Properties

Label 176.4.m.f.81.1
Level $176$
Weight $4$
Character 176.81
Analytic conductor $10.384$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,4,Mod(49,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 176.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3843361610\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} + 120 x^{18} + 34 x^{17} + 8167 x^{16} - 2908 x^{15} + 606151 x^{14} + \cdots + 611123681536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{16}\cdot 5 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.1
Root \(-6.46669 - 4.69833i\) of defining polynomial
Character \(\chi\) \(=\) 176.81
Dual form 176.4.m.f.113.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.97006 + 9.14090i) q^{3} +(13.5223 - 9.82454i) q^{5} +(-6.15515 - 18.9436i) q^{7} +(-52.8913 - 38.4278i) q^{9} +(-17.1491 - 32.2011i) q^{11} +(-32.0586 - 23.2919i) q^{13} +(49.6431 + 152.786i) q^{15} +(1.66684 - 1.21103i) q^{17} +(31.3511 - 96.4889i) q^{19} +191.443 q^{21} -110.549 q^{23} +(47.7045 - 146.819i) q^{25} +(298.410 - 216.808i) q^{27} +(-10.3095 - 31.7293i) q^{29} +(140.530 + 102.101i) q^{31} +(345.280 - 61.1193i) q^{33} +(-269.344 - 195.690i) q^{35} +(77.6987 + 239.132i) q^{37} +(308.125 - 223.866i) q^{39} +(-59.5497 + 183.275i) q^{41} -304.185 q^{43} -1092.75 q^{45} +(10.5409 - 32.4416i) q^{47} +(-43.4814 + 31.5911i) q^{49} +(6.11930 + 18.8333i) q^{51} +(-175.256 - 127.331i) q^{53} +(-548.257 - 266.951i) q^{55} +(788.880 + 573.155i) q^{57} +(4.96281 + 15.2739i) q^{59} +(429.705 - 312.199i) q^{61} +(-402.407 + 1238.48i) q^{63} -662.339 q^{65} -636.628 q^{67} +(328.336 - 1010.51i) q^{69} +(227.127 - 165.017i) q^{71} +(-202.947 - 624.608i) q^{73} +(1200.37 + 872.123i) q^{75} +(-504.449 + 523.068i) q^{77} +(652.080 + 473.764i) q^{79} +(550.049 + 1692.88i) q^{81} +(516.450 - 375.223i) q^{83} +(10.6417 - 32.7519i) q^{85} +320.654 q^{87} +1144.68 q^{89} +(-243.907 + 750.670i) q^{91} +(-1350.68 + 981.324i) q^{93} +(-524.019 - 1612.76i) q^{95} +(-679.744 - 493.863i) q^{97} +(-330.376 + 2362.16i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 3 q^{3} + q^{5} - q^{7} - 58 q^{9} + 72 q^{11} - 95 q^{13} + 225 q^{15} + 41 q^{17} - 191 q^{19} + 262 q^{21} - 328 q^{23} - 172 q^{25} + 315 q^{27} + 169 q^{29} + 825 q^{31} + 1093 q^{33} - 1195 q^{35}+ \cdots - 1840 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.97006 + 9.14090i −0.571588 + 1.75917i 0.0759270 + 0.997113i \(0.475808\pi\)
−0.647515 + 0.762053i \(0.724192\pi\)
\(4\) 0 0
\(5\) 13.5223 9.82454i 1.20947 0.878734i 0.214291 0.976770i \(-0.431256\pi\)
0.995183 + 0.0980361i \(0.0312561\pi\)
\(6\) 0 0
\(7\) −6.15515 18.9436i −0.332347 1.02286i −0.968014 0.250895i \(-0.919275\pi\)
0.635667 0.771963i \(-0.280725\pi\)
\(8\) 0 0
\(9\) −52.8913 38.4278i −1.95894 1.42325i
\(10\) 0 0
\(11\) −17.1491 32.2011i −0.470059 0.882635i
\(12\) 0 0
\(13\) −32.0586 23.2919i −0.683957 0.496924i 0.190711 0.981646i \(-0.438921\pi\)
−0.874668 + 0.484722i \(0.838921\pi\)
\(14\) 0 0
\(15\) 49.6431 + 152.786i 0.854519 + 2.62994i
\(16\) 0 0
\(17\) 1.66684 1.21103i 0.0237805 0.0172776i −0.575832 0.817568i \(-0.695322\pi\)
0.599612 + 0.800291i \(0.295322\pi\)
\(18\) 0 0
\(19\) 31.3511 96.4889i 0.378550 1.16506i −0.562503 0.826795i \(-0.690161\pi\)
0.941052 0.338261i \(-0.109839\pi\)
\(20\) 0 0
\(21\) 191.443 1.98934
\(22\) 0 0
\(23\) −110.549 −1.00222 −0.501109 0.865384i \(-0.667074\pi\)
−0.501109 + 0.865384i \(0.667074\pi\)
\(24\) 0 0
\(25\) 47.7045 146.819i 0.381636 1.17455i
\(26\) 0 0
\(27\) 298.410 216.808i 2.12700 1.54536i
\(28\) 0 0
\(29\) −10.3095 31.7293i −0.0660145 0.203172i 0.912608 0.408835i \(-0.134065\pi\)
−0.978623 + 0.205663i \(0.934065\pi\)
\(30\) 0 0
\(31\) 140.530 + 102.101i 0.814191 + 0.591545i 0.915043 0.403357i \(-0.132157\pi\)
−0.100852 + 0.994901i \(0.532157\pi\)
\(32\) 0 0
\(33\) 345.280 61.1193i 1.82138 0.322409i
\(34\) 0 0
\(35\) −269.344 195.690i −1.30078 0.945076i
\(36\) 0 0
\(37\) 77.6987 + 239.132i 0.345232 + 1.06251i 0.961459 + 0.274947i \(0.0886602\pi\)
−0.616228 + 0.787568i \(0.711340\pi\)
\(38\) 0 0
\(39\) 308.125 223.866i 1.26511 0.919159i
\(40\) 0 0
\(41\) −59.5497 + 183.275i −0.226832 + 0.698116i 0.771269 + 0.636509i \(0.219622\pi\)
−0.998101 + 0.0616065i \(0.980378\pi\)
\(42\) 0 0
\(43\) −304.185 −1.07879 −0.539393 0.842054i \(-0.681346\pi\)
−0.539393 + 0.842054i \(0.681346\pi\)
\(44\) 0 0
\(45\) −1092.75 −3.61994
\(46\) 0 0
\(47\) 10.5409 32.4416i 0.0327138 0.100683i −0.933366 0.358925i \(-0.883143\pi\)
0.966080 + 0.258242i \(0.0831433\pi\)
\(48\) 0 0
\(49\) −43.4814 + 31.5911i −0.126768 + 0.0921022i
\(50\) 0 0
\(51\) 6.11930 + 18.8333i 0.0168014 + 0.0517095i
\(52\) 0 0
\(53\) −175.256 127.331i −0.454211 0.330004i 0.337045 0.941489i \(-0.390573\pi\)
−0.791256 + 0.611485i \(0.790573\pi\)
\(54\) 0 0
\(55\) −548.257 266.951i −1.34413 0.654466i
\(56\) 0 0
\(57\) 788.880 + 573.155i 1.83315 + 1.33186i
\(58\) 0 0
\(59\) 4.96281 + 15.2739i 0.0109509 + 0.0337034i 0.956383 0.292117i \(-0.0943596\pi\)
−0.945432 + 0.325820i \(0.894360\pi\)
\(60\) 0 0
\(61\) 429.705 312.199i 0.901935 0.655294i −0.0370271 0.999314i \(-0.511789\pi\)
0.938962 + 0.344020i \(0.111789\pi\)
\(62\) 0 0
\(63\) −402.407 + 1238.48i −0.804737 + 2.47673i
\(64\) 0 0
\(65\) −662.339 −1.26389
\(66\) 0 0
\(67\) −636.628 −1.16084 −0.580422 0.814316i \(-0.697112\pi\)
−0.580422 + 0.814316i \(0.697112\pi\)
