Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [176,6,Mod(1,176)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(176, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("176.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 176.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 3.3.1784453.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 88) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | |||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −25.3952 | 0 | −2.46146 | 0 | −36.9338 | 0 | 401.918 | 0 | |||||||||||||||||||||||||||
1.2 | 0 | −3.36210 | 0 | 105.922 | 0 | −123.284 | 0 | −231.696 | 0 | ||||||||||||||||||||||||||||
1.3 | 0 | 14.7573 | 0 | −47.4604 | 0 | 48.2178 | 0 | −25.2213 | 0 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 176.6.a.j | 3 | |
4.b | odd | 2 | 1 | 88.6.a.b | ✓ | 3 | |
8.b | even | 2 | 1 | 704.6.a.s | 3 | ||
8.d | odd | 2 | 1 | 704.6.a.r | 3 | ||
12.b | even | 2 | 1 | 792.6.a.f | 3 | ||
44.c | even | 2 | 1 | 968.6.a.c | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
88.6.a.b | ✓ | 3 | 4.b | odd | 2 | 1 | |
176.6.a.j | 3 | 1.a | even | 1 | 1 | trivial | |
704.6.a.r | 3 | 8.d | odd | 2 | 1 | ||
704.6.a.s | 3 | 8.b | even | 2 | 1 | ||
792.6.a.f | 3 | 12.b | even | 2 | 1 | ||
968.6.a.c | 3 | 44.c | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .