82 1.32100 0.660502 0.750825i \(-0.270344\pi\)
0.660502 + 0.750825i \(0.270344\pi\)
\(348\) 0 0
\(349\) 944.572 0.144876 0.0724381 0.997373i \(-0.476922\pi\)
0.0724381 + 0.997373i \(0.476922\pi\)
\(350\) 0 0
\(351\) 2561.84 0.389575
\(352\) 0 0
\(353\) 3709.02 0.559239 0.279619 0.960111i \(-0.409792\pi\)
0.279619 + 0.960111i \(0.409792\pi\)
\(354\) 0 0
\(355\) 1583.13 0.236687
\(356\) 0 0
\(357\) −1.58544 −0.000235043 0
\(358\) 0 0
\(359\) 9466.81 1.39175 0.695876 0.718162i \(-0.255016\pi\)
0.695876 + 0.718162i \(0.255016\pi\)
\(360\) 0 0
\(361\) −1614.89 −0.235441
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5485.23 −0.786603
\(366\) 0 0
\(367\) 2353.26 0.334712 0.167356 0.985897i \(-0.446477\pi\)
0.167356 + 0.985897i \(0.446477\pi\)
\(368\) 0 0
\(369\) 870.800 0.122851
\(370\) 0 0
\(371\) −6056.87 −0.847593
\(372\) 0 0
\(373\) −1447.21 −0.200894 −0.100447 0.994942i \(-0.532027\pi\)
−0.100447 + 0.994942i \(0.532027\pi\)
\(374\) 0 0
\(375\) 7279.59 1.00244
\(376\) 0 0
\(377\) 1653.06 0.225827
\(378\) 0 0
\(379\) 8402.10 1.13875 0.569376 0.822078i \(-0.307185\pi\)
0.569376 + 0.822078i \(0.307185\pi\)
\(380\) 0 0
\(381\) −14786.2 −1.98824
\(382\) 0 0
\(383\) 7136.19 0.952069 0.476035 0.879427i \(-0.342074\pi\)
0.476035 + 0.879427i \(0.342074\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 256.412 0.0336799
\(388\) 0 0
\(389\) 11712.7 1.52663 0.763316 0.646025i \(-0.223570\pi\)
0.763316 + 0.646025i \(0.223570\pi\)
\(390\) 0 0
\(391\) −2.61797 −0.000338610 0
\(392\) 0 0
\(393\) −3849.52 −0.494103
\(394\) 0 0
\(395\) 2405.66 0.306435
\(396\) 0 0
\(397\) −13000.5 −1.64352 −0.821759 0.569835i \(-0.807007\pi\)
−0.821759 + 0.569835i \(0.807007\pi\)
\(398\) 0 0
\(399\) −4050.89 −0.508267
\(400\) 0 0
\(401\) 11061.4 1.37750 0.688750 0.724999i \(-0.258160\pi\)
0.688750 + 0.724999i \(0.258160\pi\)
\(402\) 0 0
\(403\) 3413.79 0.421968
\(404\) 0 0
\(405\) 5067.41 0.621732
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 9340.89 1.12928 0.564642 0.825336i \(-0.309014\pi\)
0.564642 + 0.825336i \(0.309014\pi\)
\(410\) 0 0
\(411\) 13723.5 1.64703
\(412\) 0 0
\(413\) −3687.44 −0.439339
\(414\) 0 0
\(415\) 7549.12 0.892944
\(416\) 0 0
\(417\) 12168.5 1.42900
\(418\) 0 0
\(419\) 2181.92 0.254400 0.127200 0.991877i \(-0.459401\pi\)
0.127200 + 0.991877i \(0.459401\pi\)
\(420\) 0 0
\(421\) 3508.41 0.406151 0.203076 0.979163i \(-0.434906\pi\)
0.203076 + 0.979163i \(0.434906\pi\)
\(422\) 0 0
\(423\) −1600.00 −0.183911
\(424\) 0 0
\(425\) 2.44738 0.000279330 0
\(426\) 0 0
\(427\) 6922.14 0.784510