\(68\) 0 0
\(69\) 328.336 1010.51i 0.572855 1.76307i
\(70\) 0 0
\(71\) 227.127 165.017i 0.379648 0.275830i −0.381552 0.924347i \(-0.624610\pi\)
0.761200 + 0.648517i \(0.224610\pi\)
\(72\) 0 0
\(73\) −202.947 624.608i −0.325386 1.00144i −0.971266 0.237997i \(-0.923509\pi\)
0.645880 0.763439i \(-0.276491\pi\)
\(74\) 0 0
\(75\) 1200.37 + 872.123i 1.84810 + 1.34272i
\(76\) 0 0
\(77\) −504.449 + 523.068i −0.746588 + 0.774145i
\(78\) 0 0
\(79\) 652.080 + 473.764i 0.928668 + 0.674717i 0.945666 0.325139i \(-0.105411\pi\)
−0.0169983 + 0.999856i \(0.505411\pi\)
\(80\) 0 0
\(81\) 550.049 + 1692.88i 0.754525 + 2.32219i
\(82\) 0 0
\(83\) 516.450 375.223i 0.682984 0.496217i −0.191362 0.981520i \(-0.561290\pi\)
0.874346 + 0.485302i \(0.161290\pi\)
\(84\) 0 0
\(85\) 10.6417 32.7519i 0.0135795 0.0417935i
\(86\) 0 0
\(87\) 320.654 0.395146
\(88\) 0 0
\(89\) 1144.68 1.36333 0.681663 0.731666i \(-0.261257\pi\)
0.681663 + 0.731666i \(0.261257\pi\)
\(90\) 0 0
\(91\) −243.907 + 750.670i −0.280972 + 0.864743i
\(92\) 0 0
\(93\) −1350.68 + 981.324i −1.50601 + 1.09418i
\(94\) 0 0
\(95\) −524.019 1612.76i −0.565928 1.74175i
\(96\) 0 0
\(97\) −679.744 493.863i −0.711521 0.516951i 0.172143 0.985072i \(-0.444931\pi\)
−0.883664 + 0.468121i \(0.844931\pi\)
\(98\) 0 0
\(99\) −330.376 + 2362.16i −0.335394 + 2.39804i
\(100\) 0 0
\(101\) −1078.34 783.462i −1.06237 0.771855i −0.0878426 0.996134i \(-0.527997\pi\)
−0.974525 + 0.224279i \(0.927997\pi\)
\(102\) 0 0
\(103\) −29.3623 90.3678i −0.0280889 0.0864486i 0.936029 0.351922i \(-0.114472\pi\)
−0.964118 + 0.265473i \(0.914472\pi\)
\(104\) 0 0
\(105\) 2588.75 1880.84i 2.40606 1.74810i
\(106\) 0 0
\(107\) 445.652 1371.57i 0.402643 1.23921i −0.520205 0.854042i \(-0.674144\pi\)
0.922848 0.385165i \(-0.125856\pi\)
\(108\) 0 0
\(109\) −708.872 −0.622914 −0.311457 0.950260i \(-0.600817\pi\)
−0.311457 + 0.950260i \(0.600817\pi\)
\(110\) 0 0
\(111\) −2416.65 −2.06647
\(112\) 0 0
\(113\) −516.406 + 1589.33i −0.429906 + 1.32312i 0.468311 + 0.883564i \(0.344863\pi\)
−0.898217 + 0.439552i \(0.855137\pi\)
\(114\) 0 0
\(115\) −1494.87 + 1086.09i −1.21215 + 0.880682i
\(116\) 0 0
\(117\) 800.562 + 2463.88i 0.632581 + 1.94689i
\(118\) 0 0
\(119\) −33.2010 24.1219i −0.0255759 0.0185820i
\(120\) 0 0
\(121\) −742.816 + 1104.44i −0.558088 + 0.829782i
\(122\) 0 0
\(123\) −1498.43 1088.67i −1.09845 0.798069i
\(124\) 0 0
\(125\) −151.723 466.956i −0.108564 0.334127i
\(126\) 0 0
\(127\) 1174.24 853.137i 0.820450 0.596092i −0.0963912 0.995344i \(-0.530730\pi\)
0.916841 + 0.399252i \(0.130730\pi\)
\(128\) 0 0
\(129\) 903.448 2780.53i 0.616621 1.89777i
\(130\) 0 0
\(131\) 2344.03 1.56335 0.781674 0.623687i \(-0.214366\pi\)
0.781674 + 0.623687i \(0.214366\pi\)
\(132\) 0 0
\(133\) −2020.82 −1.31750
\(134\) 0 0
\(135\) 1905.16 5863.49i 1.21459 3.73814i
\(136\) 0 0
\(137\) −46.6459 + 33.8903i −0.0290893 + 0.0211346i −0.602235 0.798319i \(-0.705723\pi\)
0.573146 + 0.819454i \(0.305723\pi\)
\(138\) 0 0
\(139\) −419.220 1290.23i −0.255812 0.787307i −0.993669 0.112350i \(-0.964162\pi\)
0.737857 0.674957i \(-0.235838\pi\)
\(140\) 0 0
\(141\) 265.238 + 192.707i 0.158419 + 0.115098i
\(142\) 0 0
\(143\) −200.248 + 1431.76i −0.117102 + 0.837268i
\(144\) 0 0
\(145\) −451.134 327.768i −0.258377 0.187722i
\(146\) 0 0
\(147\) −159.629 491.286i −0.0895642 0.275650i
\(148\) 0 0
\(149\) 2147.07 1559.94i 1.18050 0.857686i 0.188275 0.982116i \(-0.439710\pi\)
0.992228 + 0.124431i \(0.0397105\pi\)
\(150\) 0 0
\(151\) −752.073 + 2314.64i −0.405317 + 1.24744i 0.515314 + 0.857002i \(0.327675\pi\)
−0.920631 + 0.390435i \(0.872325\pi\)
\(152\) 0 0
\(153\) −134.699 −0.0711748
\(154\) 0 0
\(155\) 2903.39 1.50455
\(156\) 0 0
\(157\) −427.322 + 1315.16i −0.217223 + 0.668543i 0.781766 + 0.623572i \(0.214319\pi\)
−0.998988 + 0.0449705i \(0.985681\pi\)
\(158\) 0 0
\(159\) 1684.43 1223.81i 0.840153 0.610407i
\(160\) 0 0
\(161\) 680.444 + 2094.19i 0.333084 + 1.02513i
\(162\) 0 0
\(163\) 1538.86 + 1118.05i 0.739467 + 0.537254i 0.892544 0.450960i \(-0.148918\pi\)
−0.153077 + 0.988214i \(0.548918\pi\)
\(164\) 0 0
\(165\) 4068.52 4218.70i 1.91960 1.99046i
\(166\) 0 0
\(167\) 1739.42 + 1263.76i 0.805988 + 0.585585i 0.912665 0.408709i \(-0.134021\pi\)
−0.106677 + 0.994294i \(0.534021\pi\)
\(168\) 0 0
\(169\) −193.672 596.061i −0.0881529 0.271307i
\(170\) 0 0
\(171\) −5366.05 + 3898.67i −2.39972 + 1.74350i
\(172\) 0 0
\(173\) 163.319 502.643i 0.0717739 0.220897i −0.908734 0.417375i \(-0.862950\pi\)
0.980508 + 0.196477i \(0.0629502\pi\)
\(174\) 0 0
\(175\) −3074.91 −1.32824
\(176\) 0 0
\(177\) −154.357 −0.0655492
\(178\) 0 0
\(179\) 1214.27 3737.14i 0.507032 1.56048i −0.290295 0.956937i \(-0.593754\pi\)
0.797327 0.603547i \(-0.206246\pi\)
\(180\) 0 0
\(181\) 437.542 317.893i 0.179681 0.130546i −0.494309 0.869286i \(-0.664579\pi\)
0.673990 + 0.738740i \(0.264579\pi\)
\(182\) 0 0
\(183\) 1577.53 + 4855.13i 0.637237 + 1.96121i
\(184\) 0 0
\(185\) 3400.03 + 2470.27i 1.35122 + 0.981716i
\(186\) 0 0
\(187\) −67.5814 32.9060i −0.0264280 0.0128680i
\(188\) 0 0
\(189\) −5943.88 4318.48i −2.28758 1.66203i
\(190\) 0 0
\(191\) 36.9162 + 113.617i 0.0139852 + 0.0430419i 0.957806 0.287417i \(-0.0927965\pi\)
−0.943820 + 0.330459i \(0.892797\pi\)
\(192\) 0 0
\(193\) 528.819 384.209i 0.197229 0.143295i −0.484788 0.874632i \(-0.661103\pi\)
0.682017 + 0.731337i \(0.261103\pi\)
\(194\) 0 0
