Properties

Label 968.4.a.r.1.9
Level $968$
Weight $4$
Character 968.1
Self dual yes
Analytic conductor $57.114$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,4,Mod(1,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 968.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.1138488856\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4 x^{9} - 193 x^{8} + 670 x^{7} + 10959 x^{6} - 33408 x^{5} - 177207 x^{4} + 365822 x^{3} + \cdots - 781744 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8}\cdot 11^{2} \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(7.99327\) of defining polynomial
Character \(\chi\) \(=\) 968.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.61131 q^{3} -16.7145 q^{5} -19.9185 q^{7} +65.3772 q^{9} -39.6266 q^{13} -160.648 q^{15} +2.06033 q^{17} +101.454 q^{19} -191.443 q^{21} +110.549 q^{23} +154.375 q^{25} +368.855 q^{27} +33.3622 q^{29} +173.705 q^{31} +332.928 q^{35} +251.438 q^{37} -380.863 q^{39} +192.707 q^{41} -304.185 q^{43} -1092.75 q^{45} -34.1111 q^{47} +53.7459 q^{49} +19.8025 q^{51} +216.628 q^{53} +975.109 q^{57} -16.0600 q^{59} +531.144 q^{61} -1302.21 q^{63} +662.339 q^{65} +636.628 q^{67} +1062.52 q^{69} +280.744 q^{71} +656.752 q^{73} +1483.74 q^{75} -806.016 q^{79} +1780.00 q^{81} -638.367 q^{83} -34.4374 q^{85} +320.654 q^{87} +1144.68 q^{89} +789.301 q^{91} +1669.53 q^{93} -1695.76 q^{95} +840.210 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 9 q^{3} + 13 q^{5} - 3 q^{7} + 141 q^{9} - 45 q^{13} + 120 q^{15} + 17 q^{17} + 147 q^{19} - 131 q^{21} + 164 q^{23} + 439 q^{25} + 420 q^{27} - 177 q^{29} + 275 q^{31} + 220 q^{35} + 745 q^{37}+ \cdots + 3511 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.61131 1.84970 0.924848 0.380336i \(-0.124192\pi\)
0.924848 + 0.380336i \(0.124192\pi\)
\(4\) 0 0
\(5\) −16.7145 −1.49499 −0.747496 0.664267i \(-0.768744\pi\)
−0.747496 + 0.664267i \(0.768744\pi\)
\(6\) 0 0
\(7\) −19.9185 −1.07550 −0.537748 0.843105i \(-0.680725\pi\)
−0.537748 + 0.843105i \(0.680725\pi\)
\(8\) 0 0
\(9\) 65.3772 2.42138
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −39.6266 −0.845418 −0.422709 0.906266i \(-0.638921\pi\)
−0.422709 + 0.906266i \(0.638921\pi\)
\(14\) 0 0
\(15\) −160.648 −2.76528
\(16\) 0 0
\(17\) 2.06033 0.0293943 0.0146972 0.999892i \(-0.495322\pi\)
0.0146972 + 0.999892i \(0.495322\pi\)
\(18\) 0 0
\(19\) 101.454 1.22501 0.612506 0.790466i \(-0.290161\pi\)
0.612506 + 0.790466i \(0.290161\pi\)
\(20\) 0 0
\(21\) −191.443 −1.98934
\(22\) 0 0
\(23\) 110.549 1.00222 0.501109 0.865384i \(-0.332926\pi\)
0.501109 + 0.865384i \(0.332926\pi\)
\(24\) 0 0
\(25\) 154.375 1.23500
\(26\) 0 0
\(27\) 368.855 2.62912
\(28\) 0 0
\(29\) 33.3622 0.213628 0.106814 0.994279i \(-0.465935\pi\)
0.106814 + 0.994279i \(0.465935\pi\)
\(30\) 0 0
\(31\) 173.705 1.00640 0.503198 0.864171i \(-0.332157\pi\)
0.503198 + 0.864171i \(0.332157\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 332.928 1.60786
\(36\) 0 0
\(37\) 251.438 1.11719 0.558597 0.829439i \(-0.311340\pi\)
0.558597 + 0.829439i \(0.311340\pi\)
\(38\) 0 0
\(39\) −380.863 −1.56377
\(40\) 0 0
\(41\) 192.707 0.734043 0.367021 0.930213i \(-0.380378\pi\)
0.367021 + 0.930213i \(0.380378\pi\)
\(42\) 0 0
\(43\) −304.185 −1.07879 −0.539393 0.842054i \(-0.681346\pi\)
−0.539393 + 0.842054i \(0.681346\pi\)
\(44\) 0 0
\(45\) −1092.75 −3.61994
\(46\) 0 0
\(47\) −34.1111 −0.105864 −0.0529321 0.998598i \(-0.516857\pi\)
−0.0529321 + 0.998598i \(0.516857\pi\)
\(48\) 0 0
\(49\) 53.7459 0.156694
\(50\) 0 0
\(51\) 19.8025 0.0543706
\(52\) 0 0
\(53\) 216.628 0.561436 0.280718 0.959790i \(-0.409427\pi\)
0.280718 + 0.959790i \(0.409427\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 975.109 2.26590
\(58\) 0 0
\(59\) −16.0600 −0.0354378 −0.0177189 0.999843i \(-0.505640\pi\)
−0.0177189 + 0.999843i \(0.505640\pi\)
\(60\) 0 0
\(61\) 531.144 1.11485 0.557427 0.830226i \(-0.311789\pi\)
0.557427 + 0.830226i \(0.311789\pi\)
\(62\) 0 0
\(63\) −1302.21 −2.60419
\(64\) 0 0
\(65\) 662.339 1.26389
\(66\) 0 0
\(67\) 636.628 1.16084 0.580422 0.814316i \(-0.302888\pi\)
0.580422 + 0.814316i \(0.302888\pi\)
\(68\) 0 0