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12861.8 1.43742 0.718712 0.695308i \(-0.244732\pi\)
0.718712 + 0.695308i \(0.244732\pi\)
\(432\) 0 0
\(433\) 8152.45 0.904808 0.452404 0.891813i \(-0.350567\pi\)
0.452404 + 0.891813i \(0.350567\pi\)
\(434\) 0 0
\(435\) 2869.60 0.316292
\(436\) 0 0
\(437\) −6689.09 −0.732225
\(438\) 0 0
\(439\) −1617.22 −0.175821 −0.0879107 0.996128i \(-0.528019\pi\)
−0.0879107 + 0.996128i \(0.528019\pi\)
\(440\) 0 0
\(441\) −890.698 −0.0961773
\(442\) 0 0
\(443\) 4746.12 0.509018 0.254509 0.967070i \(-0.418086\pi\)
0.254509 + 0.967070i \(0.418086\pi\)
\(444\) 0 0
\(445\) 7688.76 0.819061
\(446\) 0 0
\(447\) −18508.7 −1.95846
\(448\) 0 0
\(449\) 6696.84 0.703883 0.351941 0.936022i \(-0.385522\pi\)
0.351941 + 0.936022i \(0.385522\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 4036.12 0.418617
\(454\) 0 0
\(455\) 1245.43 0.128322
\(456\) 0 0
\(457\) 10921.4 1.11790 0.558952 0.829200i \(-0.311204\pi\)
0.558952 + 0.829200i \(0.311204\pi\)
\(458\) 0 0
\(459\) 3.65946 0.000372133 0
\(460\) 0 0
\(461\) −10627.0 −1.07365 −0.536823 0.843695i \(-0.680376\pi\)
−0.536823 + 0.843695i \(0.680376\pi\)
\(462\) 0 0
\(463\) 3046.02 0.305746 0.152873 0.988246i \(-0.451147\pi\)
0.152873 + 0.988246i \(0.451147\pi\)
\(464\) 0 0
\(465\) 5926.13 0.591006
\(466\) 0 0
\(467\) 7881.07 0.780926 0.390463 0.920619i \(-0.372315\pi\)
0.390463 + 0.920619i \(0.372315\pi\)
\(468\) 0 0
\(469\) 2271.18 0.223610
\(470\) 0 0
\(471\) 16370.6 1.60153
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 6253.22 0.604036
\(476\) 0 0
\(477\) −2216.56 −0.212766
\(478\) 0 0
\(479\) −12763.1 −1.21746 −0.608730 0.793378i \(-0.708321\pi\)
−0.608730 + 0.793378i \(0.708321\pi\)
\(480\) 0 0
\(481\) −3539.01 −0.335478
\(482\) 0 0
\(483\) 5167.09 0.486772
\(484\) 0 0
\(485\) 5542.35 0.518897
\(486\) 0 0
\(487\) −4287.14 −0.398909 −0.199455 0.979907i \(-0.563917\pi\)
−0.199455 + 0.979907i \(0.563917\pi\)
\(488\) 0 0
\(489\) −35.2008 −0.00325528
\(490\) 0 0
\(491\) 1729.93 0.159003 0.0795016 0.996835i \(-0.474667\pi\)
0.0795016 + 0.996835i \(0.474667\pi\)
\(492\) 0 0
\(493\) 2.36131 0.000215716 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2571.16 −0.232057
\(498\) 0 0
\(499\) −13257.4 −1.18934 −0.594670 0.803970i \(-0.702717\pi\)
−0.594670 + 0.803970i \(0.702717\pi\)
\(500\) 0 0
\(501\) 4065.87 0.362574
\(502\) 0 0
\(503\) −131.981 −0.0116993 −0.00584964 0.999983i \(-0.501862\pi\)
−0.00584964 + 0.999983i \(0.501862\pi\)
\(504\) 0 0
\(505\) −1914.82 −0.168730
\(506\) 0 0
\(507\) −9990.98 −0.875177