\(195\) 1967.18 6054.37i 0.722425 2.22340i
\(196\) 0 0
\(197\) −749.399 −0.271028 −0.135514 0.990775i \(-0.543269\pi\)
−0.135514 + 0.990775i \(0.543269\pi\)
\(198\) 0 0
\(199\) −1836.21 −0.654098 −0.327049 0.945007i \(-0.606054\pi\)
−0.327049 + 0.945007i \(0.606054\pi\)
\(200\) 0 0
\(201\) 1890.82 5819.35i 0.663524 2.04212i
\(202\) 0 0
\(203\) −537.611 + 390.597i −0.185876 + 0.135047i
\(204\) 0 0
\(205\) 995.344 + 3063.35i 0.339111 + 1.04368i
\(206\) 0 0
\(207\) 5847.06 + 4248.14i 1.96328 + 1.42641i
\(208\) 0 0
\(209\) −3644.69 + 645.159i −1.20626 + 0.213524i
\(210\) 0 0
\(211\) −3238.65 2353.02i −1.05667 0.767717i −0.0832024 0.996533i \(-0.526515\pi\)
−0.973470 + 0.228815i \(0.926515\pi\)
\(212\) 0 0
\(213\) 833.827 + 2566.26i 0.268229 + 0.825525i
\(214\) 0 0
\(215\) −4113.29 + 2988.48i −1.30476 + 0.947967i
\(216\) 0 0
\(217\) 1069.18 3290.59i 0.334472 1.02940i
\(218\) 0 0
\(219\) 6312.24 1.94768
\(220\) 0 0
\(221\) −81.6438 −0.0248505
\(222\) 0 0
\(223\) −1190.14 + 3662.86i −0.357387 + 1.09992i 0.597225 + 0.802074i \(0.296270\pi\)
−0.954612 + 0.297851i \(0.903730\pi\)
\(224\) 0 0
\(225\) −8165.09 + 5932.28i −2.41928 + 1.75771i
\(226\) 0 0
\(227\) −198.497 610.911i −0.0580383 0.178624i 0.917835 0.396963i \(-0.129936\pi\)
−0.975873 + 0.218340i \(0.929936\pi\)
\(228\) 0 0
\(229\) −3034.69 2204.83i −0.875712 0.636242i 0.0564018 0.998408i \(-0.482037\pi\)
−0.932113 + 0.362166i \(0.882037\pi\)
\(230\) 0 0
\(231\) −3283.07 6164.65i −0.935110 1.75586i
\(232\) 0 0
\(233\) 5612.04 + 4077.38i 1.57793 + 1.14643i 0.919024 + 0.394201i \(0.128979\pi\)
0.658901 + 0.752229i \(0.271021\pi\)
\(234\) 0 0
\(235\) −176.186 542.245i −0.0489069 0.150520i
\(236\) 0 0
\(237\) −6267.35 + 4553.49i −1.71775 + 1.24802i
\(238\) 0 0
\(239\) −171.161 + 526.780i −0.0463243 + 0.142571i −0.971543 0.236862i \(-0.923881\pi\)
0.925219 + 0.379433i \(0.123881\pi\)
\(240\) 0 0
\(241\) 2532.58 0.676921 0.338460 0.940981i \(-0.390094\pi\)
0.338460 + 0.940981i \(0.390094\pi\)
\(242\) 0 0
\(243\) −7148.99 −1.88728
\(244\) 0 0
\(245\) −277.601 + 854.369i −0.0723890 + 0.222790i
\(246\) 0 0
\(247\) −3252.48 + 2363.07i −0.837856 + 0.608738i
\(248\) 0 0
\(249\) 1895.99 + 5835.24i 0.482543 + 1.48511i
\(250\) 0 0
\(251\) −2576.82 1872.17i −0.647998 0.470798i 0.214591 0.976704i \(-0.431158\pi\)
−0.862589 + 0.505906i \(0.831158\pi\)
\(252\) 0 0
\(253\) 1895.81 + 3559.78i 0.471102 + 0.884592i
\(254\) 0 0
\(255\) 267.775 + 194.550i 0.0657598 + 0.0477773i
\(256\) 0 0
\(257\) −1635.39 5033.21i −0.396937 1.22165i −0.927443 0.373965i \(-0.877998\pi\)
0.530506 0.847681i \(-0.322002\pi\)
\(258\) 0 0
\(259\) 4051.77 2943.79i 0.972065 0.706247i
\(260\) 0 0
\(261\) −674.005 + 2074.37i −0.159846 + 0.491956i
\(262\) 0 0
\(263\) 4256.45 0.997962 0.498981 0.866613i \(-0.333708\pi\)
0.498981 + 0.866613i \(0.333708\pi\)
\(264\) 0 0
\(265\) −3620.83 −0.839342
\(266\) 0 0
\(267\) −3399.77 + 10463.4i −0.779261 + 2.39832i
\(268\) 0 0
\(269\) 7015.54 5097.09i 1.59013 1.15530i 0.686377 0.727246i \(-0.259200\pi\)
0.903754 0.428051i \(-0.140800\pi\)
\(270\) 0 0
\(271\) 923.231 + 2841.41i 0.206946 + 0.636914i 0.999628 + 0.0272784i \(0.00868405\pi\)
−0.792682 + 0.609635i \(0.791316\pi\)
\(272\) 0 0
\(273\) −6137.38 4459.07i −1.36063 0.988553i
\(274\) 0 0
\(275\) −5545.82 + 981.686i −1.21609 + 0.215265i
\(276\) 0 0
\(277\) 6389.90 + 4642.53i 1.38603 + 1.00701i 0.996287 + 0.0860916i \(0.0274378\pi\)
0.389748 + 0.920922i \(0.372562\pi\)
\(278\) 0 0
\(279\) −3509.30 10800.5i −0.753033 2.31760i
\(280\) 0 0
\(281\) −4459.82 + 3240.25i −0.946799 + 0.687889i −0.950048 0.312105i \(-0.898966\pi\)
0.00324900 + 0.999995i \(0.498966\pi\)
\(282\) 0 0
\(283\) −1011.57 + 3113.28i −0.212478 + 0.653942i 0.786845 + 0.617151i \(0.211713\pi\)
−0.999323 + 0.0367903i \(0.988287\pi\)
\(284\) 0 0
\(285\) 16298.5 3.38750
\(286\) 0 0
\(287\) 3838.43 0.789461
\(288\) 0 0
\(289\) −1516.89 + 4668.50i −0.308750 + 0.950235i
\(290\) 0 0
\(291\) 6533.23 4746.67i 1.31610 0.956202i
\(292\) 0 0
\(293\) 462.333 + 1422.92i 0.0921836 + 0.283712i 0.986509 0.163704i \(-0.0523443\pi\)
−0.894326 + 0.447416i \(0.852344\pi\)
\(294\) 0 0
\(295\) 217.168 + 157.782i 0.0428611 + 0.0311404i
\(296\) 0 0
\(297\) −12098.9 5891.06i −2.36380 1.15096i
\(298\) 0 0
\(299\) 3544.03 + 2574.89i 0.685474 + 0.498026i
\(300\) 0 0
\(301\) 1872.31 + 5762.37i 0.358531 + 1.10345i
\(302\) 0 0
\(303\) 10364.3 7530.09i 1.96506 1.42770i
\(304\) 0 0
\(305\) 2743.40 8443.31i 0.515037 1.58512i
\(306\) 0 0
\(307\) 4758.05 0.884548 0.442274 0.896880i \(-0.354172\pi\)
0.442274 + 0.896880i \(0.354172\pi\)
\(308\) 0 0
\(309\) 913.251 0.168133
\(310\) 0 0
\(311\) −82.4860 + 253.866i −0.0150397 + 0.0462875i −0.958295 0.285782i \(-0.907747\pi\)
0.943255 + 0.332069i \(0.107747\pi\)
\(312\) 0 0
\(313\) −7237.95 + 5258.68i −1.30707 + 0.949642i −0.999998 0.00204380i \(-0.999349\pi\)
−0.307073 + 0.951686i \(0.599349\pi\)
\(314\) 0 0
\(315\) 6726.03 + 20700.6i 1.20308 + 3.70269i
\(316\) 0 0
\(317\) 209.750 + 152.392i 0.0371632 + 0.0270007i 0.606212 0.795303i \(-0.292688\pi\)
−0.569049 + 0.822304i \(0.692688\pi\)
\(318\) 0 0
\(319\) −844.919 + 876.105i −0.148296 + 0.153770i
\(320\) 0 0
\(321\) 11213.8 + 8147.31i 1.94983 + 1.41663i
\(322\) 0 0
\(323\) −64.5937 198.799i −0.0111272 0.0342460i
\(324\) 0 0
\(325\) −4949.04 + 3595.69i −0.844687 + 0.613701i
\(326\) 0 0
\(327\) 2105.39 6479.72i 0.356050 1.09581i
