Properties

Label 176.6.a.b
Level 176176
Weight 66
Character orbit 176.a
Self dual yes
Analytic conductor 28.22828.228
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,6,Mod(1,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 176=2411 176 = 2^{4} \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 176.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 28.227552287128.2275522871
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 22)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq351q5+166q7242q9+121q11+692q13+51q15738q171424q19166q21+1779q23524q25+485q272064q296245q31121q33+29282q99+O(q100) q - q^{3} - 51 q^{5} + 166 q^{7} - 242 q^{9} + 121 q^{11} + 692 q^{13} + 51 q^{15} - 738 q^{17} - 1424 q^{19} - 166 q^{21} + 1779 q^{23} - 524 q^{25} + 485 q^{27} - 2064 q^{29} - 6245 q^{31} - 121 q^{33}+ \cdots - 29282 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −1.00000 0 −51.0000 0 166.000 0 −242.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 176.6.a.b 1
4.b odd 2 1 22.6.a.b 1
8.b even 2 1 704.6.a.f 1
8.d odd 2 1 704.6.a.e 1
12.b even 2 1 198.6.a.i 1
20.d odd 2 1 550.6.a.f 1
20.e even 4 2 550.6.b.f 2
28.d even 2 1 1078.6.a.a 1
44.c even 2 1 242.6.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
22.6.a.b 1 4.b odd 2 1
176.6.a.b 1 1.a even 1 1 trivial
198.6.a.i 1 12.b even 2 1
242.6.a.d 1 44.c even 2 1
550.6.a.f 1 20.d odd 2 1
550.6.b.f 2 20.e even 4 2
704.6.a.e 1 8.d odd 2 1
704.6.a.f 1 8.b even 2 1
1078.6.a.a 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3+1 T_{3} + 1 acting on S6new(Γ0(176))S_{6}^{\mathrm{new}}(\Gamma_0(176)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+1 T + 1 Copy content Toggle raw display
55 T+51 T + 51 Copy content Toggle raw display
77 T166 T - 166 Copy content Toggle raw display
1111 T121 T - 121 Copy content Toggle raw display
1313 T692 T - 692 Copy content Toggle raw display
1717 T+738 T + 738 Copy content Toggle raw display
1919 T+1424 T + 1424 Copy content Toggle raw display
2323 T1779 T - 1779 Copy content Toggle raw display
2929 T+2064 T + 2064 Copy content Toggle raw display
3131 T+6245 T + 6245 Copy content Toggle raw display
3737 T+14785 T + 14785 Copy content Toggle raw display
4141 T5304 T - 5304 Copy content Toggle raw display
4343 T+17798 T + 17798 Copy content Toggle raw display
4747 T17184 T - 17184 Copy content Toggle raw display
5353 T+30726 T + 30726 Copy content Toggle raw display
5959 T34989 T - 34989 Copy content Toggle raw display
6161 T+45940 T + 45940 Copy content Toggle raw display
6767 T+25343 T + 25343 Copy content Toggle raw display
7171 T+13311 T + 13311 Copy content Toggle raw display
7373 T+53260 T + 53260 Copy content Toggle raw display
7979 T+77234 T + 77234 Copy content Toggle raw display
8383 T+55014 T + 55014 Copy content Toggle raw display
8989 T125415 T - 125415 Copy content Toggle raw display
9797 T+88807 T + 88807 Copy content Toggle raw display
show more
show less