\(508\) 0 0
\(509\) 8169.00 0.711365 0.355682 0.934607i \(-0.384249\pi\)
0.355682 + 0.934607i \(0.384249\pi\)
\(510\) 0 0
\(511\) 8908.56 0.771216
\(512\) 0 0
\(513\) 9350.16 0.804717
\(514\) 0 0
\(515\) 6918.82 0.591999
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −1824.79 −0.154334
\(520\) 0 0
\(521\) 2530.99 0.212831 0.106415 0.994322i \(-0.466063\pi\)
0.106415 + 0.994322i \(0.466063\pi\)
\(522\) 0 0
\(523\) 1559.52 0.130388 0.0651940 0.997873i \(-0.479233\pi\)
0.0651940 + 0.997873i \(0.479233\pi\)
\(524\) 0 0
\(525\) −4830.39 −0.401554
\(526\) 0 0
\(527\) 4.87644 0.000403076 0
\(528\) 0 0
\(529\) −3634.78 −0.298741
\(530\) 0 0
\(531\) −1349.45 −0.110284
\(532\) 0 0
\(533\) −4675.99 −0.380000
\(534\) 0 0
\(535\) −10779.1 −0.871070
\(536\) 0 0
\(537\) 14800.5 1.18936
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −14840.8 −1.17940 −0.589700 0.807622i \(-0.700754\pi\)
−0.589700 + 0.807622i \(0.700754\pi\)
\(542\) 0 0
\(543\) −8563.25 −0.676767
\(544\) 0 0
\(545\) 9731.29 0.764849
\(546\) 0 0
\(547\) −4484.16 −0.350510 −0.175255 0.984523i \(-0.556075\pi\)
−0.175255 + 0.984523i \(0.556075\pi\)
\(548\) 0 0
\(549\) 2533.21 0.196931
\(550\) 0 0
\(551\) 6033.30 0.466474
\(552\) 0 0
\(553\) −3907.02 −0.300440
\(554\) 0 0
\(555\) −6143.50 −0.469869
\(556\) 0 0
\(557\) −5315.84 −0.404379 −0.202190 0.979346i \(-0.564806\pi\)
−0.202190 + 0.979346i \(0.564806\pi\)
\(558\) 0 0
\(559\) −1376.87 −0.104178
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4602.65 −0.344544 −0.172272 0.985049i \(-0.555111\pi\)
−0.172272 + 0.985049i \(0.555111\pi\)
\(564\) 0 0
\(565\) −4079.10 −0.303733
\(566\) 0 0
\(567\) −8229.97 −0.609570
\(568\) 0 0
\(569\) −7732.30 −0.569692 −0.284846 0.958573i \(-0.591942\pi\)
−0.284846 + 0.958573i \(0.591942\pi\)
\(570\) 0 0
\(571\) −18830.2 −1.38007 −0.690033 0.723778i \(-0.742404\pi\)
−0.690033 + 0.723778i \(0.742404\pi\)
\(572\) 0 0
\(573\) 6570.07 0.479003
\(574\) 0 0
\(575\) −7976.25 −0.578491
\(576\) 0 0
\(577\) 13904.5 1.00321 0.501605 0.865097i \(-0.332743\pi\)
0.501605 + 0.865097i \(0.332743\pi\)
\(578\) 0 0
\(579\) 7429.19 0.533241
\(580\) 0 0
\(581\) −12260.5 −0.875476
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 455.774 0.0322119
\(586\) 0 0
\(587\) 25593.2 1.79956 0.899782 0.436340i \(-0.143726\pi\)
0.899782 + 0.436340i \(0.143726\pi\)
\(588\) 0 0
\(589\) 12459.6 0.871629
\(590\) 0 0
\(591\) −4416.64 −0.307405
\(592\) 0 0
\(593\) 14766.2 1.02256 0.511279 0.859415i \(-0.329172\pi\)
0.511279 + 0.859415i \(0.329172\pi\)
\(594\) 0 0
\(595\) 1.77903 0.000122577 0
\(596\) 0 0
\(597\) 663.485 0.0454852
\(598\) 0 0
\(599\) −1873.15 −0.127771 −0.0638856 0.997957i \(-0.520349\pi\)
−0.0638856 + 0.997957i \(0.520349\pi\)
\(600\) 0 0
\(601\) 1711.60 0.116169 0.0580845 0.998312i \(-0.481501\pi\)
0.0580845 + 0.998312i \(0.481501\pi\)
\(602\) 0 0
\(603\) 831.155 0.0561314
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 13265.7 0.887046 0.443523 0.896263i \(-0.353728\pi\)
0.443523 + 0.896263i \(0.353728\pi\)
\(608\) 0 0
\(609\) −4660.52 −0.310105
\(610\) 0 0
\(611\) 8591.61 0.568870
\(612\) 0 0
\(613\) 25182.4 1.65923 0.829615 0.558336i \(-0.188560\pi\)
0.829615 + 0.558336i \(0.188560\pi\)
\(614\) 0 0
\(615\) −8117.23 −0.532225
\(616\) 0 0
\(617\) −4896.84 −0.319513 −0.159756 0.987156i \(-0.551071\pi\)
−0.159756 + 0.987156i \(0.551071\pi\)
\(618\) 0 0
\(619\) −2943.21 −0.191111 −0.0955554 0.995424i \(-0.530463\pi\)
−0.0955554 + 0.995424i \(0.530463\pi\)
\(620\) 0 0
\(621\) −11926.5 −0.770685
\(622\) 0 0
\(623\) −12487.3 −0.803039
\(624\) 0 0
\(625\) 2625.39 0.168025
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.05530 −0.000320458 0
\(630\) 0 0
\(631\) −30497.6 −1.92408 −0.962038 0.272916i \(-0.912012\pi\)
−0.962038 + 0.272916i \(0.912012\pi\)
\(632\) 0 0
\(633\) −5867.86 −0.368446
\(634\) 0 0
\(635\) 16591.7 1.03689
\(636\) 0 0
\(637\) 4782.84 0.297493
\(638\) 0 0
\(639\) −940.936 −0.0582517
\(640\) 0 0
\(641\) −25166.2 −1.55071 −0.775354 0.631527i \(-0.782429\pi\)
−0.775354 + 0.631527i \(0.782429\pi\)
\(642\) 0 0
\(643\) −6165.04 −0.378111 −0.189056 0.981966i \(-0.560543\pi\)
−0.189056 + 0.981966i \(0.560543\pi\)
\(644\) 0 0
\(645\) −2390.16 −0.145911
\(646\) 0 0
\(647\) −13006.1 −0.790295 −0.395148 0.918618i \(-0.629307\pi\)
−0.395148 + 0.918618i \(0.629307\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −9624.63 −0.579445
\(652\) 0 0
\(653\) 18408.0 1.10316 0.551579 0.834123i \(-0.314026\pi\)
0.551579 + 0.834123i \(0.314026\pi\)
\(654\) 0 0
\(655\) 4319.58 0.257679
\(656\) 0 0
\(657\) 3260.16 0.193593
\(658\) 0 0
\(659\) 13817.0 0.816745 0.408372 0.912815i \(-0.366096\pi\)
0.408372 + 0.912815i \(0.366096\pi\)
\(660\) 0 0
\(661\) −4130.31 −0.243042 −0.121521 0.992589i \(-0.538777\pi\)
−0.121521 + 0.992589i \(0.538777\pi\)
\(662\) 0 0
\(663\) 3.11556 0.000182501 0
\(664\) 0 0
\(665\) 4545.54 0.265066
\(666\) 0 0
\(667\) −7695.74 −0.446747
\(668\) 0 0
\(669\) −34213.0 −1.97720
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −9193.43 −0.526569 −0.263284 0.964718i \(-0.584806\pi\)
−0.263284 + 0.964718i \(0.584806\pi\)
