Properties

Label 176.6.a.j
Level 176176
Weight 66
Character orbit 176.a
Self dual yes
Analytic conductor 28.22828.228
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,6,Mod(1,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 176=2411 176 = 2^{4} \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 176.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 28.227552287128.2275522871
Analytic rank: 11
Dimension: 33
Coefficient field: 3.3.1784453.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3368x2705 x^{3} - 368x - 2705 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 88)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β25)q3+(β2+β1+19)q5+(2β2β138)q7+(11β23β1+52)q9121q11+(18β27β1+156)q13++(1331β2+363β16292)q99+O(q100) q + (\beta_{2} - 5) q^{3} + ( - \beta_{2} + \beta_1 + 19) q^{5} + (2 \beta_{2} - \beta_1 - 38) q^{7} + ( - 11 \beta_{2} - 3 \beta_1 + 52) q^{9} - 121 q^{11} + ( - 18 \beta_{2} - 7 \beta_1 + 156) q^{13}+ \cdots + (1331 \beta_{2} + 363 \beta_1 - 6292) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q14q3+56q5112q7+145q9363q11+450q13994q15+1274q172416q19+2064q214042q23+4103q256398q27+2086q2910034q31+17545q99+O(q100) 3 q - 14 q^{3} + 56 q^{5} - 112 q^{7} + 145 q^{9} - 363 q^{11} + 450 q^{13} - 994 q^{15} + 1274 q^{17} - 2416 q^{19} + 2064 q^{21} - 4042 q^{23} + 4103 q^{25} - 6398 q^{27} + 2086 q^{29} - 10034 q^{31}+ \cdots - 17545 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3368x2705 x^{3} - 368x - 2705 : Copy content Toggle raw display

β1\beta_{1}== 4ν 4\nu Copy content Toggle raw display
β2\beta_{2}== ν211ν245 \nu^{2} - 11\nu - 245 Copy content Toggle raw display
ν\nu== (β1)/4 ( \beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (4β2+11β1+980)/4 ( 4\beta_{2} + 11\beta _1 + 980 ) / 4 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−10.4642
22.1399
−11.6758
0 −25.3952 0 −2.46146 0 −36.9338 0 401.918 0
1.2 0 −3.36210 0 105.922 0 −123.284 0 −231.696 0
1.3 0 14.7573 0 −47.4604 0 48.2178 0 −25.2213 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
1111 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 176.6.a.j 3
4.b odd 2 1 88.6.a.b 3
8.b even 2 1 704.6.a.s 3
8.d odd 2 1 704.6.a.r 3
12.b even 2 1 792.6.a.f 3
44.c even 2 1 968.6.a.c 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.6.a.b 3 4.b odd 2 1
176.6.a.j 3 1.a even 1 1 trivial
704.6.a.r 3 8.d odd 2 1
704.6.a.s 3 8.b even 2 1
792.6.a.f 3 12.b even 2 1
968.6.a.c 3 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T33+14T32339T31260 T_{3}^{3} + 14T_{3}^{2} - 339T_{3} - 1260 acting on S6new(Γ0(176))S_{6}^{\mathrm{new}}(\Gamma_0(176)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T3+14T2+1260 T^{3} + 14 T^{2} + \cdots - 1260 Copy content Toggle raw display
55 T356T2+12374 T^{3} - 56 T^{2} + \cdots - 12374 Copy content Toggle raw display
77 T3+112T2+219552 T^{3} + 112 T^{2} + \cdots - 219552 Copy content Toggle raw display
1111 (T+121)3 (T + 121)^{3} Copy content Toggle raw display
1313 T3450T2++51255776 T^{3} - 450 T^{2} + \cdots + 51255776 Copy content Toggle raw display
1717 T31274T2+54141048 T^{3} - 1274 T^{2} + \cdots - 54141048 Copy content Toggle raw display
1919 T3+4934825280 T^{3} + \cdots - 4934825280 Copy content Toggle raw display
2323 T3+4042T2++645194920 T^{3} + 4042 T^{2} + \cdots + 645194920 Copy content Toggle raw display
2929 T3++34612290944 T^{3} + \cdots + 34612290944 Copy content Toggle raw display
3131 T3+2443760880 T^{3} + \cdots - 2443760880 Copy content Toggle raw display
3737 T3+2916T2+548244166 T^{3} + 2916 T^{2} + \cdots - 548244166 Copy content Toggle raw display
4141 T3++19244597856 T^{3} + \cdots + 19244597856 Copy content Toggle raw display
4343 T3++106822549552 T^{3} + \cdots + 106822549552 Copy content Toggle raw display
4747 T3+584697794560 T^{3} + \cdots - 584697794560 Copy content Toggle raw display
5353 T3+16689929059320 T^{3} + \cdots - 16689929059320 Copy content Toggle raw display
5959 T3++16036070192844 T^{3} + \cdots + 16036070192844 Copy content Toggle raw display
6161 T3+29532796072736 T^{3} + \cdots - 29532796072736 Copy content Toggle raw display
6767 T3++84021494680468 T^{3} + \cdots + 84021494680468 Copy content Toggle raw display
7171 T3++75746574829848 T^{3} + \cdots + 75746574829848 Copy content Toggle raw display
7373 T3+348170414631776 T^{3} + \cdots - 348170414631776 Copy content Toggle raw display
7979 T3++118332099622976 T^{3} + \cdots + 118332099622976 Copy content Toggle raw display
8383 T3++82355829648 T^{3} + \cdots + 82355829648 Copy content Toggle raw display
8989 T3+28304140091626 T^{3} + \cdots - 28304140091626 Copy content Toggle raw display
9797 T3+19 ⁣ ⁣26 T^{3} + \cdots - 19\!\cdots\!26 Copy content Toggle raw display
show more
show less