\(328\) 0 0
\(329\) −679.441 −0.113857
\(330\) 0 0
\(331\) 4557.71 0.756841 0.378421 0.925634i \(-0.376467\pi\)
0.378421 + 0.925634i \(0.376467\pi\)
\(332\) 0 0
\(333\) 5079.72 15633.8i 0.835937 2.57275i
\(334\) 0 0
\(335\) −8608.69 + 6254.58i −1.40401 + 1.02007i
\(336\) 0 0
\(337\) −3003.82 9244.81i −0.485545 1.49435i −0.831190 0.555988i \(-0.812340\pi\)
0.345646 0.938365i \(-0.387660\pi\)
\(338\) 0 0
\(339\) −12994.2 9440.83i −2.08185 1.51255i
\(340\) 0 0
\(341\) 877.795 6276.15i 0.139400 0.996695i
\(342\) 0 0
\(343\) −4661.15 3386.53i −0.733757 0.533106i
\(344\) 0 0
\(345\) −5487.97 16890.2i −0.856413 2.63577i
\(346\) 0 0
\(347\) −4215.04 + 3062.40i −0.652089 + 0.473771i −0.863982 0.503522i \(-0.832037\pi\)
0.211893 + 0.977293i \(0.432037\pi\)
\(348\) 0 0
\(349\) −176.166 + 542.185i −0.0270200 + 0.0831590i −0.963657 0.267142i \(-0.913921\pi\)
0.936637 + 0.350301i \(0.113921\pi\)
\(350\) 0 0
\(351\) −14616.5 −2.22270
\(352\) 0 0
\(353\) 2751.02 0.414793 0.207396 0.978257i \(-0.433501\pi\)
0.207396 + 0.978257i \(0.433501\pi\)
\(354\) 0 0
\(355\) 1450.06 4462.84i 0.216793 0.667219i
\(356\) 0 0
\(357\) 319.105 231.843i 0.0473076 0.0343710i
\(358\) 0 0
\(359\) −1371.91 4222.31i −0.201690 0.620738i −0.999833 0.0182700i \(-0.994184\pi\)
0.798143 0.602468i \(-0.205816\pi\)
\(360\) 0 0
\(361\) −2778.16 2018.45i −0.405039 0.294278i
\(362\) 0 0
\(363\) −7889.36 10070.2i −1.14073 1.45606i
\(364\) 0 0
\(365\) −8880.81 6452.29i −1.27354 0.925282i
\(366\) 0 0
\(367\) 2881.78 + 8869.21i 0.409885 + 1.26150i 0.916747 + 0.399468i \(0.130805\pi\)
−0.506862 + 0.862027i \(0.669195\pi\)
\(368\) 0 0
\(369\) 10192.5 7405.29i 1.43794 1.04473i
\(370\) 0 0
\(371\) −1333.38 + 4103.71i −0.186591 + 0.574269i
\(372\) 0 0
\(373\) −8713.65 −1.20959 −0.604793 0.796382i \(-0.706744\pi\)
−0.604793 + 0.796382i \(0.706744\pi\)
\(374\) 0 0
\(375\) 4719.02 0.649838
\(376\) 0 0
\(377\) −408.529 + 1257.32i −0.0558099 + 0.171765i
\(378\) 0 0
\(379\) −1716.17 + 1246.87i −0.232595 + 0.168990i −0.697978 0.716119i \(-0.745917\pi\)
0.465383 + 0.885110i \(0.345917\pi\)
\(380\) 0 0
\(381\) 4310.87 + 13267.5i 0.579666 + 1.78403i
\(382\) 0 0
\(383\) 6020.09 + 4373.85i 0.803165 + 0.583533i 0.911841 0.410544i \(-0.134661\pi\)
−0.108676 + 0.994077i \(0.534661\pi\)
\(384\) 0 0
\(385\) −1682.41 + 12029.1i −0.222710 + 1.59236i
\(386\) 0 0
\(387\) 16088.8 + 11689.2i 2.11327 + 1.53538i
\(388\) 0 0
\(389\) −1765.53 5433.73i −0.230118 0.708229i −0.997732 0.0673169i \(-0.978556\pi\)
0.767614 0.640912i \(-0.221444\pi\)
\(390\) 0 0
\(391\) −184.267 + 133.878i −0.0238332 + 0.0173159i
\(392\) 0 0
\(393\) −6961.90 + 21426.5i −0.893591 + 2.75019i
\(394\) 0 0
\(395\) 13472.2 1.71610
\(396\) 0 0
\(397\) −7568.62 −0.956821 −0.478411 0.878136i \(-0.658787\pi\)
−0.478411 + 0.878136i \(0.658787\pi\)
\(398\) 0 0
\(399\) 6001.94 18472.1i 0.753065 2.31770i
\(400\) 0 0
\(401\) 10188.7 7402.50i 1.26882 0.921853i 0.269667 0.962954i \(-0.413086\pi\)
0.999155 + 0.0411003i \(0.0130863\pi\)
\(402\) 0 0
\(403\) −2127.06 6546.42i −0.262919 0.809183i
\(404\) 0 0
\(405\) 24069.7 + 17487.6i 2.95317 + 2.14560i
\(406\) 0 0
\(407\) 6367.84 6602.88i 0.775533 0.804159i
\(408\) 0 0
\(409\) −7971.56 5791.68i −0.963736 0.700196i −0.00972095 0.999953i \(-0.503094\pi\)
−0.954016 + 0.299757i \(0.903094\pi\)
\(410\) 0 0
\(411\) −171.246 527.042i −0.0205522 0.0632532i
\(412\) 0 0
\(413\) 258.797 188.027i 0.0308343 0.0224024i
\(414\) 0 0
\(415\) 3297.21 10147.8i 0.390009 1.20032i
\(416\) 0 0
\(417\) 13038.9 1.53122
\(418\) 0 0
\(419\) −7338.49 −0.855629 −0.427814 0.903867i \(-0.640716\pi\)
−0.427814 + 0.903867i \(0.640716\pi\)
\(420\) 0 0
\(421\) 4787.67 14734.9i 0.554244 1.70579i −0.143687 0.989623i \(-0.545896\pi\)
0.697931 0.716165i \(-0.254104\pi\)
\(422\) 0 0
\(423\) −1804.18 + 1310.81i −0.207381 + 0.150671i
\(424\) 0 0
\(425\) −98.2870 302.496i −0.0112179 0.0345252i
\(426\) 0 0
\(427\) −8559.07 6218.53i −0.970029 0.704767i
\(428\) 0 0
\(429\) −12492.8 6082.84i −1.40596 0.684574i
\(430\) 0 0
\(431\) −5795.68 4210.81i −0.647722 0.470598i 0.214772 0.976664i \(-0.431099\pi\)
−0.862495 + 0.506066i \(0.831099\pi\)
\(432\) 0 0
\(433\) 1069.05 + 3290.21i 0.118650 + 0.365167i 0.992691 0.120686i \(-0.0385093\pi\)
−0.874041 + 0.485852i \(0.838509\pi\)
\(434\) 0 0
\(435\) 4335.99 3150.28i 0.477919 0.347228i
\(436\) 0 0
\(437\) −3465.83 + 10666.7i −0.379389 + 1.16764i
\(438\) 0 0
\(439\) 10534.8 1.14533 0.572665 0.819790i \(-0.305910\pi\)
0.572665 + 0.819790i \(0.305910\pi\)
\(440\) 0 0
\(441\) 3513.76 0.379415
\(442\) 0 0
\(443\) 2103.92 6475.21i 0.225644 0.694461i −0.772581 0.634916i \(-0.781035\pi\)
0.998226 0.0595455i \(-0.0189651\pi\)
\(444\) 0 0
\(445\) 15478.8 11246.0i 1.64891 1.19800i
\(446\) 0 0
\(447\) 7882.31 + 24259.3i 0.834051 + 2.56694i
\(448\) 0 0
\(449\) 1287.65 + 935.536i 0.135341 + 0.0983311i 0.653396 0.757016i \(-0.273344\pi\)
−0.518055 + 0.855347i \(0.673344\pi\)
\(450\) 0 0
\(451\) 6922.87 1225.44i 0.722806 0.127946i
\(452\) 0 0
\(453\) −18924.2 13749.2i −1.96277 1.42604i
\(454\) 0 0
\(455\) 4076.79 + 12547.1i 0.420051 + 1.29278i
\(456\) 0 0
\(457\) 7878.87 5724.34i 0.806473 0.585937i −0.106333 0.994331i \(-0.533911\pi\)
0.912806 + 0.408394i \(0.133911\pi\)
\(458\) 0 0
\(459\) 234.842 722.768i 0.0238812 0.0734988i
\(460\) 0 0
\(461\) 16872.1 1.70458 0.852289 0.523071i \(-0.175214\pi\)
0.852289 + 0.523071i \(0.175214\pi\)