\(674\) 0 0
\(675\) 11149.4 0.635763
\(676\) 0 0
\(677\) −4453.79 −0.252841 −0.126420 0.991977i \(-0.540349\pi\)
−0.126420 + 0.991977i \(0.540349\pi\)
\(678\) 0 0
\(679\) −9001.32 −0.508747
\(680\) 0 0
\(681\) 23383.6 1.31580
\(682\) 0 0
\(683\) −12898.6 −0.722620 −0.361310 0.932446i \(-0.617670\pi\)
−0.361310 + 0.932446i \(0.617670\pi\)
\(684\) 0 0
\(685\) −15399.3 −0.858942
\(686\) 0 0
\(687\) −13627.7 −0.756810
\(688\) 0 0
\(689\) 11902.4 0.658122
\(690\) 0 0
\(691\) −29150.8 −1.60485 −0.802424 0.596754i \(-0.796457\pi\)
−0.802424 + 0.596754i \(0.796457\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13654.3 −0.745235
\(696\) 0 0
\(697\) −6.67943 −0.000362986 0
\(698\) 0 0
\(699\) 6894.32 0.373058
\(700\) 0 0
\(701\) 154.490 0.00832382 0.00416191 0.999991i \(-0.498675\pi\)
0.00416191 + 0.999991i \(0.498675\pi\)
\(702\) 0 0
\(703\) −12916.6 −0.692973
\(704\) 0 0
\(705\) 14914.5 0.796755
\(706\) 0 0
\(707\) 3109.86 0.165429
\(708\) 0 0
\(709\) −18780.0 −0.994780 −0.497390 0.867527i \(-0.665708\pi\)
−0.497390 + 0.867527i \(0.665708\pi\)
\(710\) 0 0
\(711\) −1429.81 −0.0754176
\(712\) 0 0
\(713\) −15892.8 −0.834768
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 19303.1 1.00542
\(718\) 0 0
\(719\) −10916.4 −0.566222 −0.283111 0.959087i \(-0.591366\pi\)
−0.283111 + 0.959087i \(0.591366\pi\)
\(720\) 0 0
\(721\) −11236.8 −0.580419
\(722\) 0 0
\(723\) −37992.1 −1.95427
\(724\) 0 0
\(725\) 7194.27 0.368536
\(726\) 0 0
\(727\) 19277.1 0.983424 0.491712 0.870758i \(-0.336371\pi\)
0.491712 + 0.870758i \(0.336371\pi\)
\(728\) 0 0
\(729\) 16302.5 0.828255
\(730\) 0 0
\(731\) −1.96679 −9.95137e−5 0
\(732\) 0 0
\(733\) 34562.4 1.74160 0.870798 0.491641i \(-0.163603\pi\)
0.870798 + 0.491641i \(0.163603\pi\)
\(734\) 0 0
\(735\) 8302.71 0.416667
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −19140.3 −0.952757 −0.476378 0.879240i \(-0.658051\pi\)
−0.476378 + 0.879240i \(0.658051\pi\)
\(740\) 0 0
\(741\) 7960.46 0.394649
\(742\) 0 0
\(743\) −18198.4 −0.898564 −0.449282 0.893390i \(-0.648320\pi\)
−0.449282 + 0.893390i \(0.648320\pi\)
\(744\) 0 0
\(745\) 20768.8 1.02136
\(746\) 0 0
\(747\) −4486.84 −0.219765
\(748\) 0 0
\(749\) 17506.4 0.854031
\(750\) 0 0
\(751\) 25102.0 1.21969 0.609845 0.792521i \(-0.291232\pi\)
0.609845 + 0.792521i \(0.291232\pi\)
\(752\) 0 0
\(753\) −31329.0 −1.51619
\(754\) 0 0
\(755\) −4528.97 −0.218313
\(756\) 0 0
\(757\) 30787.1 1.47817 0.739086 0.673611i \(-0.235258\pi\)
0.739086 + 0.673611i \(0.235258\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22966.0 −1.09398 −0.546990 0.837139i \(-0.684226\pi\)
