Properties

Label 176.6.e.d.175.15
Level $176$
Weight $6$
Character 176.175
Analytic conductor $28.228$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,6,Mod(175,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.175");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 176.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.2275522871\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 5899 x^{14} + 31909903 x^{12} + 16672338574 x^{10} + 7262078908132 x^{8} + \cdots + 21\!\cdots\!96 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{50}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 175.15
Root \(10.7118 + 18.5534i\) of defining polynomial
Character \(\chi\) \(=\) 176.175
Dual form 176.6.e.d.175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+21.5024i q^{3} +24.8335 q^{5} -17.3632 q^{7} -219.355 q^{9} +(-379.780 - 129.684i) q^{11} -1002.39i q^{13} +533.980i q^{15} -846.763i q^{17} -1735.80 q^{19} -373.351i q^{21} +1110.11i q^{23} -2508.30 q^{25} +508.426i q^{27} +758.494i q^{29} -4938.46i q^{31} +(2788.51 - 8166.21i) q^{33} -431.189 q^{35} -1944.38 q^{37} +21553.9 q^{39} -11226.6i q^{41} +18052.7 q^{43} -5447.35 q^{45} -12212.7i q^{47} -16505.5 q^{49} +18207.5 q^{51} +11536.3 q^{53} +(-9431.27 - 3220.49i) q^{55} -37324.0i q^{57} -19586.2i q^{59} -684.354i q^{61} +3808.70 q^{63} -24892.9i q^{65} +25381.7i q^{67} -23870.2 q^{69} +57269.5i q^{71} -66380.2i q^{73} -53934.5i q^{75} +(6594.20 + 2251.72i) q^{77} -28098.7 q^{79} -64235.7 q^{81} -47152.5 q^{83} -21028.1i q^{85} -16309.5 q^{87} -54807.7 q^{89} +17404.8i q^{91} +106189. q^{93} -43106.0 q^{95} +89682.6 q^{97} +(83306.7 + 28446.7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 100 q^{5} + 892 q^{9} + 12396 q^{25} - 8948 q^{33} - 6644 q^{37} + 16840 q^{45} + 123856 q^{49} + 672 q^{53} - 45108 q^{69} + 155968 q^{77} - 191512 q^{81} + 252348 q^{89} + 125852 q^{93} + 45180 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 21.5024i 1.37938i 0.724104 + 0.689691i \(0.242254\pi\)
−0.724104 + 0.689691i \(0.757746\pi\)
\(4\) 0 0
\(5\) 24.8335 0.444235 0.222117 0.975020i \(-0.428703\pi\)
0.222117 + 0.975020i \(0.428703\pi\)
\(6\) 0 0
\(7\) −17.3632 −0.133932 −0.0669660 0.997755i \(-0.521332\pi\)
−0.0669660 + 0.997755i \(0.521332\pi\)
\(8\) 0 0
\(9\) −219.355 −0.902695
\(10\) 0 0
\(11\) −379.780 129.684i −0.946348 0.323149i
\(12\) 0 0
\(13\) 1002.39i 1.64506i −0.568725 0.822528i \(-0.692563\pi\)
0.568725 0.822528i \(-0.307437\pi\)
\(14\) 0 0
\(15\) 533.980i 0.612769i
\(16\) 0 0
\(17\) 846.763i 0.710624i −0.934748 0.355312i \(-0.884375\pi\)
0.934748 0.355312i \(-0.115625\pi\)
\(18\) 0 0
\(19\) −1735.80 −1.10310 −0.551552 0.834140i \(-0.685964\pi\)
−0.551552 + 0.834140i \(0.685964\pi\)
\(20\) 0 0
\(21\) 373.351i 0.184744i
\(22\) 0 0
\(23\) 1110.11i 0.437571i 0.975773 + 0.218785i \(0.0702094\pi\)
−0.975773 + 0.218785i \(0.929791\pi\)
\(24\) 0 0
\(25\) −2508.30 −0.802656
\(26\) 0 0
\(27\) 508.426i 0.134220i
\(28\) 0 0
\(29\) 758.494i 0.167478i 0.996488 + 0.0837389i \(0.0266862\pi\)
−0.996488 + 0.0837389i \(0.973314\pi\)
\(30\) 0 0
\(31\) 4938.46i 0.922969i −0.887148 0.461484i \(-0.847317\pi\)
0.887148 0.461484i \(-0.152683\pi\)
\(32\) 0 0
\(33\) 2788.51 8166.21i 0.445746 1.30538i
\(34\) 0 0
\(35\) −431.189 −0.0594973
\(36\) 0 0
\(37\) −1944.38 −0.233494 −0.116747 0.993162i \(-0.537247\pi\)
−0.116747 + 0.993162i \(0.537247\pi\)
\(38\) 0 0
\(39\) 21553.9 2.26916
\(40\) 0 0
\(41\) 11226.6i 1.04301i −0.853249 0.521503i \(-0.825371\pi\)
0.853249 0.521503i \(-0.174629\pi\)
\(42\) 0 0
\(43\) 18052.7 1.48892 0.744461 0.667666i \(-0.232707\pi\)
0.744461 + 0.667666i \(0.232707\pi\)
\(44\) 0 0
\(45\) −5447.35 −0.401009
\(46\) 0 0
\(47\) 12212.7i 0.806431i −0.915105 0.403215i \(-0.867893\pi\)
0.915105 0.403215i \(-0.132107\pi\)
\(48\) 0 0
\(49\) −16505.5 −0.982062
\(50\) 0 0
\(51\) 18207.5 0.980222
\(52\) 0 0
\(53\) 11536.3 0.564128 0.282064 0.959396i \(-0.408981\pi\)
0.282064 + 0.959396i \(0.408981\pi\)
\(54\) 0 0
\(55\) −9431.27 3220.49i −0.420401 0.143554i
\(56\) 0 0
\(57\) 37324.0i 1.52160i
\(58\) 0 0