\(69\) 1062.52 1.85380
\(70\) 0 0
\(71\) 280.744 0.469271 0.234635 0.972083i \(-0.424610\pi\)
0.234635 + 0.972083i \(0.424610\pi\)
\(72\) 0 0
\(73\) 656.752 1.05297 0.526486 0.850184i \(-0.323509\pi\)
0.526486 + 0.850184i \(0.323509\pi\)
\(74\) 0 0
\(75\) 1483.74 2.28437
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −806.016 −1.14790 −0.573948 0.818891i \(-0.694589\pi\)
−0.573948 + 0.818891i \(0.694589\pi\)
\(80\) 0 0
\(81\) 1780.00 2.44170
\(82\) 0 0
\(83\) −638.367 −0.844215 −0.422108 0.906546i \(-0.638710\pi\)
−0.422108 + 0.906546i \(0.638710\pi\)
\(84\) 0 0
\(85\) −34.4374 −0.0439443
\(86\) 0 0
\(87\) 320.654 0.395146
\(88\) 0 0
\(89\) 1144.68 1.36333 0.681663 0.731666i \(-0.261257\pi\)
0.681663 + 0.731666i \(0.261257\pi\)
\(90\) 0 0
\(91\) 789.301 0.909244
\(92\) 0 0
\(93\) 1669.53 1.86153
\(94\) 0 0
\(95\) −1695.76 −1.83138
\(96\) 0 0
\(97\) 840.210 0.879489 0.439744 0.898123i \(-0.355069\pi\)
0.439744 + 0.898123i \(0.355069\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1332.91 −1.31316 −0.656579 0.754257i \(-0.727997\pi\)
−0.656579 + 0.754257i \(0.727997\pi\)
\(102\) 0 0
\(103\) 95.0184 0.0908975 0.0454487 0.998967i \(-0.485528\pi\)
0.0454487 + 0.998967i \(0.485528\pi\)
\(104\) 0 0
\(105\) 3199.87 2.97405
\(106\) 0 0
\(107\) 1442.16 1.30298 0.651490 0.758658i \(-0.274144\pi\)
0.651490 + 0.758658i \(0.274144\pi\)
\(108\) 0 0
\(109\) 708.872 0.622914 0.311457 0.950260i \(-0.399183\pi\)
0.311457 + 0.950260i \(0.399183\pi\)
\(110\) 0 0
\(111\) 2416.65 2.06647
\(112\) 0 0
\(113\) −1671.13 −1.39121 −0.695603 0.718426i \(-0.744863\pi\)
−0.695603 + 0.718426i \(0.744863\pi\)
\(114\) 0 0
\(115\) −1847.77 −1.49831
\(116\) 0 0
\(117\) −2590.67 −2.04708
\(118\) 0 0
\(119\) −41.0387 −0.0316135
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 1852.16 1.35776
\(124\) 0 0
\(125\) −490.987 −0.351322
\(126\) 0 0
\(127\) −1451.44 −1.01413 −0.507066 0.861907i \(-0.669270\pi\)
−0.507066 + 0.861907i \(0.669270\pi\)
\(128\) 0 0
\(129\) −2923.62 −1.99543
\(130\) 0 0
\(131\) 2344.03 1.56335 0.781674 0.623687i \(-0.214366\pi\)
0.781674 + 0.623687i \(0.214366\pi\)
\(132\) 0 0
\(133\) −2020.82 −1.31750
\(134\) 0 0
\(135\) −6165.23 −3.93051
\(136\) 0 0
\(137\) 57.6575 0.0359563 0.0179782 0.999838i \(-0.494277\pi\)
0.0179782 + 0.999838i \(0.494277\pi\)
\(138\) 0 0
\(139\) −1356.63 −0.827824 −0.413912 0.910317i \(-0.635838\pi\)
−0.413912 + 0.910317i \(0.635838\pi\)
\(140\) 0 0
\(141\) −327.852 −0.195817
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −557.632 −0.319371
\(146\) 0 0
\(147\) 516.569 0.289836
\(148\) 0 0
\(149\) 2653.93 1.45918 0.729591 0.683884i \(-0.239710\pi\)
0.729591 + 0.683884i \(0.239710\pi\)
\(150\) 0 0
\(151\) −2433.76 −1.31163 −0.655816 0.754921i \(-0.727675\pi\)
−0.655816 + 0.754921i \(0.727675\pi\)
\(152\) 0 0
\(153\) 134.699 0.0711748
\(154\) 0 0
\(155\) −2903.39 −1.50455
\(156\) 0 0
\(157\) −1382.84 −0.702948 −0.351474 0.936198i \(-0.614319\pi\)
−0.351474 + 0.936198i \(0.614319\pi\)
\(158\) 0 0
\(159\) 2082.08 1.03849
\(160\) 0 0
\(161\) −2201.96 −1.07788
\(162\) 0 0
\(163\) 1902.14 0.914031 0.457016 0.889459i \(-0.348918\pi\)
0.457016 + 0.889459i \(0.348918\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2150.04 −0.996256 −0.498128 0.867103i \(-0.665979\pi\)
−0.498128 + 0.867103i \(0.665979\pi\)
\(168\) 0 0
\(169\) −626.735 −0.285269
\(170\) 0 0
\(171\) 6632.81 2.96622
\(172\) 0 0
\(173\) −528.511 −0.232265 −0.116133 0.993234i \(-0.537050\pi\)
−0.116133 + 0.993234i \(0.537050\pi\)
\(174\) 0 0
\(175\) −3074.91 −1.32824
\(176\) 0 0
\(177\) −154.357 −0.0655492
\(178\) 0 0
\(179\) −3929.46 −1.64079 −0.820395 0.571797i \(-0.806246\pi\)
−0.820395 + 0.571797i \(0.806246\pi\)
\(180\) 0 0
\(181\) −540.832 −0.222098 −0.111049 0.993815i \(-0.535421\pi\)
−0.111049 + 0.993815i \(0.535421\pi\)
\(182\) 0 0
\(183\) 5104.99 2.06214
\(184\) 0 0
\(185\) −4202.67 −1.67020
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −7347.04 −2.82761
\(190\) 0 0
\(191\) −119.463 −0.0452569 −0.0226285 0.999744i \(-0.507203\pi\)
−0.0226285 + 0.999744i \(0.507203\pi\)
\(192\) 0 0
\(193\) 653.656 0.243788 0.121894 0.992543i \(-0.461103\pi\)