−0.546990 + 0.837139i \(0.684226\pi\)
\(762\) 0 0
\(763\) −15804.6 −0.749888
\(764\) 0 0
\(765\) 0.651052 3.07697e−5 0
\(766\) 0 0
\(767\) 7246.22 0.341129
\(768\) 0 0
\(769\) −28729.3 −1.34721 −0.673605 0.739091i \(-0.735255\pi\)
−0.673605 + 0.739091i \(0.735255\pi\)
\(770\) 0 0
\(771\) −21443.3 −1.00164
\(772\) 0 0
\(773\) −19244.6 −0.895446 −0.447723 0.894172i \(-0.647765\pi\)
−0.447723 + 0.894172i \(0.647765\pi\)
\(774\) 0 0
\(775\) 14857.2 0.688627
\(776\) 0 0
\(777\) 9977.65 0.460677
\(778\) 0 0
\(779\) −17066.4 −0.784938
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 10757.3 0.490975
\(784\) 0 0
\(785\) −18369.6 −0.835211
\(786\) 0 0
\(787\) 29271.2 1.32580 0.662901 0.748707i \(-0.269325\pi\)
0.662901 + 0.748707i \(0.269325\pi\)
\(788\) 0 0
\(789\) 5629.63 0.254018
\(790\) 0 0
\(791\) 6624.87 0.297792
\(792\) 0 0
\(793\) −13602.8 −0.609141
\(794\) 0 0
\(795\) 20661.9 0.921762
\(796\) 0 0
\(797\) −12532.5 −0.556994 −0.278497 0.960437i \(-0.589836\pi\)
−0.278497 + 0.960437i \(0.589836\pi\)
\(798\) 0 0
\(799\) 12.2727 0.000543400 0
\(800\) 0 0
\(801\) −4569.83 −0.201582
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −5798.04 −0.253856
\(806\) 0 0
\(807\) 2504.83 0.109262
\(808\) 0 0
\(809\) −35942.4 −1.56201 −0.781006 0.624523i \(-0.785293\pi\)
−0.781006 + 0.624523i \(0.785293\pi\)
\(810\) 0 0
\(811\) 21630.0 0.936537 0.468269 0.883586i \(-0.344878\pi\)
0.468269 + 0.883586i \(0.344878\pi\)
\(812\) 0 0
\(813\) −2460.35 −0.106136
\(814\) 0 0
\(815\) 39.4991 0.00169766
\(816\) 0 0
\(817\) −5025.29 −0.215193
\(818\) 0 0
\(819\) −740.223 −0.0315818
\(820\) 0 0
\(821\) 31467.1 1.33765 0.668824 0.743421i \(-0.266798\pi\)
0.668824 + 0.743421i \(0.266798\pi\)
\(822\) 0 0
\(823\) −35233.1 −1.49228 −0.746142 0.665787i \(-0.768096\pi\)
−0.746142 + 0.665787i \(0.768096\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9490.61 0.399058 0.199529 0.979892i \(-0.436059\pi\)
0.199529 + 0.979892i \(0.436059\pi\)
\(828\) 0 0
\(829\) −38433.6 −1.61020 −0.805099 0.593140i \(-0.797888\pi\)
−0.805099 + 0.593140i \(0.797888\pi\)
\(830\) 0 0
\(831\) −43216.3 −1.80404
\(832\) 0 0
\(833\) 6.83206 0.000284174 0
\(834\) 0 0
\(835\) −4562.34 −0.189086
\(836\) 0 0
\(837\) 22215.3 0.917411
\(838\) 0 0
\(839\) 9689.22 0.398700 0.199350 0.979928i \(-0.436117\pi\)
0.199350 + 0.979928i \(0.436117\pi\)
\(840\) 0 0
\(841\) −17447.7 −0.715394
\(842\) 0 0
\(843\) 26342.6 1.07626
\(844\) 0 0
\(845\) 11211.0 0.456413