\(59\) 19586.2i 0.732520i −0.930513 0.366260i \(-0.880638\pi\)
0.930513 0.366260i \(-0.119362\pi\)
\(60\) 0 0
\(61\) 684.354i 0.0235481i −0.999931 0.0117741i \(-0.996252\pi\)
0.999931 0.0117741i \(-0.00374789\pi\)
\(62\) 0 0
\(63\) 3808.70 0.120900
\(64\) 0 0
\(65\) 24892.9i 0.730791i
\(66\) 0 0
\(67\) 25381.7i 0.690770i 0.938461 + 0.345385i \(0.112252\pi\)
−0.938461 + 0.345385i \(0.887748\pi\)
\(68\) 0 0
\(69\) −23870.2 −0.603577
\(70\) 0 0
\(71\) 57269.5i 1.34827i 0.738607 + 0.674136i \(0.235484\pi\)
−0.738607 + 0.674136i \(0.764516\pi\)
\(72\) 0 0
\(73\) 66380.2i 1.45791i −0.684561 0.728956i \(-0.740006\pi\)
0.684561 0.728956i \(-0.259994\pi\)
\(74\) 0 0
\(75\) 53934.5i 1.10717i
\(76\) 0 0
\(77\) 6594.20 + 2251.72i 0.126746 + 0.0432800i
\(78\) 0 0
\(79\) −28098.7 −0.506545 −0.253273 0.967395i \(-0.581507\pi\)
−0.253273 + 0.967395i \(0.581507\pi\)
\(80\) 0 0
\(81\) −64235.7 −1.08784
\(82\) 0 0
\(83\) −47152.5 −0.751293 −0.375647 0.926763i \(-0.622579\pi\)
−0.375647 + 0.926763i \(0.622579\pi\)
\(84\) 0 0
\(85\) 21028.1i 0.315684i
\(86\) 0 0
\(87\) −16309.5 −0.231016
\(88\) 0 0
\(89\) −54807.7 −0.733444 −0.366722 0.930331i \(-0.619520\pi\)
−0.366722 + 0.930331i \(0.619520\pi\)
\(90\) 0 0
\(91\) 17404.8i 0.220326i
\(92\) 0 0
\(93\) 106189. 1.27313
\(94\) 0 0
\(95\) −43106.0 −0.490037
\(96\) 0 0
\(97\) 89682.6 0.967785 0.483893 0.875127i \(-0.339223\pi\)
0.483893 + 0.875127i \(0.339223\pi\)
\(98\) 0 0
\(99\) 83306.7 + 28446.7i 0.854264 + 0.291705i
\(100\) 0 0
\(101\) 135403.i 1.32076i 0.750931 + 0.660381i \(0.229605\pi\)
−0.750931 + 0.660381i \(0.770395\pi\)
\(102\) 0 0
\(103\) 55268.7i 0.513318i −0.966502 0.256659i \(-0.917378\pi\)
0.966502 0.256659i \(-0.0826217\pi\)
\(104\) 0 0
\(105\) 9271.61i 0.0820695i
\(106\) 0 0
\(107\) 79805.4 0.673865 0.336932 0.941529i \(-0.390611\pi\)
0.336932 + 0.941529i \(0.390611\pi\)
\(108\) 0 0
\(109\) 20374.2i 0.164254i 0.996622 + 0.0821268i \(0.0261712\pi\)
−0.996622 + 0.0821268i \(0.973829\pi\)
\(110\) 0 0
\(111\) 41808.8i 0.322078i
\(112\) 0 0
\(113\) −69352.1 −0.510932 −0.255466 0.966818i \(-0.582229\pi\)
−0.255466 + 0.966818i \(0.582229\pi\)
\(114\) 0 0
\(115\) 27568.0i 0.194384i
\(116\) 0 0
\(117\) 219880.i 1.48498i
\(118\) 0 0
\(119\) 14702.5i 0.0951753i
\(120\) 0 0
\(121\) 127415. + 98502.5i 0.791149 + 0.611623i
\(122\) 0 0
\(123\) 241398. 1.43870
\(124\) 0 0
\(125\) −139894. −0.800802
\(126\) 0 0
\(127\) −189808. −1.04425 −0.522125 0.852869i \(-0.674860\pi\)
−0.522125 + 0.852869i \(0.674860\pi\)
\(128\) 0 0
\(129\) 388178.i 2.05379i
\(130\) 0 0
\(131\) −177122. −0.901766 −0.450883 0.892583i \(-0.648891\pi\)
−0.450883 + 0.892583i \(0.648891\pi\)
\(132\) 0 0
\(133\) 30139.1 0.147741
\(134\) 0 0
\(135\) 12626.0i 0.0596253i
\(136\) 0 0
\(137\) 340956. 1.55202 0.776009 0.630722i \(-0.217241\pi\)
0.776009 + 0.630722i \(0.217241\pi\)
\(138\) 0 0
\(139\) −64495.5 −0.283134 −0.141567 0.989929i \(-0.545214\pi\)
−0.141567 + 0.989929i \(0.545214\pi\)
\(140\) 0 0
\(141\) 262603. 1.11238
\(142\) 0 0
\(143\) −129994. + 380690.i −0.531598 + 1.55679i
\(144\) 0 0
\(145\) 18836.1i 0.0743995i
\(146\) 0 0
\(147\) 354909.i 1.35464i
\(148\) 0 0
\(149\) 20917.1i 0.0771855i 0.999255 + 0.0385927i \(0.0122875\pi\)
−0.999255 + 0.0385927i \(0.987712\pi\)
\(150\) 0 0
\(151\) −433488. −1.54716 −0.773580 0.633699i \(-0.781536\pi\)
−0.773580 + 0.633699i \(0.781536\pi\)
\(152\) 0 0
\(153\) 185742.i 0.641477i
\(154\) 0 0
\(155\) 122639.i 0.410015i
\(156\) 0 0
\(157\) −581511. −1.88282 −0.941410 0.337266i \(-0.890498\pi\)
−0.941410 + 0.337266i \(0.890498\pi\)
\(158\) 0 0
\(159\) 248059.i 0.778148i
\(160\) 0 0
\(161\) 19275.1i 0.0586047i
\(162\) 0 0
\(163\) 322467.i 0.950640i 0.879813 + 0.475320i \(0.157668\pi\)
−0.879813 + 0.475320i \(0.842332\pi\)
\(164\) 0 0
\(165\) 69248.4 202795.i 0.198016 0.579893i
\(166\) 0 0
\(167\) −552878. −1.53405 −0.767023 0.641620i \(-0.778263\pi\)
−0.767023 + 0.641620i \(0.778263\pi\)
\(168\) 0 0
\(169\) −633502. −1.70621
\(170\) 0 0
\(171\) 380757. 0.995767
\(172\) 0 0
\(173\) 713189.i 1.81171i −0.423586 0.905856i \(-0.639229\pi\)