\(462\) 0 0
\(463\) −19730.3 −1.98044 −0.990221 0.139508i \(-0.955448\pi\)
−0.990221 + 0.139508i \(0.955448\pi\)
\(464\) 0 0
\(465\) −8623.23 + 26539.6i −0.859984 + 2.64676i
\(466\) 0 0
\(467\) 4728.81 3435.68i 0.468572 0.340437i −0.328313 0.944569i \(-0.606480\pi\)
0.796884 + 0.604132i \(0.206480\pi\)
\(468\) 0 0
\(469\) 3918.54 + 12060.0i 0.385803 + 1.18738i
\(470\) 0 0
\(471\) −10752.6 7812.20i −1.05192 0.764262i
\(472\) 0 0
\(473\) 5216.51 + 9795.09i 0.507094 + 0.952175i
\(474\) 0 0
\(475\) −12670.8 9205.90i −1.22395 0.889254i
\(476\) 0 0
\(477\) 4376.46 + 13469.4i 0.420093 + 1.29291i
\(478\) 0 0
\(479\) −14668.2 + 10657.1i −1.39918 + 1.01656i −0.404394 + 0.914585i \(0.632517\pi\)
−0.994787 + 0.101979i \(0.967483\pi\)
\(480\) 0 0
\(481\) 3078.93 9475.98i 0.291865 0.898269i
\(482\) 0 0
\(483\) −21163.7 −1.99375
\(484\) 0 0
\(485\) −14043.7 −1.31483
\(486\) 0 0
\(487\) −1069.10 + 3290.36i −0.0994778 + 0.306161i −0.988395 0.151907i \(-0.951459\pi\)
0.888917 + 0.458068i \(0.151459\pi\)
\(488\) 0 0
\(489\) −14790.5 + 10745.9i −1.36779 + 0.993757i
\(490\) 0 0
\(491\) −596.968 1837.28i −0.0548692 0.168870i 0.919866 0.392232i \(-0.128297\pi\)
−0.974736 + 0.223362i \(0.928297\pi\)
\(492\) 0 0
\(493\) −55.6095 40.4026i −0.00508017 0.00369096i
\(494\) 0 0
\(495\) 18739.7 + 35187.6i 1.70159 + 3.19508i
\(496\) 0 0
\(497\) −4524.03 3286.90i −0.408310 0.296655i
\(498\) 0 0
\(499\) 3620.14 + 11141.6i 0.324769 + 0.999535i 0.971545 + 0.236855i \(0.0761167\pi\)
−0.646776 + 0.762680i \(0.723883\pi\)
\(500\) 0 0
\(501\) −16718.1 + 12146.4i −1.49083 + 1.08315i
\(502\) 0 0
\(503\) 1028.32 3164.84i 0.0911539 0.280543i −0.895078 0.445909i \(-0.852881\pi\)
0.986232 + 0.165366i \(0.0528805\pi\)
\(504\) 0 0
\(505\) −22278.9 −1.96316
\(506\) 0 0
\(507\) 6023.75 0.527661
\(508\) 0 0
\(509\) −3694.18 + 11369.5i −0.321693 + 0.990070i 0.651218 + 0.758891i \(0.274258\pi\)
−0.972911 + 0.231179i \(0.925742\pi\)
\(510\) 0 0
\(511\) −10583.2 + 7689.11i −0.916186 + 0.665648i
\(512\) 0 0
\(513\) −11564.0 35590.4i −0.995252 3.06307i
\(514\) 0 0
\(515\) −1284.87 933.512i −0.109938 0.0798747i
\(516\) 0 0
\(517\) −1225.42 + 216.916i −0.104244 + 0.0184525i
\(518\) 0 0
\(519\) 4109.54 + 2985.76i 0.347570 + 0.252525i
\(520\) 0 0
\(521\) −3554.62 10940.0i −0.298907 0.919941i −0.981881 0.189498i \(-0.939314\pi\)
0.682974 0.730443i \(-0.260686\pi\)
\(522\) 0 0
\(523\) 11863.1 8619.05i 0.991850 0.720621i 0.0315245 0.999503i \(-0.489964\pi\)
0.960325 + 0.278882i \(0.0899638\pi\)
\(524\) 0 0
\(525\) 9132.67 28107.5i 0.759204 2.33659i
\(526\) 0 0
\(527\) 357.889 0.0295823
\(528\) 0 0
\(529\) 54.0095 0.00443902
\(530\) 0 0
\(531\) 324.455 998.568i 0.0265162 0.0816086i
\(532\) 0 0
\(533\) 6177.90 4488.51i 0.502054 0.364763i
\(534\) 0 0
\(535\) −7448.85 22925.2i −0.601947 1.85260i
\(536\) 0 0
\(537\) 30554.3 + 22199.0i 2.45534 + 1.78391i
\(538\) 0 0
\(539\) 1762.93 + 858.387i 0.140881 + 0.0685962i
\(540\) 0 0
\(541\) −2453.96 1782.90i −0.195016 0.141688i 0.485992 0.873963i \(-0.338458\pi\)
−0.681008 + 0.732276i \(0.738458\pi\)
\(542\) 0 0
\(543\) 1606.30 + 4943.69i 0.126948 + 0.390707i
\(544\) 0 0
\(545\) −9585.60 + 6964.34i −0.753398 + 0.547376i
\(546\) 0 0
\(547\) −1822.06 + 5607.72i −0.142423 + 0.438334i −0.996671 0.0815329i \(-0.974018\pi\)
0.854247 + 0.519867i \(0.174018\pi\)
\(548\) 0 0
\(549\) −34724.7 −2.69948
\(550\) 0 0
\(551\) −3384.74 −0.261696
\(552\) 0 0
\(553\) 4961.15 15268.8i 0.381500 1.17414i
\(554\) 0 0
\(555\) −32678.7 + 23742.5i −2.49934 + 1.81588i
\(556\) 0 0
\(557\) 405.592 + 1248.28i 0.0308536 + 0.0949577i 0.965297 0.261153i \(-0.0841027\pi\)
−0.934444 + 0.356111i \(0.884103\pi\)
\(558\) 0 0
\(559\) 9751.75 + 7085.06i 0.737844 + 0.536075i
\(560\) 0 0
\(561\) 501.510 520.022i 0.0377429 0.0391361i
\(562\) 0 0
\(563\) −9548.34 6937.27i −0.714768 0.519309i 0.169940 0.985454i \(-0.445642\pi\)
−0.884708 + 0.466145i \(0.845642\pi\)
\(564\) 0 0
\(565\) 8631.48 + 26565.0i 0.642706 + 1.97805i
\(566\) 0 0
\(567\) 28683.5 20839.8i 2.12451 1.54355i
\(568\) 0 0
\(569\) 4759.87 14649.4i 0.350693 1.07932i −0.607772 0.794111i \(-0.707937\pi\)
0.958465 0.285210i \(-0.0920633\pi\)
\(570\) 0 0
\(571\) 6979.75 0.511547 0.255774 0.966737i \(-0.417670\pi\)
0.255774 + 0.966737i \(0.417670\pi\)
\(572\) 0 0
\(573\) −1148.20 −0.0837116
\(574\) 0 0
\(575\) −5273.67 + 16230.7i −0.382482 + 1.17716i
\(576\) 0 0
\(577\) 10481.6 7615.30i 0.756245 0.549444i −0.141511 0.989937i \(-0.545196\pi\)
0.897756 + 0.440493i \(0.145196\pi\)
\(578\) 0 0
\(579\) 1941.39 + 5975.00i 0.139346 + 0.428864i
\(580\) 0 0
\(581\) −10286.9 7473.86i −0.734548 0.533680i
\(582\) 0 0
\(583\) −1094.70 + 7827.02i −0.0777666 + 0.556024i
\(584\) 0 0
\(585\) 35031.9 + 25452.2i 2.47588 + 1.79884i
\(586\) 0 0
\(587\) −1862.76 5732.97i −0.130978 0.403109i 0.863965 0.503552i \(-0.167974\pi\)
−0.994943 + 0.100443i \(0.967974\pi\)
\(588\) 0 0
\(589\) 14257.4 10358.6i 0.997394 0.724649i
\(590\) 0 0
\(591\) 2225.76 6850.17i 0.154916 0.476783i
\(592\) 0 0
\(593\) 9230.18 0.639187 0.319594 0.947555i \(-0.396454\pi\)
0.319594 + 0.947555i \(0.396454\pi\)
\(594\) 0 0
\(595\) −685.941 −0.0472619
\(596\) 0 0
\(597\) 5453.65 16784.6i 0.373874 1.15067i
\(598\) 0 0
\(599\) 7234.67 5256.29i 0.493490 0.358541i −0.313035 0.949742i \(-0.601346\pi\)
0.806525 + 0.591200i \(0.201346\pi\)
\(600\) 0 0