0.121894 + 0.992543i \(0.461103\pi\)
\(194\) 0 0
\(195\) 6365.94 2.33782
\(196\) 0 0
\(197\) 749.399 0.271028 0.135514 0.990775i \(-0.456731\pi\)
0.135514 + 0.990775i \(0.456731\pi\)
\(198\) 0 0
\(199\) 1836.21 0.654098 0.327049 0.945007i \(-0.393946\pi\)
0.327049 + 0.945007i \(0.393946\pi\)
\(200\) 0 0
\(201\) 6118.83 2.14721
\(202\) 0 0
\(203\) −664.524 −0.229756
\(204\) 0 0
\(205\) −3221.00 −1.09739
\(206\) 0 0
\(207\) 7227.36 2.42675
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4003.19 1.30612 0.653059 0.757307i \(-0.273485\pi\)
0.653059 + 0.757307i \(0.273485\pi\)
\(212\) 0 0
\(213\) 2698.32 0.868009
\(214\) 0 0
\(215\) 5084.31 1.61278
\(216\) 0 0
\(217\) −3459.93 −1.08238
\(218\) 0 0
\(219\) 6312.24 1.94768
\(220\) 0 0
\(221\) −81.6438 −0.0248505
\(222\) 0 0
\(223\) 3851.36 1.15653 0.578265 0.815849i \(-0.303730\pi\)
0.578265 + 0.815849i \(0.303730\pi\)
\(224\) 0 0
\(225\) 10092.6 2.99040
\(226\) 0 0
\(227\) −642.350 −0.187816 −0.0939080 0.995581i \(-0.529936\pi\)
−0.0939080 + 0.995581i \(0.529936\pi\)
\(228\) 0 0
\(229\) 3751.08 1.08244 0.541220 0.840881i \(-0.317963\pi\)
0.541220 + 0.840881i \(0.317963\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6936.86 1.95042 0.975212 0.221274i \(-0.0710215\pi\)
0.975212 + 0.221274i \(0.0710215\pi\)
\(234\) 0 0
\(235\) 570.150 0.158266
\(236\) 0 0
\(237\) −7746.86 −2.12326
\(238\) 0 0
\(239\) −553.889 −0.149908 −0.0749542 0.997187i \(-0.523881\pi\)
−0.0749542 + 0.997187i \(0.523881\pi\)
\(240\) 0 0
\(241\) −2532.58 −0.676921 −0.338460 0.940981i \(-0.609906\pi\)
−0.338460 + 0.940981i \(0.609906\pi\)
\(242\) 0 0
\(243\) 7148.99 1.88728
\(244\) 0 0
\(245\) −898.337 −0.234256
\(246\) 0 0
\(247\) −4020.29 −1.03565
\(248\) 0 0
\(249\) −6135.54 −1.56154
\(250\) 0 0
\(251\) −3185.13 −0.800970 −0.400485 0.916303i \(-0.631158\pi\)
−0.400485 + 0.916303i \(0.631158\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −330.989 −0.0812836
\(256\) 0 0
\(257\) −5292.23 −1.28451 −0.642257 0.766489i \(-0.722002\pi\)
−0.642257 + 0.766489i \(0.722002\pi\)
\(258\) 0 0
\(259\) −5008.27 −1.20154
\(260\) 0 0
\(261\) 2181.13 0.517273
\(262\) 0 0
\(263\) 4256.45 0.997962 0.498981 0.866613i \(-0.333708\pi\)
0.498981 + 0.866613i \(0.333708\pi\)
\(264\) 0 0
\(265\) −3620.83 −0.839342
\(266\) 0 0
\(267\) 11001.9 2.52174
\(268\) 0 0
\(269\) −8671.69 −1.96551 −0.982755 0.184913i \(-0.940800\pi\)
−0.982755 + 0.184913i \(0.940800\pi\)
\(270\) 0 0
\(271\) 2987.64 0.669691 0.334845 0.942273i \(-0.391316\pi\)
0.334845 + 0.942273i \(0.391316\pi\)
\(272\) 0 0
\(273\) 7586.21 1.68183
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7898.35 1.71323 0.856617 0.515953i \(-0.172562\pi\)
0.856617 + 0.515953i \(0.172562\pi\)
\(278\) 0 0
\(279\) 11356.3 2.43686
\(280\) 0 0
\(281\) −5512.64 −1.17031 −0.585154 0.810922i \(-0.698966\pi\)
−0.585154 + 0.810922i \(0.698966\pi\)
\(282\) 0 0
\(283\) −3273.50 −0.687595 −0.343797 0.939044i \(-0.611713\pi\)
−0.343797 + 0.939044i \(0.611713\pi\)
\(284\) 0 0
\(285\) −16298.5 −3.38750
\(286\) 0 0
\(287\) −3838.43 −0.789461
\(288\) 0 0
\(289\) −4908.76 −0.999136
\(290\) 0 0
\(291\) 8075.52 1.62679
\(292\) 0 0
\(293\) −1496.14 −0.298313 −0.149156 0.988814i \(-0.547656\pi\)
−0.149156 + 0.988814i \(0.547656\pi\)
\(294\) 0 0
\(295\) 268.435 0.0529792
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4380.66 −0.847292
\(300\) 0 0
\(301\) 6058.91 1.16023
\(302\) 0 0
\(303\) −12811.0 −2.42895
\(304\) 0 0
\(305\) −8877.82 −1.66670
\(306\) 0 0
\(307\) 4758.05 0.884548 0.442274 0.896880i \(-0.354172\pi\)
0.442274 + 0.896880i \(0.354172\pi\)
\(308\) 0 0
\(309\) 913.251 0.168133
\(310\) 0 0
\(311\) 266.930 0.0486696 0.0243348 0.999704i \(-0.492253\pi\)
0.0243348 + 0.999704i \(0.492253\pi\)
\(312\) 0 0
\(313\) 8946.60 1.61563 0.807814 0.589437i \(-0.200651\pi\)
0.807814 + 0.589437i \(0.200651\pi\)
\(314\) 0 0
\(315\) 21765.9 3.89323
\(316\) 0 0
\(317\) −259.266 −0.0459363 −0.0229681 0.999736i \(-0.507312\pi\)
−0.0229681 + 0.999736i \(0.507312\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 13861.0 2.41012
\(322\) 0 0
\(323\) 209.030 0.0360084
\(324\) 0 0
\(325\) −6117.35 −1.04409