0.423586 0.905856i \(-0.360771\pi\)
\(174\) 0 0
\(175\) 43552.1 0.107501
\(176\) 0 0
\(177\) 421150. 1.01043
\(178\) 0 0
\(179\) 332381.i 0.775360i −0.921794 0.387680i \(-0.873277\pi\)
0.921794 0.387680i \(-0.126723\pi\)
\(180\) 0 0
\(181\) 658032. 1.49297 0.746484 0.665403i \(-0.231740\pi\)
0.746484 + 0.665403i \(0.231740\pi\)
\(182\) 0 0
\(183\) 14715.3 0.0324819
\(184\) 0 0
\(185\) −48285.6 −0.103726
\(186\) 0 0
\(187\) −109811. + 321584.i −0.229637 + 0.672497i
\(188\) 0 0
\(189\) 8827.90i 0.0179764i
\(190\) 0 0
\(191\) 90836.0i 0.180167i −0.995934 0.0900834i \(-0.971287\pi\)
0.995934 0.0900834i \(-0.0287134\pi\)
\(192\) 0 0
\(193\) 420632.i 0.812848i 0.913685 + 0.406424i \(0.133224\pi\)
−0.913685 + 0.406424i \(0.866776\pi\)
\(194\) 0 0
\(195\) 535259. 1.00804
\(196\) 0 0
\(197\) 205037.i 0.376415i −0.982129 0.188208i \(-0.939732\pi\)
0.982129 0.188208i \(-0.0602678\pi\)
\(198\) 0 0
\(199\) 328466.i 0.587973i −0.955810 0.293987i \(-0.905018\pi\)
0.955810 0.293987i \(-0.0949821\pi\)
\(200\) 0 0
\(201\) −545768. −0.952836
\(202\) 0 0
\(203\) 13169.9i 0.0224307i
\(204\) 0 0
\(205\) 278794.i 0.463340i
\(206\) 0 0
\(207\) 243509.i 0.394993i
\(208\) 0 0
\(209\) 659224. + 225105.i 1.04392 + 0.356467i
\(210\) 0 0
\(211\) 52624.3 0.0813730 0.0406865 0.999172i \(-0.487046\pi\)
0.0406865 + 0.999172i \(0.487046\pi\)
\(212\) 0 0
\(213\) −1.23143e6 −1.85978
\(214\) 0 0
\(215\) 448312. 0.661431
\(216\) 0 0
\(217\) 85747.4i 0.123615i
\(218\) 0 0
\(219\) 1.42734e6 2.01102
\(220\) 0 0
\(221\) −848791. −1.16902
\(222\) 0 0
\(223\) 434352.i 0.584897i −0.956281 0.292448i \(-0.905530\pi\)
0.956281 0.292448i \(-0.0944700\pi\)
\(224\) 0 0
\(225\) 550208. 0.724553
\(226\) 0 0
\(227\) 1.01255e6 1.30422 0.652111 0.758124i \(-0.273884\pi\)
0.652111 + 0.758124i \(0.273884\pi\)
\(228\) 0 0
\(229\) 1.20382e6 1.51695 0.758477 0.651699i \(-0.225944\pi\)
0.758477 + 0.651699i \(0.225944\pi\)
\(230\) 0 0
\(231\) −48417.5 + 141791.i −0.0596997 + 0.174832i
\(232\) 0 0
\(233\) 1.52503e6i 1.84030i −0.391563 0.920151i \(-0.628066\pi\)
0.391563 0.920151i \(-0.371934\pi\)
\(234\) 0 0
\(235\) 303284.i 0.358245i
\(236\) 0 0
\(237\) 604190.i 0.698720i
\(238\) 0 0
\(239\) 340228. 0.385279 0.192640 0.981270i \(-0.438295\pi\)
0.192640 + 0.981270i \(0.438295\pi\)
\(240\) 0 0
\(241\) 30423.5i 0.0337417i 0.999858 + 0.0168708i \(0.00537041\pi\)
−0.999858 + 0.0168708i \(0.994630\pi\)
\(242\) 0 0
\(243\) 1.25768e6i 1.36632i
\(244\) 0 0
\(245\) −409889. −0.436266
\(246\) 0 0
\(247\) 1.73996e6i 1.81467i
\(248\) 0 0
\(249\) 1.01389e6i 1.03632i
\(250\) 0 0
\(251\) 138093.i 0.138353i −0.997604 0.0691763i \(-0.977963\pi\)
0.997604 0.0691763i \(-0.0220371\pi\)
\(252\) 0 0
\(253\) 143964. 421600.i 0.141401 0.414094i
\(254\) 0 0
\(255\) 452155. 0.435449
\(256\) 0 0
\(257\) −1.93844e6 −1.83071 −0.915357 0.402644i \(-0.868091\pi\)
−0.915357 + 0.402644i \(0.868091\pi\)
\(258\) 0 0
\(259\) 33760.6 0.0312723
\(260\) 0 0
\(261\) 166380.i 0.151181i
\(262\) 0 0
\(263\) −2.00327e6 −1.78587 −0.892934 0.450187i \(-0.851357\pi\)
−0.892934 + 0.450187i \(0.851357\pi\)
\(264\) 0 0
\(265\) 286487. 0.250605
\(266\) 0 0
\(267\) 1.17850e6i 1.01170i
\(268\) 0 0
\(269\) 237551. 0.200160 0.100080 0.994979i \(-0.468090\pi\)
0.100080 + 0.994979i \(0.468090\pi\)
\(270\) 0 0
\(271\) −1.89294e6 −1.56572 −0.782860 0.622198i \(-0.786240\pi\)
−0.782860 + 0.622198i \(0.786240\pi\)
\(272\) 0 0
\(273\) −374245. −0.303913
\(274\) 0 0
\(275\) 952603. + 325285.i 0.759591 + 0.259377i
\(276\) 0 0
\(277\) 1.63161e6i 1.27766i 0.769347 + 0.638831i \(0.220582\pi\)
−0.769347 + 0.638831i \(0.779418\pi\)
\(278\) 0 0
\(279\) 1.08328e6i 0.833160i
\(280\) 0 0
\(281\) 2.01749e6i 1.52422i −0.647450 0.762108i \(-0.724164\pi\)
0.647450 0.762108i \(-0.275836\pi\)
\(282\) 0 0
\(283\) −393320. −0.291931 −0.145965 0.989290i \(-0.546629\pi\)
−0.145965 + 0.989290i \(0.546629\pi\)
\(284\) 0 0
\(285\) 926885.i 0.675949i
\(286\) 0 0
\(287\) 194929.i 0.139692i
\(288\) 0 0
\(289\) 702849. 0.495014
\(290\) 0 0
\(291\) 1.92840e6i 1.33495i
\(292\) 0 0
\(293\) 1.71699e6i 1.16842i 0.811603 + 0.584209i \(0.198595\pi\)