\(601\) 2482.71 + 7640.98i 0.168505 + 0.518606i 0.999277 0.0380066i \(-0.0121008\pi\)
−0.830772 + 0.556613i \(0.812101\pi\)
\(602\) 0 0
\(603\) 33672.1 + 24464.2i 2.27402 + 1.65217i
\(604\) 0 0
\(605\) 806.018 + 22232.4i 0.0541641 + 1.49401i
\(606\) 0 0
\(607\) 2043.54 + 1484.72i 0.136647 + 0.0992798i 0.654009 0.756487i \(-0.273086\pi\)
−0.517362 + 0.855767i \(0.673086\pi\)
\(608\) 0 0
\(609\) −1973.67 6074.34i −0.131326 0.404179i
\(610\) 0 0
\(611\) −1093.55 + 794.513i −0.0724066 + 0.0526065i
\(612\) 0 0
\(613\) −2703.55 + 8320.66i −0.178132 + 0.548235i −0.999763 0.0217855i \(-0.993065\pi\)
0.821630 + 0.570021i \(0.193065\pi\)
\(614\) 0 0
\(615\) −30958.0 −2.02983
\(616\) 0 0
\(617\) 620.479 0.0404855 0.0202427 0.999795i \(-0.493556\pi\)
0.0202427 + 0.999795i \(0.493556\pi\)
\(618\) 0 0
\(619\) −2569.23 + 7907.26i −0.166827 + 0.513441i −0.999166 0.0408258i \(-0.987001\pi\)
0.832339 + 0.554266i \(0.187001\pi\)
\(620\) 0 0
\(621\) −32988.8 + 23967.8i −2.13172 + 1.54878i
\(622\) 0 0
\(623\) −7045.69 21684.4i −0.453097 1.39449i
\(624\) 0 0
\(625\) 8972.21 + 6518.69i 0.574221 + 0.417196i
\(626\) 0 0
\(627\) 4927.60 35231.9i 0.313858 2.24406i
\(628\) 0 0
\(629\) 419.108 + 304.500i 0.0265674 + 0.0193024i
\(630\) 0 0
\(631\) 2571.38 + 7913.88i 0.162226 + 0.499282i 0.998821 0.0485406i \(-0.0154570\pi\)
−0.836595 + 0.547822i \(0.815457\pi\)
\(632\) 0 0
\(633\) 31127.7 22615.6i 1.95452 1.42004i
\(634\) 0 0
\(635\) 7496.80 23072.8i 0.468506 1.44191i
\(636\) 0 0
\(637\) 2129.77 0.132472
\(638\) 0 0
\(639\) −18354.3 −1.13628
\(640\) 0 0
\(641\) 1491.81 4591.30i 0.0919232 0.282910i −0.894516 0.447035i \(-0.852480\pi\)
0.986440 + 0.164125i \(0.0524799\pi\)
\(642\) 0 0
\(643\) 17241.3 12526.5i 1.05743 0.768269i 0.0838203 0.996481i \(-0.473288\pi\)
0.973612 + 0.228212i \(0.0732878\pi\)
\(644\) 0 0
\(645\) −15100.7 46475.2i −0.921844 2.83714i
\(646\) 0 0
\(647\) −4393.15 3191.81i −0.266944 0.193946i 0.446259 0.894904i \(-0.352756\pi\)
−0.713203 + 0.700958i \(0.752756\pi\)
\(648\) 0 0
\(649\) 406.730 421.742i 0.0246002 0.0255082i
\(650\) 0 0
\(651\) 26903.4 + 19546.5i 1.61971 + 1.17679i
\(652\) 0 0
\(653\) 435.714 + 1340.99i 0.0261115 + 0.0803630i 0.963263 0.268560i \(-0.0865476\pi\)
−0.937152 + 0.348923i \(0.886548\pi\)
\(654\) 0 0
\(655\) 31696.7 23029.0i 1.89083 1.37377i
\(656\) 0 0
\(657\) −13268.1 + 40835.1i −0.787883 + 2.42486i
\(658\) 0 0
\(659\) −18088.9 −1.06926 −0.534630 0.845086i \(-0.679549\pi\)
−0.534630 + 0.845086i \(0.679549\pi\)
\(660\) 0 0
\(661\) 16624.5 0.978240 0.489120 0.872217i \(-0.337318\pi\)
0.489120 + 0.872217i \(0.337318\pi\)
\(662\) 0 0
\(663\) 242.487 746.298i 0.0142042 0.0437161i
\(664\) 0 0
\(665\) −27326.2 + 19853.6i −1.59348 + 1.15773i
\(666\) 0 0
\(667\) 1139.70 + 3507.63i 0.0661609 + 0.203622i
\(668\) 0 0
\(669\) −29947.1 21757.8i −1.73067 1.25741i
\(670\) 0 0
\(671\) −17422.2 8483.01i −1.00235 0.488052i
\(672\) 0 0
\(673\) −373.402 271.293i −0.0213872 0.0155387i 0.577040 0.816716i \(-0.304208\pi\)
−0.598428 + 0.801177i \(0.704208\pi\)
\(674\) 0 0
\(675\) −17596.0 54155.0i −1.00337 3.08804i
\(676\) 0 0
\(677\) −12870.2 + 9350.77i −0.730640 + 0.530841i −0.889766 0.456417i \(-0.849132\pi\)
0.159126 + 0.987258i \(0.449132\pi\)
\(678\) 0 0
\(679\) −5171.62 + 15916.6i −0.292295 + 0.899593i
\(680\) 0 0
\(681\) 6173.82 0.347403
\(682\) 0 0
\(683\) 32846.5 1.84017 0.920084 0.391721i \(-0.128120\pi\)
0.920084 + 0.391721i \(0.128120\pi\)
\(684\) 0 0
\(685\) −297.805 + 916.550i −0.0166110 + 0.0511235i
\(686\) 0 0
\(687\) 29167.3 21191.3i 1.61980 1.17685i
\(688\) 0 0
\(689\) 2652.67 + 8164.07i 0.146674 + 0.451417i
\(690\) 0 0
\(691\) 1565.49 + 1137.40i 0.0861855 + 0.0626174i 0.630044 0.776560i \(-0.283037\pi\)
−0.543858 + 0.839177i \(0.683037\pi\)
\(692\) 0 0
\(693\) 46781.3 8280.92i 2.56432 0.453920i
\(694\) 0 0
\(695\) −18344.7 13328.2i −1.00123 0.727437i
\(696\) 0 0
\(697\) 122.692 + 377.607i 0.00666756 + 0.0205206i
\(698\) 0 0
\(699\) −53939.0 + 39189.0i −2.91868 + 2.12055i
\(700\) 0 0
\(701\) −1769.44 + 5445.78i −0.0953365 + 0.293415i −0.987341 0.158611i \(-0.949299\pi\)
0.892005 + 0.452026i \(0.149299\pi\)
\(702\) 0 0
\(703\) 25509.5 1.36858
\(704\) 0 0
\(705\) 5479.89 0.292744
\(706\) 0 0
\(707\) −8204.23 + 25250.0i −0.436424 + 1.34318i
\(708\) 0 0
\(709\) 21977.0 15967.2i 1.16412 0.845784i 0.173829 0.984776i \(-0.444386\pi\)
0.990294 + 0.138992i \(0.0443861\pi\)
\(710\) 0 0
\(711\) −16283.7 50116.0i −0.858911 2.64345i
\(712\) 0 0
\(713\) −15535.4 11287.1i −0.815996 0.592856i
\(714\) 0 0
\(715\) 11358.5 + 21328.0i 0.594104 + 1.11556i
\(716\) 0 0
\(717\) −4306.88 3129.13i −0.224328 0.162984i
\(718\) 0 0
\(719\) 3856.55 + 11869.2i 0.200035 + 0.615643i 0.999881 + 0.0154382i \(0.00491433\pi\)
−0.799846 + 0.600205i \(0.795086\pi\)
\(720\) 0 0
\(721\) −1531.16 + 1112.46i −0.0790894 + 0.0574618i
\(722\) 0 0
\(723\) −7521.91 + 23150.1i −0.386920 + 1.19082i
\(724\) 0 0
\(725\) −5150.28 −0.263830
\(726\) 0 0
\(727\) −4894.88 −0.249712 −0.124856 0.992175i \(-0.539847\pi\)
−0.124856 + 0.992175i \(0.539847\pi\)
\(728\) 0 0
\(729\) 6381.60 19640.5i 0.324219 0.997843i
\(730\) 0 0
\(731\) −507.029 + 368.378i −0.0256541 + 0.0186388i
\(732\) 0 0
\(733\) −8466.96 26058.6i −0.426650 1.31309i −0.901406 0.432976i \(-0.857464\pi\)
0.474756 0.880118i \(-0.342536\pi\)
\(734\) 0 0
\(735\) −6985.21 5075.05i −0.350549 0.254689i
\(736\) 0 0
\(737\) 10917.6 + 20500.1i 0.545665 + 1.02460i