\(326\) 0 0
\(327\) 6813.19 1.15220
\(328\) 0 0
\(329\) 679.441 0.113857
\(330\) 0 0
\(331\) −4557.71 −0.756841 −0.378421 0.925634i \(-0.623533\pi\)
−0.378421 + 0.925634i \(0.623533\pi\)
\(332\) 0 0
\(333\) 16438.3 2.70515
\(334\) 0 0
\(335\) −10640.9 −1.73545
\(336\) 0 0
\(337\) 9720.57 1.57126 0.785628 0.618699i \(-0.212340\pi\)
0.785628 + 0.618699i \(0.212340\pi\)
\(338\) 0 0
\(339\) −16061.7 −2.57331
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 5761.50 0.906973
\(344\) 0 0
\(345\) −17759.5 −2.77141
\(346\) 0 0
\(347\) 5210.07 0.806027 0.403013 0.915194i \(-0.367963\pi\)
0.403013 + 0.915194i \(0.367963\pi\)
\(348\) 0 0
\(349\) 570.087 0.0874385 0.0437193 0.999044i \(-0.486079\pi\)
0.0437193 + 0.999044i \(0.486079\pi\)
\(350\) 0 0
\(351\) −14616.5 −2.22270
\(352\) 0 0
\(353\) 2751.02 0.414793 0.207396 0.978257i \(-0.433501\pi\)
0.207396 + 0.978257i \(0.433501\pi\)
\(354\) 0 0
\(355\) −4692.51 −0.701556
\(356\) 0 0
\(357\) −394.435 −0.0584754
\(358\) 0 0
\(359\) −4439.60 −0.652683 −0.326341 0.945252i \(-0.605816\pi\)
−0.326341 + 0.945252i \(0.605816\pi\)
\(360\) 0 0
\(361\) 3434.00 0.500656
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10977.3 −1.57418
\(366\) 0 0
\(367\) −9325.64 −1.32641 −0.663207 0.748436i \(-0.730805\pi\)
−0.663207 + 0.748436i \(0.730805\pi\)
\(368\) 0 0
\(369\) 12598.6 1.77739
\(370\) 0 0
\(371\) −4314.90 −0.603823
\(372\) 0 0
\(373\) 8713.65 1.20959 0.604793 0.796382i \(-0.293256\pi\)
0.604793 + 0.796382i \(0.293256\pi\)
\(374\) 0 0
\(375\) −4719.02 −0.649838
\(376\) 0 0
\(377\) −1322.03 −0.180605
\(378\) 0 0
\(379\) −2121.30 −0.287503 −0.143752 0.989614i \(-0.545917\pi\)
−0.143752 + 0.989614i \(0.545917\pi\)
\(380\) 0 0
\(381\) −13950.3 −1.87584
\(382\) 0 0
\(383\) 7441.24 0.992766 0.496383 0.868104i \(-0.334661\pi\)
0.496383 + 0.868104i \(0.334661\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −19886.8 −2.61215
\(388\) 0 0
\(389\) −5713.37 −0.744676 −0.372338 0.928097i \(-0.621444\pi\)
−0.372338 + 0.928097i \(0.621444\pi\)
\(390\) 0 0
\(391\) 227.767 0.0294595
\(392\) 0 0
\(393\) 22529.2 2.89172
\(394\) 0 0
\(395\) 13472.2 1.71610
\(396\) 0 0
\(397\) −7568.62 −0.956821 −0.478411 0.878136i \(-0.658787\pi\)
−0.478411 + 0.878136i \(0.658787\pi\)
\(398\) 0 0
\(399\) −19422.7 −2.43697
\(400\) 0 0
\(401\) −12593.9 −1.56835 −0.784175 0.620539i \(-0.786914\pi\)
−0.784175 + 0.620539i \(0.786914\pi\)
\(402\) 0 0
\(403\) −6883.32 −0.850825
\(404\) 0 0
\(405\) −29751.8 −3.65031
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −9853.39 −1.19124 −0.595622 0.803265i \(-0.703094\pi\)
−0.595622 + 0.803265i \(0.703094\pi\)
\(410\) 0 0
\(411\) 554.164 0.0665083
\(412\) 0 0
\(413\) 319.890 0.0381133
\(414\) 0 0
\(415\) 10670.0 1.26209
\(416\) 0 0
\(417\) −13038.9 −1.53122
\(418\) 0 0
\(419\) 7338.49 0.855629 0.427814 0.903867i \(-0.359284\pi\)
0.427814 + 0.903867i \(0.359284\pi\)
\(420\) 0 0
\(421\) 15493.2 1.79357 0.896786 0.442464i \(-0.145896\pi\)
0.896786 + 0.442464i \(0.145896\pi\)
\(422\) 0 0
\(423\) −2230.09 −0.256337
\(424\) 0 0
\(425\) 318.063 0.0363020
\(426\) 0 0
\(427\) −10579.6 −1.19902
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7163.86 0.800629 0.400314 0.916378i \(-0.368901\pi\)
0.400314 + 0.916378i \(0.368901\pi\)
\(432\) 0 0
\(433\) 3459.53 0.383959 0.191979 0.981399i \(-0.438509\pi\)
0.191979 + 0.981399i \(0.438509\pi\)
\(434\) 0 0
\(435\) −5359.57 −0.590740
\(436\) 0 0
\(437\) 11215.7 1.22773
\(438\) 0 0
\(439\) 10534.8 1.14533 0.572665 0.819790i \(-0.305910\pi\)
0.572665 + 0.819790i \(0.305910\pi\)
\(440\) 0 0
\(441\) 3513.76 0.379415
\(442\) 0 0
\(443\) −6808.43 −0.730200 −0.365100 0.930968i \(-0.618965\pi\)
−0.365100 + 0.930968i \(0.618965\pi\)
\(444\) 0 0
\(445\) −19132.8 −2.03816
\(446\) 0 0
\(447\) 25507.7 2.69904
\(448\) 0 0
\(449\) −1591.63 −0.167291 −0.0836454 0.996496i \(-0.526656\pi\)
−0.0836454 + 0.996496i \(0.526656\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −23391.6 −2.42612
\(454\) 0 0
\(455\) −13192.8 −1.35931
\(456\) 0 0
\(457\) 9738.82 0.996855 0.498428 0.866931i \(-0.333911\pi\)
0.498428 + 0.866931i \(0.333911\pi\)
\(458\) 0 0