−0.811603 + 0.584209i \(0.801405\pi\)
\(294\) 0 0
\(295\) 486393.i 0.325411i
\(296\) 0 0
\(297\) 65934.4 193090.i 0.0433732 0.127019i
\(298\) 0 0
\(299\) 1.11277e6 0.719828
\(300\) 0 0
\(301\) −313453. −0.199414
\(302\) 0 0
\(303\) −2.91149e6 −1.82183
\(304\) 0 0
\(305\) 16994.9i 0.0104609i
\(306\) 0 0
\(307\) −365235. −0.221170 −0.110585 0.993867i \(-0.535272\pi\)
−0.110585 + 0.993867i \(0.535272\pi\)
\(308\) 0 0
\(309\) 1.18841e6 0.708062
\(310\) 0 0
\(311\) 1.43559e6i 0.841647i −0.907143 0.420823i \(-0.861741\pi\)
0.907143 0.420823i \(-0.138259\pi\)
\(312\) 0 0
\(313\) −939798. −0.542218 −0.271109 0.962549i \(-0.587390\pi\)
−0.271109 + 0.962549i \(0.587390\pi\)
\(314\) 0 0
\(315\) 94583.3 0.0537079
\(316\) 0 0
\(317\) 1.73291e6 0.968562 0.484281 0.874913i \(-0.339081\pi\)
0.484281 + 0.874913i \(0.339081\pi\)
\(318\) 0 0
\(319\) 98364.2 288061.i 0.0541203 0.158492i
\(320\) 0 0
\(321\) 1.71601e6i 0.929517i
\(322\) 0 0
\(323\) 1.46981e6i 0.783892i
\(324\) 0 0
\(325\) 2.51431e6i 1.32041i
\(326\) 0 0
\(327\) −438096. −0.226568
\(328\) 0 0
\(329\) 212052.i 0.108007i
\(330\) 0 0
\(331\) 1.92231e6i 0.964393i −0.876063 0.482197i \(-0.839839\pi\)
0.876063 0.482197i \(-0.160161\pi\)
\(332\) 0 0
\(333\) 426508. 0.210774
\(334\) 0 0
\(335\) 630315.i 0.306864i
\(336\) 0 0
\(337\) 1.85537e6i 0.889931i 0.895548 + 0.444965i \(0.146784\pi\)
−0.895548 + 0.444965i \(0.853216\pi\)
\(338\) 0 0
\(339\) 1.49124e6i 0.704771i
\(340\) 0 0
\(341\) −640436. + 1.87553e6i −0.298257 + 0.873450i
\(342\) 0 0
\(343\) 578412. 0.265462
\(344\) 0 0
\(345\) −592779. −0.268130
\(346\) 0 0
\(347\) 1.52856e6 0.681487 0.340743 0.940156i \(-0.389321\pi\)
0.340743 + 0.940156i \(0.389321\pi\)
\(348\) 0 0
\(349\) 4.10112e6i 1.80235i 0.433457 + 0.901174i \(0.357294\pi\)
−0.433457 + 0.901174i \(0.642706\pi\)
\(350\) 0 0
\(351\) 509643. 0.220800
\(352\) 0 0
\(353\) 3.11061e6 1.32865 0.664323 0.747446i \(-0.268720\pi\)
0.664323 + 0.747446i \(0.268720\pi\)
\(354\) 0 0
\(355\) 1.42220e6i 0.598949i
\(356\) 0 0
\(357\) −316140. −0.131283
\(358\) 0 0
\(359\) 3.51575e6 1.43973 0.719867 0.694112i \(-0.244203\pi\)
0.719867 + 0.694112i \(0.244203\pi\)
\(360\) 0 0
\(361\) 536915. 0.216839
\(362\) 0 0
\(363\) −2.11804e6 + 2.73974e6i −0.843662 + 1.09130i
\(364\) 0 0
\(365\) 1.64845e6i 0.647655i
\(366\) 0 0
\(367\) 4.03985e6i 1.56567i 0.622229 + 0.782835i \(0.286227\pi\)
−0.622229 + 0.782835i \(0.713773\pi\)
\(368\) 0 0
\(369\) 2.46260e6i 0.941517i
\(370\) 0 0
\(371\) −200307. −0.0755548
\(372\) 0 0
\(373\) 3.77771e6i 1.40591i 0.711236 + 0.702953i \(0.248136\pi\)
−0.711236 + 0.702953i \(0.751864\pi\)
\(374\) 0 0
\(375\) 3.00807e6i 1.10461i
\(376\) 0 0
\(377\) 760311. 0.275510
\(378\) 0 0
\(379\) 4.10485e6i 1.46791i −0.679198 0.733955i \(-0.737672\pi\)
0.679198 0.733955i \(-0.262328\pi\)
\(380\) 0 0
\(381\) 4.08133e6i 1.44042i
\(382\) 0 0
\(383\) 1.96710e6i 0.685218i −0.939478 0.342609i \(-0.888689\pi\)
0.939478 0.342609i \(-0.111311\pi\)
\(384\) 0 0
\(385\) 163757. + 55918.0i 0.0563051 + 0.0192265i
\(386\) 0 0
\(387\) −3.95996e6 −1.34404
\(388\) 0 0
\(389\) 1.60422e6 0.537515 0.268758 0.963208i \(-0.413387\pi\)
0.268758 + 0.963208i \(0.413387\pi\)
\(390\) 0 0
\(391\) 940004. 0.310948
\(392\) 0 0
\(393\) 3.80855e6i 1.24388i
\(394\) 0 0
\(395\) −697788. −0.225025
\(396\) 0 0
\(397\) 1.57123e6 0.500338 0.250169 0.968202i \(-0.419514\pi\)
0.250169 + 0.968202i \(0.419514\pi\)
\(398\) 0 0
\(399\) 648064.i 0.203791i
\(400\) 0 0
\(401\) −4.93351e6 −1.53213 −0.766064 0.642764i \(-0.777787\pi\)
−0.766064 + 0.642764i \(0.777787\pi\)
\(402\) 0 0
\(403\) −4.95028e6 −1.51833
\(404\) 0 0
\(405\) −1.59519e6 −0.483255
\(406\) 0 0
\(407\) 738436. + 252153.i 0.220967 + 0.0754534i
\(408\) 0 0
\(409\) 3.30820e6i 0.977876i 0.872318 + 0.488938i \(0.162616\pi\)
−0.872318 + 0.488938i \(0.837384\pi\)
\(410\) 0 0
\(411\) 7.33138e6i 2.14083i
\(412\) 0 0
\(413\) 340079.i 0.0981079i
\(414\) 0 0
\(415\) −1.17096e6 −0.333751
\(416\) 0 0
\(417\) 1.38681e6i 0.390550i
\(418\) 0 0
\(419\) 6.24278e6i 1.73717i −0.495537 0.868587i \(-0.665029\pi\)
