Properties

Label 176.6.a.j
Level $176$
Weight $6$
Character orbit 176.a
Self dual yes
Analytic conductor $28.228$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,6,Mod(1,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 176.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.2275522871\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1784453.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 368x - 2705 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 5) q^{3} + ( - \beta_{2} + \beta_1 + 19) q^{5} + (2 \beta_{2} - \beta_1 - 38) q^{7} + ( - 11 \beta_{2} - 3 \beta_1 + 52) q^{9} - 121 q^{11} + ( - 18 \beta_{2} - 7 \beta_1 + 156) q^{13}+ \cdots + (1331 \beta_{2} + 363 \beta_1 - 6292) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 14 q^{3} + 56 q^{5} - 112 q^{7} + 145 q^{9} - 363 q^{11} + 450 q^{13} - 994 q^{15} + 1274 q^{17} - 2416 q^{19} + 2064 q^{21} - 4042 q^{23} + 4103 q^{25} - 6398 q^{27} + 2086 q^{29} - 10034 q^{31}+ \cdots - 17545 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 368x - 2705 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 11\nu - 245 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{2} + 11\beta _1 + 980 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.4642
22.1399
−11.6758
0 −25.3952 0 −2.46146 0 −36.9338 0 401.918 0
1.2 0 −3.36210 0 105.922 0 −123.284 0 −231.696 0
1.3 0 14.7573 0 −47.4604 0 48.2178 0 −25.2213 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 176.6.a.j 3
4.b odd 2 1 88.6.a.b 3
8.b even 2 1 704.6.a.s 3
8.d odd 2 1 704.6.a.r 3
12.b even 2 1 792.6.a.f 3
44.c even 2 1 968.6.a.c 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.6.a.b 3 4.b odd 2 1
176.6.a.j 3 1.a even 1 1 trivial
704.6.a.r 3 8.d odd 2 1
704.6.a.s 3 8.b even 2 1
792.6.a.f 3 12.b even 2 1
968.6.a.c 3 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 14T_{3}^{2} - 339T_{3} - 1260 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(176))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 14 T^{2} + \cdots - 1260 \) Copy content Toggle raw display
$5$ \( T^{3} - 56 T^{2} + \cdots - 12374 \) Copy content Toggle raw display
$7$ \( T^{3} + 112 T^{2} + \cdots - 219552 \) Copy content Toggle raw display
$11$ \( (T + 121)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 450 T^{2} + \cdots + 51255776 \) Copy content Toggle raw display
$17$ \( T^{3} - 1274 T^{2} + \cdots - 54141048 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 4934825280 \) Copy content Toggle raw display
$23$ \( T^{3} + 4042 T^{2} + \cdots + 645194920 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 34612290944 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 2443760880 \) Copy content Toggle raw display
$37$ \( T^{3} + 2916 T^{2} + \cdots - 548244166 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 19244597856 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 106822549552 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 584697794560 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 16689929059320 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 16036070192844 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 29532796072736 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 84021494680468 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 75746574829848 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 348170414631776 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 118332099622976 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 82355829648 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 28304140091626 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 19\!\cdots\!26 \) Copy content Toggle raw display
show more
show less