\(459\) 759.964 0.0772812
\(460\) 0 0
\(461\) −16872.1 −1.70458 −0.852289 0.523071i \(-0.824786\pi\)
−0.852289 + 0.523071i \(0.824786\pi\)
\(462\) 0 0
\(463\) 19730.3 1.98044 0.990221 0.139508i \(-0.0445522\pi\)
0.990221 + 0.139508i \(0.0445522\pi\)
\(464\) 0 0
\(465\) −27905.3 −2.78297
\(466\) 0 0
\(467\) 5845.13 0.579187 0.289593 0.957150i \(-0.406480\pi\)
0.289593 + 0.957150i \(0.406480\pi\)
\(468\) 0 0
\(469\) −12680.7 −1.24848
\(470\) 0 0
\(471\) −13290.9 −1.30024
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 15662.0 1.51289
\(476\) 0 0
\(477\) 14162.5 1.35945
\(478\) 0 0
\(479\) 18130.9 1.72948 0.864741 0.502218i \(-0.167483\pi\)
0.864741 + 0.502218i \(0.167483\pi\)
\(480\) 0 0
\(481\) −9963.63 −0.944496
\(482\) 0 0
\(483\) −21163.7 −1.99375
\(484\) 0 0
\(485\) −14043.7 −1.31483
\(486\) 0 0
\(487\) 3459.69 0.321917 0.160959 0.986961i \(-0.448541\pi\)
0.160959 + 0.986961i \(0.448541\pi\)
\(488\) 0 0
\(489\) 18282.1 1.69068
\(490\) 0 0
\(491\) −1931.83 −0.177561 −0.0887803 0.996051i \(-0.528297\pi\)
−0.0887803 + 0.996051i \(0.528297\pi\)
\(492\) 0 0
\(493\) 68.7371 0.00627944
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5592.00 −0.504699
\(498\) 0 0
\(499\) −11715.0 −1.05097 −0.525487 0.850802i \(-0.676117\pi\)
−0.525487 + 0.850802i \(0.676117\pi\)
\(500\) 0 0
\(501\) −20664.7 −1.84277
\(502\) 0 0
\(503\) 3327.71 0.294980 0.147490 0.989064i \(-0.452881\pi\)
0.147490 + 0.989064i \(0.452881\pi\)
\(504\) 0 0
\(505\) 22278.9 1.96316
\(506\) 0 0
\(507\) −6023.75 −0.527661
\(508\) 0 0
\(509\) −11954.6 −1.04102 −0.520511 0.853855i \(-0.674258\pi\)
−0.520511 + 0.853855i \(0.674258\pi\)
\(510\) 0 0
\(511\) −13081.5 −1.13247
\(512\) 0 0
\(513\) 37422.0 3.22070
\(514\) 0 0
\(515\) −1588.19 −0.135891
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −5079.68 −0.429621
\(520\) 0 0
\(521\) −11503.0 −0.967283 −0.483642 0.875266i \(-0.660686\pi\)
−0.483642 + 0.875266i \(0.660686\pi\)
\(522\) 0 0
\(523\) −14663.6 −1.22599 −0.612997 0.790085i \(-0.710036\pi\)
−0.612997 + 0.790085i \(0.710036\pi\)
\(524\) 0 0
\(525\) −29553.9 −2.45684
\(526\) 0 0
\(527\) 357.889 0.0295823
\(528\) 0 0
\(529\) 54.0095 0.00443902
\(530\) 0 0
\(531\) −1049.96 −0.0858084
\(532\) 0 0
\(533\) −7636.31 −0.620573
\(534\) 0 0
\(535\) −24105.0 −1.94794
\(536\) 0 0
\(537\) −37767.2 −3.03496
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3033.26 −0.241053 −0.120527 0.992710i \(-0.538458\pi\)
−0.120527 + 0.992710i \(0.538458\pi\)
\(542\) 0 0
\(543\) −5198.10 −0.410814
\(544\) 0 0
\(545\) −11848.4 −0.931251
\(546\) 0 0
\(547\) −5896.30 −0.460892 −0.230446 0.973085i \(-0.574018\pi\)
−0.230446 + 0.973085i \(0.574018\pi\)
\(548\) 0 0
\(549\) 34724.7 2.69948
\(550\) 0 0
\(551\) 3384.74 0.261696
\(552\) 0 0
\(553\) 16054.6 1.23456
\(554\) 0 0
\(555\) −40393.1 −3.08936
\(556\) 0 0
\(557\) −1312.52 −0.0998445 −0.0499222 0.998753i \(-0.515897\pi\)
−0.0499222 + 0.998753i \(0.515897\pi\)
\(558\) 0 0
\(559\) 12053.8 0.912026
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11802.4 0.883502 0.441751 0.897138i \(-0.354358\pi\)
0.441751 + 0.897138i \(0.354358\pi\)
\(564\) 0 0
\(565\) 27932.0 2.07984
\(566\) 0 0
\(567\) −35454.8 −2.62604
\(568\) 0 0
\(569\) −15403.3 −1.13487 −0.567433 0.823420i \(-0.692063\pi\)
−0.567433 + 0.823420i \(0.692063\pi\)
\(570\) 0 0
\(571\) 6979.75 0.511547 0.255774 0.966737i \(-0.417670\pi\)
0.255774 + 0.966737i \(0.417670\pi\)
\(572\) 0 0
\(573\) −1148.20 −0.0837116
\(574\) 0 0
\(575\) 17065.9 1.23774
\(576\) 0 0
\(577\) −12955.9 −0.934770 −0.467385 0.884054i \(-0.654804\pi\)
−0.467385 + 0.884054i \(0.654804\pi\)
\(578\) 0 0
\(579\) 6282.49 0.450935
\(580\) 0 0
\(581\) 12715.3 0.907951
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 43301.9 3.06036
\(586\) 0 0
\(587\) 6028.00 0.423854 0.211927 0.977285i \(-0.432026\pi\)
0.211927 + 0.977285i \(0.432026\pi\)
\(588\) 0 0
\(589\) 17623.1 1.23285
\(590\) 0 0
\(591\) 7202.70 0.501319
\(592\) 0 0
\(593\) −9230.18 −0.639187 −0.319594 0.947555i \(-0.603546\pi\)
−0.319594 + 0.947555i \(0.603546\pi\)
\(594\) 0 0
\(595\) 685.941 0.0472619
\(596\) 0 0
\(597\) 17648.4 1.20988
\(598\) 0 0