0.495537 0.868587i \(-0.334971\pi\)
\(420\) 0 0
\(421\) 2.84586e6 0.782543 0.391271 0.920275i \(-0.372035\pi\)
0.391271 + 0.920275i \(0.372035\pi\)
\(422\) 0 0
\(423\) 2.67892e6i 0.727961i
\(424\) 0 0
\(425\) 2.12394e6i 0.570386i
\(426\) 0 0
\(427\) 11882.6i 0.00315385i
\(428\) 0 0
\(429\) −8.18576e6 2.79519e6i −2.14741 0.733277i
\(430\) 0 0
\(431\) −5.13347e6 −1.33112 −0.665561 0.746343i \(-0.731808\pi\)
−0.665561 + 0.746343i \(0.731808\pi\)
\(432\) 0 0
\(433\) 4.79632e6 1.22939 0.614694 0.788766i \(-0.289280\pi\)
0.614694 + 0.788766i \(0.289280\pi\)
\(434\) 0 0
\(435\) −405021. −0.102625
\(436\) 0 0
\(437\) 1.92694e6i 0.482686i
\(438\) 0 0
\(439\) 5.42633e6 1.34383 0.671916 0.740628i \(-0.265472\pi\)
0.671916 + 0.740628i \(0.265472\pi\)
\(440\) 0 0
\(441\) 3.62057e6 0.886503
\(442\) 0 0
\(443\) 3.88802e6i 0.941282i 0.882325 + 0.470641i \(0.155977\pi\)
−0.882325 + 0.470641i \(0.844023\pi\)
\(444\) 0 0
\(445\) −1.36107e6 −0.325821
\(446\) 0 0
\(447\) −449769. −0.106468
\(448\) 0 0
\(449\) −1.62518e6 −0.380439 −0.190220 0.981742i \(-0.560920\pi\)
−0.190220 + 0.981742i \(0.560920\pi\)
\(450\) 0 0
\(451\) −1.45590e6 + 4.26363e6i −0.337047 + 0.987047i
\(452\) 0 0
\(453\) 9.32106e6i 2.13412i
\(454\) 0 0
\(455\) 432221.i 0.0978763i
\(456\) 0 0
\(457\) 158589.i 0.0355209i −0.999842 0.0177604i \(-0.994346\pi\)
0.999842 0.0177604i \(-0.00565362\pi\)
\(458\) 0 0
\(459\) 430516. 0.0953801
\(460\) 0 0
\(461\) 4.89741e6i 1.07328i −0.843810 0.536641i \(-0.819693\pi\)
0.843810 0.536641i \(-0.180307\pi\)
\(462\) 0 0
\(463\) 1.08899e6i 0.236087i −0.993008 0.118043i \(-0.962338\pi\)
0.993008 0.118043i \(-0.0376622\pi\)
\(464\) 0 0
\(465\) 2.63704e6 0.565567
\(466\) 0 0
\(467\) 3.70383e6i 0.785884i −0.919563 0.392942i \(-0.871457\pi\)
0.919563 0.392942i \(-0.128543\pi\)
\(468\) 0 0
\(469\) 440707.i 0.0925163i
\(470\) 0 0
\(471\) 1.25039e7i 2.59713i
\(472\) 0 0
\(473\) −6.85608e6 2.34114e6i −1.40904 0.481144i
\(474\) 0 0
\(475\) 4.35391e6 0.885413
\(476\) 0 0
\(477\) −2.53055e6 −0.509236
\(478\) 0 0
\(479\) 8.72832e6 1.73817 0.869085 0.494663i \(-0.164709\pi\)
0.869085 + 0.494663i \(0.164709\pi\)
\(480\) 0 0
\(481\) 1.94903e6i 0.384111i
\(482\) 0 0
\(483\) 414463. 0.0808383
\(484\) 0 0
\(485\) 2.22713e6 0.429924
\(486\) 0 0
\(487\) 406543.i 0.0776754i 0.999246 + 0.0388377i \(0.0123655\pi\)
−0.999246 + 0.0388377i \(0.987634\pi\)
\(488\) 0 0
\(489\) −6.93383e6 −1.31130
\(490\) 0 0
\(491\) 6.45829e6 1.20896 0.604482 0.796619i \(-0.293380\pi\)
0.604482 + 0.796619i \(0.293380\pi\)
\(492\) 0 0
\(493\) 642265. 0.119014
\(494\) 0 0
\(495\) 2.06880e6 + 706431.i 0.379494 + 0.129586i
\(496\) 0 0
\(497\) 994382.i 0.180577i
\(498\) 0 0
\(499\) 7.32952e6i 1.31772i 0.752264 + 0.658861i \(0.228962\pi\)
−0.752264 + 0.658861i \(0.771038\pi\)
\(500\) 0 0
\(501\) 1.18882e7i 2.11604i
\(502\) 0 0
\(503\) 5.25123e6 0.925425 0.462712 0.886508i \(-0.346876\pi\)
0.462712 + 0.886508i \(0.346876\pi\)
\(504\) 0 0
\(505\) 3.36252e6i 0.586728i
\(506\) 0 0
\(507\) 1.36218e7i 2.35351i
\(508\) 0 0
\(509\) 5.95648e6 1.01905 0.509525 0.860456i \(-0.329821\pi\)
0.509525 + 0.860456i \(0.329821\pi\)
\(510\) 0 0
\(511\) 1.15257e6i 0.195261i
\(512\) 0 0
\(513\) 882527.i 0.148059i
\(514\) 0 0
\(515\) 1.37251e6i 0.228034i
\(516\) 0 0
\(517\) −1.58379e6 + 4.63815e6i −0.260597 + 0.763164i
\(518\) 0 0
\(519\) 1.53353e7 2.49904
\(520\) 0 0
\(521\) 4.01452e6 0.647947 0.323973 0.946066i \(-0.394981\pi\)
0.323973 + 0.946066i \(0.394981\pi\)
\(522\) 0 0
\(523\) −9.80948e6 −1.56817 −0.784083 0.620656i \(-0.786866\pi\)
−0.784083 + 0.620656i \(0.786866\pi\)
\(524\) 0 0
\(525\) 936476.i 0.148285i
\(526\) 0 0
\(527\) −4.18170e6 −0.655884
\(528\) 0 0
\(529\) 5.20399e6 0.808532
\(530\) 0 0
\(531\) 4.29632e6i 0.661242i
\(532\) 0 0
\(533\) −1.12534e7 −1.71580
\(534\) 0 0
\(535\) 1.98184e6 0.299354
\(536\) 0 0
\(537\) 7.14699e6 1.06952
\(538\) 0 0
\(539\) 6.26847e6 + 2.14049e6i 0.929373 + 0.317353i
\(540\) 0 0
\(541\) 7.61090e6i 1.11800i 0.829167 + 0.559001i \(0.188815\pi\)
−0.829167 + 0.559001i \(0.811185\pi\)
\(542\) 0 0
\(543\) 1.41493e7i 2.05937i