\(738\) 0 0
\(739\) −12028.5 8739.19i −0.598747 0.435015i 0.246687 0.969095i \(-0.420658\pi\)
−0.845434 + 0.534080i \(0.820658\pi\)
\(740\) 0 0
\(741\) −11940.5 36749.0i −0.591963 1.82188i
\(742\) 0 0
\(743\) 26119.5 18976.9i 1.28968 0.937007i 0.289880 0.957063i \(-0.406385\pi\)
0.999799 + 0.0200565i \(0.00638459\pi\)
\(744\) 0 0
\(745\) 13707.7 42188.0i 0.674110 2.07470i
\(746\) 0 0
\(747\) −41734.6 −2.04416
\(748\) 0 0
\(749\) −28725.6 −1.40135
\(750\) 0 0
\(751\) −4518.03 + 13905.1i −0.219528 + 0.675636i 0.779274 + 0.626684i \(0.215588\pi\)
−0.998801 + 0.0489525i \(0.984412\pi\)
\(752\) 0 0
\(753\) 24766.6 17994.0i 1.19860 0.870834i
\(754\) 0 0
\(755\) 12570.5 + 38688.1i 0.605945 + 1.86491i
\(756\) 0 0
\(757\) 5130.04 + 3727.19i 0.246307 + 0.178953i 0.704089 0.710112i \(-0.251356\pi\)
−0.457781 + 0.889065i \(0.651356\pi\)
\(758\) 0 0
\(759\) −38170.3 + 6756.66i −1.82542 + 0.323124i
\(760\) 0 0
\(761\) −6442.01 4680.39i −0.306863 0.222949i 0.423686 0.905809i \(-0.360736\pi\)
−0.730549 + 0.682860i \(0.760736\pi\)
\(762\) 0 0
\(763\) 4363.21 + 13428.6i 0.207023 + 0.637153i
\(764\) 0 0
\(765\) −1821.44 + 1323.35i −0.0860840 + 0.0625437i
\(766\) 0 0
\(767\) 196.659 605.254i 0.00925808 0.0284934i
\(768\) 0 0
\(769\) 19302.7 0.905166 0.452583 0.891722i \(-0.350503\pi\)
0.452583 + 0.891722i \(0.350503\pi\)
\(770\) 0 0
\(771\) 50865.3 2.37596
\(772\) 0 0
\(773\) −11989.6 + 36900.0i −0.557871 + 1.71695i 0.130368 + 0.991466i \(0.458384\pi\)
−0.688239 + 0.725484i \(0.741616\pi\)
\(774\) 0 0
\(775\) 21694.3 15761.8i 1.00553 0.730557i
\(776\) 0 0
\(777\) 14874.8 + 45780.0i 0.686785 + 2.11371i
\(778\) 0 0
\(779\) 15817.1 + 11491.8i 0.727477 + 0.528543i
\(780\) 0 0
\(781\) −9208.76 4483.83i −0.421915 0.205434i
\(782\) 0 0
\(783\) −9955.61 7233.17i −0.454386 0.330131i
\(784\) 0 0
\(785\) 7142.47 + 21982.3i 0.324746 + 0.999466i
\(786\) 0 0
\(787\) −17185.9 + 12486.3i −0.778413 + 0.565550i −0.904502 0.426469i \(-0.859757\pi\)
0.126089 + 0.992019i \(0.459757\pi\)
\(788\) 0 0
\(789\) −12641.9 + 38907.8i −0.570423 + 1.75558i
\(790\) 0 0
\(791\) 33286.3 1.49624
\(792\) 0 0
\(793\) −21047.4 −0.942517
\(794\) 0 0
\(795\) 10754.1 33097.6i 0.479758 1.47654i
\(796\) 0 0
\(797\) 9806.58 7124.90i 0.435843 0.316658i −0.348138 0.937443i \(-0.613186\pi\)
0.783981 + 0.620785i \(0.213186\pi\)
\(798\) 0 0
\(799\) −21.7178 66.8404i −0.000961601 0.00295950i
\(800\) 0 0
\(801\) −60543.7 43987.6i −2.67067 1.94035i
\(802\) 0 0
\(803\) −16632.7 + 17246.6i −0.730952 + 0.757932i
\(804\) 0 0
\(805\) 29775.6 + 21633.3i 1.30367 + 0.947171i
\(806\) 0 0
\(807\) 25755.4 + 79267.0i 1.12346 + 3.45766i
\(808\) 0 0
\(809\) −16986.1 + 12341.1i −0.738196 + 0.536331i −0.892146 0.451748i \(-0.850801\pi\)
0.153950 + 0.988079i \(0.450801\pi\)
\(810\) 0 0
\(811\) −3610.00 + 11110.4i −0.156306 + 0.481061i −0.998291 0.0584404i \(-0.981387\pi\)
0.841985 + 0.539501i \(0.181387\pi\)
\(812\) 0 0
\(813\) −28715.1 −1.23872
\(814\) 0 0
\(815\) 31793.3 1.36647
\(816\) 0 0
\(817\) −9536.56 + 29350.5i −0.408374 + 1.25685i
\(818\) 0 0
\(819\) 41747.1 30331.1i 1.78115 1.29408i
\(820\) 0 0
\(821\) 612.500 + 1885.08i 0.0260370 + 0.0801338i 0.963231 0.268676i \(-0.0865860\pi\)
−0.937194 + 0.348810i \(0.886586\pi\)
\(822\) 0 0
\(823\) −19101.1 13877.7i −0.809017 0.587785i 0.104528 0.994522i \(-0.466667\pi\)
−0.913546 + 0.406736i \(0.866667\pi\)
\(824\) 0 0
\(825\) 7497.92 53609.5i 0.316417 2.26235i
\(826\) 0 0
\(827\) −22690.0 16485.2i −0.954059 0.693165i −0.00229592 0.999997i \(-0.500731\pi\)
−0.951763 + 0.306833i \(0.900731\pi\)
\(828\) 0 0
\(829\) 11310.7 + 34810.8i 0.473868 + 1.45842i 0.847478 + 0.530831i \(0.178120\pi\)
−0.373609 + 0.927586i \(0.621880\pi\)
\(830\) 0 0
\(831\) −61415.3 + 44620.8i −2.56374 + 1.86267i
\(832\) 0 0
\(833\) −34.2188 + 105.315i −0.00142330 + 0.00438048i
\(834\) 0 0
\(835\) 35936.8 1.48939
\(836\) 0 0
\(837\) 64071.8 2.64593
\(838\) 0 0
\(839\) 2092.52 6440.13i 0.0861049 0.265004i −0.898729 0.438505i \(-0.855508\pi\)
0.984834 + 0.173501i \(0.0555081\pi\)
\(840\) 0 0
\(841\) 18830.7 13681.3i 0.772096 0.560961i
\(842\) 0 0
\(843\) −16372.8 50390.4i −0.668933 2.05877i
\(844\) 0 0
\(845\) −8474.92 6157.39i −0.345025 0.250675i
\(846\) 0 0
\(847\) 25494.2 + 7273.61i 1.03423 + 0.295070i
\(848\) 0 0
\(849\) −25453.8 18493.3i −1.02894 0.747570i
\(850\) 0 0
\(851\) −8589.49 26435.7i −0.345997 1.06487i
\(852\) 0 0
\(853\) 14418.5 10475.6i 0.578756 0.420491i −0.259519 0.965738i \(-0.583564\pi\)
0.838276 + 0.545247i \(0.183564\pi\)
\(854\) 0 0
\(855\) −34258.9 + 105438.i −1.37033 + 4.21743i
\(856\) 0 0
\(857\) 28270.3 1.12683 0.563416 0.826173i \(-0.309487\pi\)
0.563416 + 0.826173i \(0.309487\pi\)
\(858\) 0 0
\(859\) −26699.7 −1.06051 −0.530257 0.847837i \(-0.677905\pi\)
−0.530257 + 0.847837i \(0.677905\pi\)
\(860\) 0 0
\(861\) −11400.3 + 35086.7i −0.451246 + 1.38879i
\(862\) 0 0
\(863\) 10744.9 7806.64i 0.423826 0.307927i −0.355350 0.934733i \(-0.615638\pi\)
0.779175 + 0.626806i \(0.215638\pi\)
\(864\) 0 0
\(865\) −2729.79 8401.44i −0.107301 0.330240i
\(866\) 0 0
\(867\) −38169.1 27731.4i −1.49514 1.08629i
\(868\) 0 0
\(869\) 4073.10 29122.3i 0.158999 1.13683i
\(870\) 0 0
\(871\) 20409.4 + 14828.3i 0.793967 + 0.576851i
\(872\) 0 0
\(873\) 16974.5 + 52242.1i 0.658075 + 2.02535i
\(874\) 0 0
\(875\) −7911.95 + 5748.37i −0.305683 + 0.222092i
\(876\) 0 0