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 29950.0 1.21069
\(850\) 0 0
\(851\) 16475.7 0.663667
\(852\) 0 0
\(853\) −24698.1 −0.991380 −0.495690 0.868499i \(-0.665085\pi\)
−0.495690 + 0.868499i \(0.665085\pi\)
\(854\) 0 0
\(855\) 1663.48 0.0665378
\(856\) 0 0
\(857\) −15732.3 −0.627079 −0.313539 0.949575i \(-0.601515\pi\)
−0.313539 + 0.949575i \(0.601515\pi\)
\(858\) 0 0
\(859\) −34609.5 −1.37469 −0.687347 0.726329i \(-0.741225\pi\)
−0.687347 + 0.726329i \(0.741225\pi\)
\(860\) 0 0
\(861\) 13183.2 0.521814
\(862\) 0 0
\(863\) −2726.72 −0.107553 −0.0537767 0.998553i \(-0.517126\pi\)
−0.0537767 + 0.998553i \(0.517126\pi\)
\(864\) 0 0
\(865\) 2047.61 0.0804867
\(866\) 0 0
\(867\) −27219.5 −1.06623
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −4463.11 −0.173624
\(872\) 0 0
\(873\) −3294.11 −0.127707
\(874\) 0 0
\(875\) 13266.4 0.512557
\(876\) 0 0
\(877\) −2460.98 −0.0947564 −0.0473782 0.998877i \(-0.515087\pi\)
−0.0473782 + 0.998877i \(0.515087\pi\)
\(878\) 0 0
\(879\) −30904.9 −1.18589
\(880\) 0 0
\(881\) 25163.9 0.962307 0.481153 0.876636i \(-0.340218\pi\)
0.481153 + 0.876636i \(0.340218\pi\)
\(882\) 0 0
\(883\) 8621.41 0.328577 0.164289 0.986412i \(-0.447467\pi\)
0.164289 + 0.986412i \(0.447467\pi\)
\(884\) 0 0
\(885\) 12579.0 0.477783
\(886\) 0 0
\(887\) −42583.1 −1.61195 −0.805975 0.591950i \(-0.798358\pi\)
−0.805975 + 0.591950i \(0.798358\pi\)
\(888\) 0 0
\(889\) −26946.6 −1.01660
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 31357.5 1.17507
\(894\) 0 0
\(895\) −16607.8 −0.620264
\(896\) 0 0
\(897\) −10153.9 −0.377959
\(898\) 0 0
\(899\) 14334.7 0.531800
\(900\) 0 0
\(901\) 17.0020 0.000628657 0
\(902\) 0 0
\(903\) 3881.86 0.143057
\(904\) 0 0
\(905\) 9608.90 0.352940
\(906\) 0 0
\(907\) 9507.78 0.348071 0.174036 0.984739i \(-0.444319\pi\)
0.174036 + 0.984739i \(0.444319\pi\)
\(908\) 0 0
\(909\) 1138.08 0.0415267
\(910\) 0 0
\(911\) 11475.1 0.417330 0.208665 0.977987i \(-0.433088\pi\)
0.208665 + 0.977987i \(0.433088\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −23613.6 −0.853159
\(916\) 0 0
\(917\) −7015.42 −0.252639
\(918\) 0 0
\(919\) −42341.9 −1.51984 −0.759918 0.650019i \(-0.774761\pi\)
−0.759918 + 0.650019i \(0.774761\pi\)
\(920\) 0 0
\(921\) 40160.6 1.43685
\(922\) 0 0
\(923\) 5052.61 0.180183
\(924\) 0 0
\(925\) −15402.1 −0.547480
\(926\) 0 0
\(927\) −4112.21 −0.145699
\(928\) 0 0
\(929\) −42583.6 −1.50390 −0.751950 0.659221i \(-0.770886\pi\)
−0.751950 + 0.659221i \(0.770886\pi\)
\(930\) 0 0
\(931\) 17456.4 0.614510
\(932\) 0 0
\(933\) 5280.94 0.185306