\(544\) 0 0
\(545\) 505963.i 0.0729671i
\(546\) 0 0
\(547\) −3.68175e6 −0.526121 −0.263060 0.964779i \(-0.584732\pi\)
−0.263060 + 0.964779i \(0.584732\pi\)
\(548\) 0 0
\(549\) 150116.i 0.0212568i
\(550\) 0 0
\(551\) 1.31660e6i 0.184746i
\(552\) 0 0
\(553\) 487883. 0.0678427
\(554\) 0 0
\(555\) 1.03826e6i 0.143078i
\(556\) 0 0
\(557\) 3.63337e6i 0.496217i −0.968732 0.248109i \(-0.920191\pi\)
0.968732 0.248109i \(-0.0798090\pi\)
\(558\) 0 0
\(559\) 1.80960e7i 2.44936i
\(560\) 0 0
\(561\) −6.91484e6 2.36121e6i −0.927631 0.316758i
\(562\) 0 0
\(563\) −3.05729e6 −0.406504 −0.203252 0.979126i \(-0.565151\pi\)
−0.203252 + 0.979126i \(0.565151\pi\)
\(564\) 0 0
\(565\) −1.72225e6 −0.226974
\(566\) 0 0
\(567\) 1.11534e6 0.145696
\(568\) 0 0
\(569\) 6.39647e6i 0.828246i −0.910221 0.414123i \(-0.864088\pi\)
0.910221 0.414123i \(-0.135912\pi\)
\(570\) 0 0
\(571\) −1.07558e7 −1.38055 −0.690276 0.723546i \(-0.742511\pi\)
−0.690276 + 0.723546i \(0.742511\pi\)
\(572\) 0 0
\(573\) 1.95320e6 0.248519
\(574\) 0 0
\(575\) 2.78450e6i 0.351219i
\(576\) 0 0
\(577\) −6.82517e6 −0.853442 −0.426721 0.904383i \(-0.640331\pi\)
−0.426721 + 0.904383i \(0.640331\pi\)
\(578\) 0 0
\(579\) −9.04462e6 −1.12123
\(580\) 0 0
\(581\) 818718. 0.100622
\(582\) 0 0
\(583\) −4.38127e6 1.49607e6i −0.533861 0.182297i
\(584\) 0 0
\(585\) 5.46039e6i 0.659681i
\(586\) 0 0
\(587\) 9.12801e6i 1.09340i 0.837327 + 0.546702i \(0.184117\pi\)
−0.837327 + 0.546702i \(0.815883\pi\)
\(588\) 0 0
\(589\) 8.57219e6i 1.01813i
\(590\) 0 0
\(591\) 4.40880e6 0.519220
\(592\) 0 0
\(593\) 1.59316e7i 1.86047i −0.366967 0.930234i \(-0.619604\pi\)
0.366967 0.930234i \(-0.380396\pi\)
\(594\) 0 0
\(595\) 365115.i 0.0422802i
\(596\) 0 0
\(597\) 7.06282e6 0.811040
\(598\) 0 0
\(599\) 1.48485e7i 1.69089i 0.534066 + 0.845443i \(0.320663\pi\)
−0.534066 + 0.845443i \(0.679337\pi\)
\(600\) 0 0
\(601\) 2.29423e6i 0.259090i 0.991574 + 0.129545i \(0.0413517\pi\)
−0.991574 + 0.129545i \(0.958648\pi\)
\(602\) 0 0
\(603\) 5.56760e6i 0.623555i
\(604\) 0 0
\(605\) 3.16417e6 + 2.44616e6i 0.351456 + 0.271704i
\(606\) 0 0
\(607\) −1.12310e7 −1.23722 −0.618608 0.785700i \(-0.712303\pi\)
−0.618608 + 0.785700i \(0.712303\pi\)
\(608\) 0 0
\(609\) 283185. 0.0309404
\(610\) 0 0
\(611\) −1.22419e7 −1.32662
\(612\) 0 0
\(613\) 2.53211e6i 0.272165i −0.990698 0.136082i \(-0.956549\pi\)
0.990698 0.136082i \(-0.0434512\pi\)
\(614\) 0 0
\(615\) 5.99476e6 0.639122
\(616\) 0 0
\(617\) 6.45127e6 0.682233 0.341116 0.940021i \(-0.389195\pi\)
0.341116 + 0.940021i \(0.389195\pi\)
\(618\) 0 0
\(619\) 2.02338e6i 0.212252i 0.994353 + 0.106126i \(0.0338447\pi\)
−0.994353 + 0.106126i \(0.966155\pi\)
\(620\) 0 0
\(621\) −564411. −0.0587309
\(622\) 0 0
\(623\) 951637. 0.0982316
\(624\) 0 0
\(625\) 4.36437e6 0.446911
\(626\) 0 0
\(627\) −4.84031e6 + 1.41749e7i −0.491705 + 1.43997i
\(628\) 0 0
\(629\) 1.64643e6i 0.165926i
\(630\) 0 0
\(631\) 1.49941e7i 1.49915i 0.661917 + 0.749577i \(0.269743\pi\)
−0.661917 + 0.749577i \(0.730257\pi\)
\(632\) 0 0
\(633\) 1.13155e6i 0.112245i
\(634\) 0 0
\(635\) −4.71358e6 −0.463892
\(636\) 0 0
\(637\) 1.65450e7i 1.61555i
\(638\) 0 0
\(639\) 1.25623e7i 1.21708i
\(640\) 0 0
\(641\) −1.19189e7 −1.14576 −0.572879 0.819640i \(-0.694173\pi\)
−0.572879 + 0.819640i \(0.694173\pi\)
\(642\) 0 0
\(643\) 1.25106e6i 0.119330i 0.998218 + 0.0596650i \(0.0190033\pi\)
−0.998218 + 0.0596650i \(0.980997\pi\)
\(644\) 0 0
\(645\) 9.63981e6i 0.912366i
\(646\) 0 0
\(647\) 1.34042e7i 1.25887i −0.777052 0.629436i \(-0.783286\pi\)
0.777052 0.629436i \(-0.216714\pi\)
\(648\) 0 0
\(649\) −2.54000e6 + 7.43844e6i −0.236713 + 0.693219i
\(650\) 0 0
\(651\) −1.84378e6 −0.170513
\(652\) 0 0
\(653\) −5.76704e6 −0.529261 −0.264630 0.964350i \(-0.585250\pi\)
−0.264630 + 0.964350i \(0.585250\pi\)
\(654\) 0 0
\(655\) −4.39855e6 −0.400596
\(656\) 0 0
\(657\) 1.45608e7i 1.31605i
\(658\) 0 0
\(659\) 2.97388e6 0.266754 0.133377 0.991065i \(-0.457418\pi\)
0.133377 + 0.991065i \(0.457418\pi\)
\(660\) 0 0
\(661\) 1.48821e7 1.32483 0.662415 0.749137i \(-0.269532\pi\)