\(877\) −4452.07 + 13702.1i −0.171421 + 0.527578i −0.999452 0.0331036i \(-0.989461\pi\)
0.828031 + 0.560682i \(0.189461\pi\)
\(878\) 0 0
\(879\) −14379.9 −0.551788
\(880\) 0 0
\(881\) 40967.4 1.56666 0.783330 0.621606i \(-0.213519\pi\)
0.783330 + 0.621606i \(0.213519\pi\)
\(882\) 0 0
\(883\) 3507.59 10795.2i 0.133680 0.411426i −0.861702 0.507414i \(-0.830601\pi\)
0.995382 + 0.0959888i \(0.0306013\pi\)
\(884\) 0 0
\(885\) −2087.27 + 1516.49i −0.0792800 + 0.0576003i
\(886\) 0 0
\(887\) 7482.35 + 23028.3i 0.283239 + 0.871720i 0.986921 + 0.161205i \(0.0515379\pi\)
−0.703682 + 0.710515i \(0.748462\pi\)
\(888\) 0 0
\(889\) −23389.1 16993.2i −0.882392 0.641095i
\(890\) 0 0
\(891\) 45079.6 46743.5i 1.69497 1.75754i
\(892\) 0 0
\(893\) −2799.78 2034.16i −0.104917 0.0762269i
\(894\) 0 0
\(895\) −20295.9 62464.4i −0.758008 2.33291i
\(896\) 0 0
\(897\) −34062.8 + 24748.1i −1.26792 + 0.921197i
\(898\) 0 0
\(899\) 1790.80 5511.53i 0.0664367 0.204471i
\(900\) 0 0
\(901\) −446.325 −0.0165030
\(902\) 0 0
\(903\) −58234.1 −2.14608
\(904\) 0 0
\(905\) 2793.43 8597.31i 0.102604 0.315784i
\(906\) 0 0
\(907\) −36838.6 + 26764.8i −1.34863 + 0.979835i −0.349549 + 0.936918i \(0.613665\pi\)
−0.999079 + 0.0429167i \(0.986335\pi\)
\(908\) 0 0
\(909\) 26928.2 + 82876.6i 0.982567 + 3.02403i
\(910\) 0 0
\(911\) −6301.96 4578.65i −0.229191 0.166517i 0.467263 0.884118i \(-0.345240\pi\)
−0.696454 + 0.717601i \(0.745240\pi\)
\(912\) 0 0
\(913\) −20939.2 10195.5i −0.759022 0.369574i
\(914\) 0 0
\(915\) 69031.3 + 50154.2i 2.49410 + 1.81207i
\(916\) 0 0
\(917\) −14427.8 44404.3i −0.519574 1.59908i
\(918\) 0 0
\(919\) 16161.5 11742.0i 0.580108 0.421473i −0.258655 0.965970i \(-0.583279\pi\)
0.838763 + 0.544497i \(0.183279\pi\)
\(920\) 0 0
\(921\) −14131.7 + 43492.8i −0.505597 + 1.55607i
\(922\) 0 0
\(923\) −11124.9 −0.396730
\(924\) 0 0
\(925\) 38815.7 1.37973
\(926\) 0 0
\(927\) −1919.62 + 5908.00i −0.0680138 + 0.209325i
\(928\) 0 0
\(929\) −38131.4 + 27704.1i −1.34666 + 0.978409i −0.347494 + 0.937682i \(0.612967\pi\)
−0.999170 + 0.0407268i \(0.987033\pi\)
\(930\) 0 0
\(931\) 1685.00 + 5185.89i 0.0593163 + 0.182557i
\(932\) 0 0
\(933\) −2075.57 1507.99i −0.0728309 0.0529148i
\(934\) 0 0
\(935\) −1237.14 + 218.991i −0.0432716 + 0.00765966i
\(936\) 0 0
\(937\) −38514.3 27982.2i −1.34280 0.975603i −0.999336 0.0364383i \(-0.988399\pi\)
−0.343467 0.939165i \(-0.611601\pi\)
\(938\) 0 0
\(939\) −26571.9 81779.9i −0.923473 2.84216i
\(940\) 0 0
\(941\) 22291.6 16195.8i 0.772247 0.561071i −0.130395 0.991462i \(-0.541625\pi\)
0.902642 + 0.430392i \(0.141625\pi\)
\(942\) 0 0
\(943\) 6583.14 20260.8i 0.227335 0.699664i
\(944\) 0 0
\(945\) −122802. −4.22725
\(946\) 0 0
\(947\) 8056.38 0.276449 0.138224 0.990401i \(-0.455860\pi\)
0.138224 + 0.990401i \(0.455860\pi\)
\(948\) 0 0
\(949\) −8042.11 + 24751.1i −0.275087 + 0.846632i
\(950\) 0 0
\(951\) −2015.97 + 1464.69i −0.0687407 + 0.0499431i
\(952\) 0 0
\(953\) 3149.91 + 9694.43i 0.107068 + 0.329521i 0.990210 0.139584i \(-0.0445766\pi\)
−0.883142 + 0.469105i \(0.844577\pi\)
\(954\) 0 0
\(955\) 1615.42 + 1173.67i 0.0547370 + 0.0397688i
\(956\) 0 0
\(957\) −5498.93 10325.4i −0.185742 0.348770i
\(958\) 0 0
\(959\) 929.116 + 675.042i 0.0312854 + 0.0227302i
\(960\) 0 0
\(961\) 118.133 + 363.575i 0.00396538 + 0.0122042i
\(962\) 0 0
\(963\) −76277.6 + 55419.0i −2.55245 + 1.85447i
\(964\) 0 0
\(965\) 3376.18 10390.8i 0.112625 0.346624i
\(966\) 0 0
\(967\) 13913.2 0.462685 0.231343 0.972872i \(-0.425688\pi\)
0.231343 + 0.972872i \(0.425688\pi\)
\(968\) 0 0
\(969\) 2009.05 0.0666047
\(970\) 0 0
\(971\) −9346.72 + 28766.3i −0.308909 + 0.950724i 0.669281 + 0.743010i \(0.266602\pi\)
−0.978190 + 0.207714i \(0.933398\pi\)
\(972\) 0 0
\(973\) −21861.2 + 15883.1i −0.720286 + 0.523318i
\(974\) 0 0
\(975\) −18168.9 55918.0i −0.596789 1.83673i
\(976\) 0 0
\(977\) 19677.4 + 14296.5i 0.644356 + 0.468152i 0.861344 0.508023i \(-0.169623\pi\)
−0.216988 + 0.976174i \(0.569623\pi\)
\(978\) 0 0
\(979\) −19630.3 36860.0i −0.640844 1.20332i
\(980\) 0 0
\(981\) 37493.1 + 27240.4i 1.22025 + 0.886563i
\(982\) 0 0
\(983\) 5078.63 + 15630.4i 0.164784 + 0.507154i 0.999020 0.0442533i \(-0.0140909\pi\)
−0.834236 + 0.551408i \(0.814091\pi\)
\(984\) 0 0
\(985\) −10133.6 + 7362.50i −0.327801 + 0.238161i
\(986\) 0 0
\(987\) 2017.98 6210.70i 0.0650790 0.200293i
\(988\) 0 0
\(989\) 33627.3 1.08118
\(990\) 0 0
\(991\) 25604.7 0.820745 0.410373 0.911918i \(-0.365399\pi\)
0.410373 + 0.911918i \(0.365399\pi\)
\(992\) 0 0
\(993\) −13536.7 + 41661.6i −0.432601 + 1.33141i
\(994\) 0 0
\(995\) −24829.8 + 18039.9i −0.791114 + 0.574778i
\(996\) 0 0
\(997\) −11764.3 36206.9i −0.373701 1.15013i −0.944351 0.328940i \(-0.893309\pi\)
0.570650 0.821194i \(-0.306691\pi\)
\(998\) 0 0
\(999\) 75031.7 + 54513.7i 2.37627 + 1.72646i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.4.m.f.81.1 20
4.3 odd 2 88.4.i.b.81.5 yes 20
11.3 even 5 inner 176.4.m.f.113.1 20
11.5 even 5 1936.4.a.bx.1.2 10
11.6 odd 10 1936.4.a.by.1.2 10
44.3 odd 10 88.4.i.b.25.5 20
44.27 odd 10 968.4.a.s.1.9 10
44.39 even 10 968.4.a.r.1.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.i.b.25.5 20 44.3 odd 10
88.4.i.b.81.5 yes 20 4.3 odd 2
176.4.m.f.81.1 20 1.1 even 1 trivial
176.4.m.f.113.1 20 11.3 even 5 inner
968.4.a.r.1.9 10 44.39 even 10
968.4.a.s.1.9 10 44.27 odd 10
1936.4.a.bx.1.2 10 11.5 even 5
1936.4.a.by.1.2 10 11.6 odd 10