\(599\) 8942.54 0.609987 0.304994 0.952354i \(-0.401346\pi\)
0.304994 + 0.952354i \(0.401346\pi\)
\(600\) 0 0
\(601\) −8034.20 −0.545295 −0.272647 0.962114i \(-0.587899\pi\)
−0.272647 + 0.962114i \(0.587899\pi\)
\(602\) 0 0
\(603\) 41621.0 2.81084
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −2525.95 −0.168905 −0.0844525 0.996428i \(-0.526914\pi\)
−0.0844525 + 0.996428i \(0.526914\pi\)
\(608\) 0 0
\(609\) −6386.94 −0.424978
\(610\) 0 0
\(611\) 1351.71 0.0894995
\(612\) 0 0
\(613\) 8748.86 0.576449 0.288224 0.957563i \(-0.406935\pi\)
0.288224 + 0.957563i \(0.406935\pi\)
\(614\) 0 0
\(615\) −30958.0 −2.02983
\(616\) 0 0
\(617\) 620.479 0.0404855 0.0202427 0.999795i \(-0.493556\pi\)
0.0202427 + 0.999795i \(0.493556\pi\)
\(618\) 0 0
\(619\) 8314.19 0.539863 0.269932 0.962879i \(-0.412999\pi\)
0.269932 + 0.962879i \(0.412999\pi\)
\(620\) 0 0
\(621\) 40776.5 2.63495
\(622\) 0 0
\(623\) −22800.3 −1.46625
\(624\) 0 0
\(625\) −11090.3 −0.709776
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 518.046 0.0328392
\(630\) 0 0
\(631\) −8321.15 −0.524976 −0.262488 0.964935i \(-0.584543\pi\)
−0.262488 + 0.964935i \(0.584543\pi\)
\(632\) 0 0
\(633\) 38475.9 2.41592
\(634\) 0 0
\(635\) 24260.2 1.51612
\(636\) 0 0
\(637\) −2129.77 −0.132472
\(638\) 0 0
\(639\) 18354.3 1.13628
\(640\) 0 0
\(641\) 4827.58 0.297470 0.148735 0.988877i \(-0.452480\pi\)
0.148735 + 0.988877i \(0.452480\pi\)
\(642\) 0 0
\(643\) 21311.4 1.30706 0.653529 0.756902i \(-0.273288\pi\)
0.653529 + 0.756902i \(0.273288\pi\)
\(644\) 0 0
\(645\) 48866.9 2.98315
\(646\) 0 0
\(647\) −5430.24 −0.329961 −0.164980 0.986297i \(-0.552756\pi\)
−0.164980 + 0.986297i \(0.552756\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −33254.5 −2.00207
\(652\) 0 0
\(653\) 1410.00 0.0844986 0.0422493 0.999107i \(-0.486548\pi\)
0.0422493 + 0.999107i \(0.486548\pi\)
\(654\) 0 0
\(655\) −39179.3 −2.33719
\(656\) 0 0
\(657\) 42936.6 2.54964
\(658\) 0 0
\(659\) −18088.9 −1.06926 −0.534630 0.845086i \(-0.679549\pi\)
−0.534630 + 0.845086i \(0.679549\pi\)
\(660\) 0 0
\(661\) 16624.5 0.978240 0.489120 0.872217i \(-0.337318\pi\)
0.489120 + 0.872217i \(0.337318\pi\)
\(662\) 0 0
\(663\) −784.704 −0.0459659
\(664\) 0 0
\(665\) 33777.0 1.96965
\(666\) 0 0
\(667\) 3688.14 0.214101
\(668\) 0 0
\(669\) 37016.6 2.13923
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −461.551 −0.0264361 −0.0132180 0.999913i \(-0.504208\pi\)
−0.0132180 + 0.999913i \(0.504208\pi\)
\(674\) 0 0
\(675\) 56942.0 3.24696
\(676\) 0 0
\(677\) −15908.5 −0.903120 −0.451560 0.892241i \(-0.649132\pi\)
−0.451560 + 0.892241i \(0.649132\pi\)
\(678\) 0 0
\(679\) −16735.7 −0.945888
\(680\) 0 0
\(681\) −6173.82 −0.347403
\(682\) 0 0
\(683\) −32846.5 −1.84017 −0.920084 0.391721i \(-0.871880\pi\)
−0.920084 + 0.391721i \(0.871880\pi\)
\(684\) 0 0
\(685\) −963.718 −0.0537544
\(686\) 0 0
\(687\) 36052.8 2.00218
\(688\) 0 0
\(689\) −8584.21 −0.474648
\(690\) 0 0
\(691\) 1935.06 0.106531 0.0532656 0.998580i \(-0.483037\pi\)
0.0532656 + 0.998580i \(0.483037\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22675.3 1.23759
\(696\) 0 0
\(697\) 397.040 0.0215767
\(698\) 0 0
\(699\) 66672.3 3.60769
\(700\) 0 0
\(701\) 5726.03 0.308515 0.154258 0.988031i \(-0.450701\pi\)
0.154258 + 0.988031i \(0.450701\pi\)
\(702\) 0 0
\(703\) 25509.5 1.36858
\(704\) 0 0
\(705\) 5479.89 0.292744
\(706\) 0 0
\(707\) 26549.4 1.41230
\(708\) 0 0
\(709\) −27165.0 −1.43893 −0.719467 0.694526i \(-0.755614\pi\)
−0.719467 + 0.694526i \(0.755614\pi\)
\(710\) 0 0
\(711\) −52695.1 −2.77949
\(712\) 0 0
\(713\) 19202.8 1.00863
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −5323.60 −0.277285
\(718\) 0 0
\(719\) −12480.0 −0.647326 −0.323663 0.946173i \(-0.604914\pi\)
−0.323663 + 0.946173i \(0.604914\pi\)
\(720\) 0 0
\(721\) −1892.62 −0.0977599
\(722\) 0 0
\(723\) −24341.4 −1.25210
\(724\) 0 0
\(725\) 5150.28 0.263830
\(726\) 0 0
\(727\) 4894.88 0.249712 0.124856 0.992175i \(-0.460153\pi\)
0.124856 + 0.992175i \(0.460153\pi\)
\(728\) 0 0
\(729\) 20651.3 1.04919
\(730\) 0 0
\(731\) −626.722 −0.0317102
\(732\) 0 0
\(733\) 27399.7 1.38067 0.690334 0.723491i \(-0.257464\pi\)