0.662415 + 0.749137i \(0.269532\pi\)
\(662\) 0 0
\(663\) 1.82511e7i 1.61252i
\(664\) 0 0
\(665\) 748459. 0.0656317
\(666\) 0 0
\(667\) −842016. −0.0732834
\(668\) 0 0
\(669\) 9.33962e6 0.806796
\(670\) 0 0
\(671\) −88749.4 + 259904.i −0.00760956 + 0.0222847i
\(672\) 0 0
\(673\) 1.01247e7i 0.861681i −0.902428 0.430841i \(-0.858217\pi\)
0.902428 0.430841i \(-0.141783\pi\)
\(674\) 0 0
\(675\) 1.27528e6i 0.107733i
\(676\) 0 0
\(677\) 9.01121e6i 0.755634i 0.925880 + 0.377817i \(0.123325\pi\)
−0.925880 + 0.377817i \(0.876675\pi\)
\(678\) 0 0
\(679\) −1.55718e6 −0.129617
\(680\) 0 0
\(681\) 2.17723e7i 1.79902i
\(682\) 0 0
\(683\) 1.77893e7i 1.45917i −0.683888 0.729587i \(-0.739712\pi\)
0.683888 0.729587i \(-0.260288\pi\)
\(684\) 0 0
\(685\) 8.46712e6 0.689460
\(686\) 0 0
\(687\) 2.58851e7i 2.09246i
\(688\) 0 0
\(689\) 1.15639e7i 0.928022i
\(690\) 0 0
\(691\) 1.25810e7i 1.00235i 0.865346 + 0.501175i \(0.167099\pi\)
−0.865346 + 0.501175i \(0.832901\pi\)
\(692\) 0 0
\(693\) −1.44647e6 493926.i −0.114413 0.0390687i
\(694\) 0 0
\(695\) −1.60165e6 −0.125778
\(696\) 0 0
\(697\) −9.50624e6 −0.741185
\(698\) 0 0
\(699\) 3.27919e7 2.53848
\(700\) 0 0
\(701\) 1.14760e7i 0.882055i 0.897494 + 0.441027i \(0.145386\pi\)
−0.897494 + 0.441027i \(0.854614\pi\)
\(702\) 0 0
\(703\) 3.37505e6 0.257568
\(704\) 0 0
\(705\) 6.52134e6 0.494156
\(706\) 0 0
\(707\) 2.35103e6i 0.176892i
\(708\) 0 0
\(709\) 7.02721e6 0.525010 0.262505 0.964931i \(-0.415451\pi\)
0.262505 + 0.964931i \(0.415451\pi\)
\(710\) 0 0
\(711\) 6.16359e6 0.457256
\(712\) 0 0
\(713\) 5.48225e6 0.403864
\(714\) 0 0
\(715\) −3.22820e6 + 9.45385e6i −0.236154 + 0.691582i
\(716\) 0 0
\(717\) 7.31574e6i 0.531447i
\(718\) 0 0
\(719\) 9.13945e6i 0.659323i 0.944099 + 0.329661i \(0.106935\pi\)
−0.944099 + 0.329661i \(0.893065\pi\)
\(720\) 0 0
\(721\) 959642.i 0.0687497i
\(722\) 0 0
\(723\) −654179. −0.0465427
\(724\) 0 0
\(725\) 1.90253e6i 0.134427i
\(726\) 0 0
\(727\) 6.11257e6i 0.428931i −0.976732 0.214466i \(-0.931199\pi\)
0.976732 0.214466i \(-0.0688010\pi\)
\(728\) 0 0
\(729\) 1.14338e7 0.796844
\(730\) 0 0
\(731\) 1.52864e7i 1.05806i
\(732\) 0 0
\(733\) 1.88446e7i 1.29547i 0.761865 + 0.647735i \(0.224284\pi\)
−0.761865 + 0.647735i \(0.775716\pi\)
\(734\) 0 0
\(735\) 8.81362e6i 0.601778i
\(736\) 0 0
\(737\) 3.29159e6 9.63947e6i 0.223222 0.653709i
\(738\) 0 0
\(739\) −1.46890e7 −0.989423 −0.494712 0.869057i \(-0.664726\pi\)
−0.494712 + 0.869057i \(0.664726\pi\)
\(740\) 0 0
\(741\) −3.74134e7 −2.50312
\(742\) 0 0
\(743\) 3.25028e6 0.215998 0.107999 0.994151i \(-0.465556\pi\)
0.107999 + 0.994151i \(0.465556\pi\)
\(744\) 0 0
\(745\) 519444.i 0.0342885i
\(746\) 0 0
\(747\) 1.03431e7 0.678189
\(748\) 0 0
\(749\) −1.38568e6 −0.0902521
\(750\) 0 0
\(751\) 1.08732e6i 0.0703491i 0.999381 + 0.0351745i \(0.0111987\pi\)
−0.999381 + 0.0351745i \(0.988801\pi\)
\(752\) 0 0
\(753\) 2.96934e6 0.190841
\(754\) 0 0
\(755\) −1.07650e7 −0.687302
\(756\) 0 0
\(757\) 5.59676e6 0.354974 0.177487 0.984123i \(-0.443203\pi\)
0.177487 + 0.984123i \(0.443203\pi\)
\(758\) 0 0
\(759\) 9.06543e6 + 3.09557e6i 0.571194 + 0.195045i
\(760\) 0 0
\(761\) 1.20859e7i 0.756514i −0.925701 0.378257i \(-0.876524\pi\)
0.925701 0.378257i \(-0.123476\pi\)
\(762\) 0 0
\(763\) 353762.i 0.0219988i
\(764\) 0 0
\(765\) 4.61261e6i 0.284966i
\(766\) 0 0
\(767\) −1.96331e7 −1.20504
\(768\) 0 0
\(769\) 1.50738e7i 0.919192i −0.888128 0.459596i \(-0.847994\pi\)
0.888128 0.459596i \(-0.152006\pi\)
\(770\) 0 0
\(771\) 4.16813e7i 2.52525i
\(772\) 0 0
\(773\) −2.17962e7 −1.31199 −0.655996 0.754764i \(-0.727751\pi\)
−0.655996 + 0.754764i \(0.727751\pi\)
\(774\) 0 0
\(775\) 1.23871e7i 0.740826i
\(776\) 0 0
\(777\) 725935.i 0.0431365i
\(778\) 0 0
\(779\) 1.94871e7i 1.15054i
\(780\) 0 0
\(781\) 7.42691e6 2.17498e7i 0.435693 1.27593i
\(782\) 0 0
\(783\) −385638. −0.0224789
\(784\) 0 0
\(785\) −1.44409e7 −0.836414
\(786\) 0 0
\(787\) −625459. −0.0359966 −0.0179983 0.999838i \(-0.505729\pi\)
−0.0179983 + 0.999838i \(0.505729\pi\)
\(788\) 0 0
\(789\) 4.30751e7i 2.46340i
\(790\) 0 0
\(791\) 1.20417e6 0.0684302
\(792\) 0 0