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 8318.19 0.290014 0.145007 0.989431i \(-0.453680\pi\)
0.145007 + 0.989431i \(0.453680\pi\)
\(938\) 0 0
\(939\) 18647.1 0.648056
\(940\) 0 0
\(941\) −32022.6 −1.10936 −0.554679 0.832064i \(-0.687159\pi\)
−0.554679 + 0.832064i \(0.687159\pi\)
\(942\) 0 0
\(943\) 21768.9 0.751743
\(944\) 0 0
\(945\) 8104.63 0.278988
\(946\) 0 0
\(947\) −28430.6 −0.975575 −0.487788 0.872962i \(-0.662196\pi\)
−0.487788 + 0.872962i \(0.662196\pi\)
\(948\) 0 0
\(949\) −17506.3 −0.598818
\(950\) 0 0
\(951\) 48770.9 1.66299
\(952\) 0 0
\(953\) 6805.74 0.231332 0.115666 0.993288i \(-0.463100\pi\)
0.115666 + 0.993288i \(0.463100\pi\)
\(954\) 0 0
\(955\) −7372.34 −0.249804
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 25009.9 0.842140
\(960\) 0 0
\(961\) −187.857 −0.00630584
\(962\) 0 0
\(963\) 6406.60 0.214382
\(964\) 0 0
\(965\) −8336.36 −0.278090
\(966\) 0 0
\(967\) −41912.2 −1.39380 −0.696901 0.717167i \(-0.745438\pi\)
−0.696901 + 0.717167i \(0.745438\pi\)
\(968\) 0 0
\(969\) 11.3711 0.000376980 0
\(970\) 0 0
\(971\) 50663.6 1.67443 0.837216 0.546873i \(-0.184182\pi\)
0.837216 + 0.546873i \(0.184182\pi\)
\(972\) 0 0
\(973\) 22176.0 0.730657
\(974\) 0 0
\(975\) 9492.26 0.311790
\(976\) 0 0
\(977\) 8475.61 0.277542 0.138771 0.990324i \(-0.455685\pi\)
0.138771 + 0.990324i \(0.455685\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −5783.82 −0.188240
\(982\) 0 0
\(983\) −25920.5 −0.841034 −0.420517 0.907285i \(-0.638151\pi\)
−0.420517 + 0.907285i \(0.638151\pi\)
\(984\) 0 0
\(985\) 4955.95 0.160314
\(986\) 0 0
\(987\) −24222.6 −0.781170
\(988\) 0 0
\(989\) 6409.97 0.206092
\(990\) 0 0
\(991\) −52359.2 −1.67835 −0.839174 0.543863i \(-0.816961\pi\)
−0.839174 + 0.543863i \(0.816961\pi\)
\(992\) 0 0
\(993\) 10441.4 0.333683
\(994\) 0 0
\(995\) −744.503 −0.0237209
\(996\) 0 0
\(997\) 15452.3 0.490852 0.245426 0.969415i \(-0.421072\pi\)
0.245426 + 0.969415i \(0.421072\pi\)
\(998\) 0 0
\(999\) −23030.1 −0.729370
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.4.a.o.1.7 8
4.3 odd 2 1936.4.a.bv.1.2 8
11.2 odd 10 88.4.i.a.81.4 yes 16
11.6 odd 10 88.4.i.a.25.4 16
11.10 odd 2 968.4.a.n.1.7 8
44.35 even 10 176.4.m.e.81.1 16
44.39 even 10 176.4.m.e.113.1 16
44.43 even 2 1936.4.a.bw.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.i.a.25.4 16 11.6 odd 10
88.4.i.a.81.4 yes 16 11.2 odd 10
176.4.m.e.81.1 16 44.35 even 10
176.4.m.e.113.1 16 44.39 even 10
968.4.a.n.1.7 8 11.10 odd 2
968.4.a.o.1.7 8 1.1 even 1 trivial
1936.4.a.bv.1.2 8 4.3 odd 2
1936.4.a.bw.1.2 8 44.43 even 2