0.690334 + 0.723491i \(0.257464\pi\)
\(734\) 0 0
\(735\) −8634.19 −0.433302
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 14868.0 0.740093 0.370046 0.929013i \(-0.379342\pi\)
0.370046 + 0.929013i \(0.379342\pi\)
\(740\) 0 0
\(741\) −38640.2 −1.91563
\(742\) 0 0
\(743\) −32285.5 −1.59413 −0.797065 0.603893i \(-0.793615\pi\)
−0.797065 + 0.603893i \(0.793615\pi\)
\(744\) 0 0
\(745\) −44359.1 −2.18146
\(746\) 0 0
\(747\) −41734.6 −2.04416
\(748\) 0 0
\(749\) −28725.6 −1.40135
\(750\) 0 0
\(751\) 14620.6 0.710406 0.355203 0.934789i \(-0.384412\pi\)
0.355203 + 0.934789i \(0.384412\pi\)
\(752\) 0 0
\(753\) −30613.2 −1.48155
\(754\) 0 0
\(755\) 40679.1 1.96088
\(756\) 0 0
\(757\) −6341.08 −0.304452 −0.152226 0.988346i \(-0.548644\pi\)
−0.152226 + 0.988346i \(0.548644\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7962.76 −0.379303 −0.189652 0.981851i \(-0.560736\pi\)
−0.189652 + 0.981851i \(0.560736\pi\)
\(762\) 0 0
\(763\) −14119.7 −0.669942
\(764\) 0 0
\(765\) −2251.42 −0.106406
\(766\) 0 0
\(767\) 636.402 0.0299598
\(768\) 0 0
\(769\) −19302.7 −0.905166 −0.452583 0.891722i \(-0.649497\pi\)
−0.452583 + 0.891722i \(0.649497\pi\)
\(770\) 0 0
\(771\) −50865.3 −2.37596
\(772\) 0 0
\(773\) −38799.0 −1.80531 −0.902654 0.430367i \(-0.858384\pi\)
−0.902654 + 0.430367i \(0.858384\pi\)
\(774\) 0 0
\(775\) 26815.6 1.24290
\(776\) 0 0
\(777\) −48136.0 −2.22248
\(778\) 0 0
\(779\) 19551.0 0.899211
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 12305.8 0.561652
\(784\) 0 0
\(785\) 23113.5 1.05090
\(786\) 0 0
\(787\) 21242.9 0.962172 0.481086 0.876674i \(-0.340243\pi\)
0.481086 + 0.876674i \(0.340243\pi\)
\(788\) 0 0
\(789\) 40910.1 1.84593
\(790\) 0 0
\(791\) 33286.3 1.49624
\(792\) 0 0
\(793\) −21047.4 −0.942517
\(794\) 0 0
\(795\) −34800.9 −1.55253
\(796\) 0 0
\(797\) −12121.6 −0.538732 −0.269366 0.963038i \(-0.586814\pi\)
−0.269366 + 0.963038i \(0.586814\pi\)
\(798\) 0 0
\(799\) −70.2801 −0.00311181
\(800\) 0 0
\(801\) 74836.1 3.30113
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 36804.7 1.61142
\(806\) 0 0
\(807\) −83346.3 −3.63560
\(808\) 0 0
\(809\) −20996.0 −0.912460 −0.456230 0.889862i \(-0.650801\pi\)
−0.456230 + 0.889862i \(0.650801\pi\)
\(810\) 0 0
\(811\) −11682.2 −0.505817 −0.252909 0.967490i \(-0.581387\pi\)
−0.252909 + 0.967490i \(0.581387\pi\)
\(812\) 0 0
\(813\) 28715.1 1.23872
\(814\) 0 0
\(815\) −31793.3 −1.36647
\(816\) 0 0
\(817\) −30860.9 −1.32153
\(818\) 0 0
\(819\) 51602.3 2.20162
\(820\) 0 0
\(821\) −1982.09 −0.0842577 −0.0421288 0.999112i \(-0.513414\pi\)
−0.0421288 + 0.999112i \(0.513414\pi\)
\(822\) 0 0
\(823\) −23610.2 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28046.3 1.17928 0.589641 0.807665i \(-0.299269\pi\)
0.589641 + 0.807665i \(0.299269\pi\)
\(828\) 0 0
\(829\) 36602.2 1.53347 0.766735 0.641963i \(-0.221880\pi\)
0.766735 + 0.641963i \(0.221880\pi\)
\(830\) 0 0
\(831\) 75913.4 3.16896
\(832\) 0 0
\(833\) 110.734 0.00460591
\(834\) 0 0
\(835\) 35936.8 1.48939
\(836\) 0 0
\(837\) 64071.8 2.64593
\(838\) 0 0
\(839\) −6771.55 −0.278641 −0.139321 0.990247i \(-0.544492\pi\)
−0.139321 + 0.990247i \(0.544492\pi\)
\(840\) 0 0
\(841\) −23276.0 −0.954363
\(842\) 0 0
\(843\) −52983.6 −2.16471
\(844\) 0 0
\(845\) 10475.6 0.426474
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −31462.6 −1.27184
\(850\) 0 0
\(851\) 27796.2 1.11967
\(852\) 0 0
\(853\) 17822.2 0.715382 0.357691 0.933840i \(-0.383564\pi\)
0.357691 + 0.933840i \(0.383564\pi\)
\(854\) 0 0
\(855\) −110864. −4.43447
\(856\) 0 0
\(857\) −28270.3 −1.12683 −0.563416 0.826173i \(-0.690513\pi\)
−0.563416 + 0.826173i \(0.690513\pi\)
\(858\) 0 0
\(859\) 26699.7 1.06051 0.530257 0.847837i \(-0.322095\pi\)
0.530257 + 0.847837i \(0.322095\pi\)
\(860\) 0 0
\(861\) −36892.3 −1.46026
\(862\) 0 0
\(863\) 13281.5 0.523877 0.261939 0.965085i \(-0.415638\pi\)
0.261939 + 0.965085i \(0.415638\pi\)
\(864\) 0 0
\(865\) 8833.79 0.347235
\(866\) 0 0
\(867\) −47179.6 −1.84810
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −25227.4 −0.981398
\(872\) 0 0
\(873\) 54930.6 2.12958
\(874\) 0 0
\(875\) 9779.71 0.377845
\(876\) 0 0
\(877\) 14407.2 0.554729 0.277364 0.960765i \(-0.410539\pi\)
0.277364 + 0.960765i \(0.410539\pi\)
\(878\) 0 0
\(879\) −14379.9 −0.551788
\(880\) 0 0
\(881\) 40967.4 1.56666 0.783330 0.621606i \(-0.213519\pi\)
0.783330 + 0.621606i \(0.213519\pi\)
\(882\) 0 0
\(883\) −11350.8 −0.432599 −0.216299 0.976327i \(-0.569399\pi\)
−0.216299 + 0.976327i \(0.569399\pi\)
\(884\) 0 0
\(885\) 2580.01 0.0979955
\(886\) 0 0
\(887\) 24213.4 0.916580 0.458290 0.888803i \(-0.348462\pi\)
0.458290 + 0.888803i \(0.348462\pi\)
\(888\) 0 0
\(889\) 28910.6 1.09070
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −3460.72 −0.129685
\(894\) 0 0
\(895\) 65679.0 2.45297
\(896\) 0 0
\(897\) −42103.9 −1.56723
\(898\) 0 0
\(899\) 5795.16 0.214994
\(900\) 0 0
\(901\) 446.325 0.0165030
\(902\) 0 0
\(903\) 58234.1 2.14608
\(904\) 0 0
\(905\) 9039.74 0.332035
\(906\) 0 0
\(907\) −45535.0 −1.66699 −0.833497 0.552523i \(-0.813665\pi\)
−0.833497 + 0.552523i \(0.813665\pi\)
\(908\) 0 0
\(909\) −87141.6 −3.17965
\(910\) 0 0
\(911\) −7789.66 −0.283296 −0.141648 0.989917i \(-0.545240\pi\)
−0.141648 + 0.989917i \(0.545240\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −85327.4 −3.08288
\(916\) 0 0
\(917\) −46689.5 −1.68138
\(918\) 0 0
\(919\) −19976.7 −0.717053 −0.358527 0.933520i \(-0.616721\pi\)
−0.358527 + 0.933520i \(0.616721\pi\)
\(920\) 0 0
\(921\) 45731.0 1.63614
\(922\) 0 0
\(923\) −11124.9 −0.396730
\(924\) 0 0
\(925\) 38815.7 1.37973
\(926\) 0 0
\(927\) 6212.04 0.220097
\(928\) 0 0
\(929\) 47133.0 1.66457 0.832284 0.554349i \(-0.187033\pi\)
0.832284 + 0.554349i \(0.187033\pi\)
\(930\) 0 0
\(931\) 5452.76 0.191952
\(932\) 0 0
\(933\) 2565.55 0.0900240
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −47606.2 −1.65980 −0.829898 0.557916i \(-0.811601\pi\)
−0.829898 + 0.557916i \(0.811601\pi\)
\(938\) 0 0
\(939\) 85988.5 2.98842
\(940\) 0 0
\(941\) 27553.9 0.954550 0.477275 0.878754i \(-0.341625\pi\)
0.477275 + 0.878754i \(0.341625\pi\)
\(942\) 0 0
\(943\) 21303.5 0.735670
\(944\) 0 0
\(945\) 122802. 4.22725
\(946\) 0 0
\(947\) −8056.38 −0.276449 −0.138224 0.990401i \(-0.544140\pi\)
−0.138224 + 0.990401i \(0.544140\pi\)
\(948\) 0 0
\(949\) −26024.8 −0.890202
\(950\) 0 0
\(951\) −2491.88 −0.0849682
\(952\) 0 0
\(953\) −10193.3 −0.346479 −0.173239 0.984880i \(-0.555423\pi\)
−0.173239 + 0.984880i \(0.555423\pi\)
\(954\) 0 0
\(955\) 1996.77 0.0676587
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1148.45 −0.0386709
\(960\) 0 0
\(961\) 382.285 0.0128322
\(962\) 0 0
\(963\) 94284.4 3.15501
\(964\) 0 0
\(965\) −10925.5 −0.364462
\(966\) 0 0
\(967\) 13913.2 0.462685 0.231343 0.972872i \(-0.425688\pi\)
0.231343 + 0.972872i \(0.425688\pi\)
\(968\) 0 0
\(969\) 2009.05 0.0666047
\(970\) 0 0
\(971\) 30246.6 0.999650 0.499825 0.866126i \(-0.333398\pi\)
0.499825 + 0.866126i \(0.333398\pi\)
\(972\) 0 0
\(973\) 27021.9 0.890322
\(974\) 0 0
\(975\) −58795.7 −1.93125
\(976\) 0 0
\(977\) −24322.6 −0.796467 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 46344.1 1.50831
\(982\) 0 0
\(983\) −16434.8 −0.533254 −0.266627 0.963800i \(-0.585909\pi\)
−0.266627 + 0.963800i \(0.585909\pi\)
\(984\) 0 0
\(985\) −12525.8 −0.405184
\(986\) 0 0
\(987\) 6530.32 0.210600
\(988\) 0 0
\(989\) −33627.3 −1.08118
\(990\) 0 0
\(991\) −25604.7 −0.820745 −0.410373 0.911918i \(-0.634601\pi\)
−0.410373 + 0.911918i \(0.634601\pi\)
\(992\) 0 0
\(993\) −43805.6 −1.39993
\(994\) 0 0
\(995\) −30691.4 −0.977871
\(996\) 0 0
\(997\) 38070.2 1.20932 0.604661 0.796483i \(-0.293309\pi\)
0.604661 + 0.796483i \(0.293309\pi\)
\(998\) 0 0
\(999\) 92744.3 2.93724
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.4.a.r.1.9 10
4.3 odd 2 1936.4.a.by.1.2 10
11.2 odd 10 88.4.i.b.81.5 yes 20
11.6 odd 10 88.4.i.b.25.5 20
11.10 odd 2 968.4.a.s.1.9 10
44.35 even 10 176.4.m.f.81.1 20
44.39 even 10 176.4.m.f.113.1 20
44.43 even 2 1936.4.a.bx.1.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.i.b.25.5 20 11.6 odd 10
88.4.i.b.81.5 yes 20 11.2 odd 10
176.4.m.f.81.1 20 44.35 even 10
176.4.m.f.113.1 20 44.39 even 10
968.4.a.r.1.9 10 1.1 even 1 trivial
968.4.a.s.1.9 10 11.10 odd 2
1936.4.a.bx.1.2 10 44.43 even 2
1936.4.a.by.1.2 10 4.3 odd 2