\(793\) −685993. −0.0387380
\(794\) 0 0
\(795\) 6.16017e6i 0.345680i
\(796\) 0 0
\(797\) 3.01329e7 1.68033 0.840167 0.542327i \(-0.182457\pi\)
0.840167 + 0.542327i \(0.182457\pi\)
\(798\) 0 0
\(799\) −1.03413e7 −0.573069
\(800\) 0 0
\(801\) 1.20223e7 0.662076
\(802\) 0 0
\(803\) −8.60842e6 + 2.52099e7i −0.471123 + 1.37969i
\(804\) 0 0
\(805\) 478669.i 0.0260343i
\(806\) 0 0
\(807\) 5.10793e6i 0.276097i
\(808\) 0 0
\(809\) 2.15254e7i 1.15632i −0.815923 0.578161i \(-0.803770\pi\)
0.815923 0.578161i \(-0.196230\pi\)
\(810\) 0 0
\(811\) 2.04421e7 1.09137 0.545687 0.837989i \(-0.316269\pi\)
0.545687 + 0.837989i \(0.316269\pi\)
\(812\) 0 0
\(813\) 4.07029e7i 2.15973i
\(814\) 0 0
\(815\) 8.00797e6i 0.422307i
\(816\) 0 0
\(817\) −3.13360e7 −1.64244
\(818\) 0 0
\(819\) 3.81782e6i 0.198887i
\(820\) 0 0
\(821\) 1.75635e7i 0.909398i −0.890645 0.454699i \(-0.849747\pi\)
0.890645 0.454699i \(-0.150253\pi\)
\(822\) 0 0
\(823\) 8.42240e6i 0.433447i −0.976233 0.216724i \(-0.930463\pi\)
0.976233 0.216724i \(-0.0695370\pi\)
\(824\) 0 0
\(825\) −6.99442e6 + 2.04833e7i −0.357781 + 1.04777i
\(826\) 0 0
\(827\) 2.90903e7 1.47905 0.739527 0.673127i \(-0.235049\pi\)
0.739527 + 0.673127i \(0.235049\pi\)
\(828\) 0 0
\(829\) −3.46016e7 −1.74868 −0.874340 0.485314i \(-0.838705\pi\)
−0.874340 + 0.485314i \(0.838705\pi\)
\(830\) 0 0
\(831\) −3.50835e7 −1.76238
\(832\) 0 0
\(833\) 1.39763e7i 0.697877i
\(834\) 0 0
\(835\) −1.37299e7 −0.681476
\(836\) 0 0
\(837\) 2.51084e6 0.123881
\(838\) 0 0
\(839\) 3.45570e7i 1.69485i −0.530916 0.847424i \(-0.678152\pi\)
0.530916 0.847424i \(-0.321848\pi\)
\(840\) 0 0
\(841\) 1.99358e7 0.971951
\(842\) 0 0
\(843\) 4.33811e7 2.10248
\(844\) 0 0
\(845\) −1.57321e7 −0.757956
\(846\) 0 0
\(847\) −2.21234e6 1.71032e6i −0.105960 0.0819160i
\(848\) 0 0
\(849\) 8.45734e6i 0.402684i
\(850\) 0 0
\(851\) 2.15848e6i 0.102170i
\(852\) 0 0
\(853\) 2.70989e7i 1.27520i −0.770366 0.637602i \(-0.779926\pi\)
0.770366 0.637602i \(-0.220074\pi\)
\(854\) 0 0
\(855\) 9.45552e6 0.442354
\(856\) 0 0
\(857\) 2.63162e7i 1.22397i 0.790868 + 0.611987i \(0.209629\pi\)
−0.790868 + 0.611987i \(0.790371\pi\)
\(858\) 0 0
\(859\) 2.68729e7i 1.24260i −0.783573 0.621299i \(-0.786605\pi\)
0.783573 0.621299i \(-0.213395\pi\)
\(860\) 0 0
\(861\) −4.19145e6 −0.192689
\(862\) 0 0
\(863\) 3.85777e7i 1.76323i 0.471969 + 0.881615i \(0.343543\pi\)
−0.471969 + 0.881615i \(0.656457\pi\)
\(864\) 0 0
\(865\) 1.77109e7i 0.804825i
\(866\) 0 0
\(867\) 1.51130e7i 0.682813i
\(868\) 0 0
\(869\) 1.06713e7 + 3.64394e6i 0.479368 + 0.163690i
\(870\) 0 0
\(871\) 2.54425e7 1.13635
\(872\) 0 0
\(873\) −1.96723e7 −0.873615
\(874\) 0 0
\(875\) 2.42901e6 0.107253
\(876\) 0 0
\(877\) 8.42238e6i 0.369773i 0.982760 + 0.184887i \(0.0591918\pi\)
−0.982760 + 0.184887i \(0.940808\pi\)
\(878\) 0 0
\(879\) −3.69194e7 −1.61169
\(880\) 0 0
\(881\) 1.13583e7 0.493030 0.246515 0.969139i \(-0.420714\pi\)
0.246515 + 0.969139i \(0.420714\pi\)
\(882\) 0 0
\(883\) 1.60767e7i 0.693895i −0.937884 0.346948i \(-0.887218\pi\)
0.937884 0.346948i \(-0.112782\pi\)
\(884\) 0 0
\(885\) 1.04586e7 0.448866
\(886\) 0 0
\(887\) −1.08235e7 −0.461910 −0.230955 0.972964i \(-0.574185\pi\)
−0.230955 + 0.972964i \(0.574185\pi\)
\(888\) 0 0
\(889\) 3.29567e6 0.139859
\(890\) 0 0
\(891\) 2.43954e7 + 8.33030e6i 1.02947 + 0.351533i
\(892\) 0 0
\(893\) 2.11989e7i 0.889577i
\(894\) 0 0
\(895\) 8.25417e6i 0.344442i
\(896\) 0 0
\(897\) 2.39273e7i 0.992918i
\(898\) 0 0
\(899\) 3.74579e6 0.154577
\(900\) 0 0
\(901\) 9.76853e6i 0.400883i
\(902\) 0 0
\(903\) 6.74001e6i 0.275069i
\(904\) 0 0
\(905\) 1.63412e7 0.663228
\(906\) 0 0
\(907\) 2.07738e7i 0.838491i −0.907873 0.419246i \(-0.862295\pi\)
0.907873 0.419246i \(-0.137705\pi\)
\(908\) 0 0
\(909\) 2.97013e7i 1.19224i
\(910\) 0 0
\(911\) 2.04650e7i 0.816990i −0.912761 0.408495i \(-0.866054\pi\)
0.912761 0.408495i \(-0.133946\pi\)
\(912\) 0 0
\(913\) 1.79076e7 + 6.11490e6i 0.710985 + 0.242780i
\(914\) 0 0
\(915\) 365432. 0.0144296
\(916\) 0 0
\(917\) 3.07540e6 0.120775
\(918\) 0 0
\(919\) 1.64857e7 0.643902 0.321951 0.946756i \(-0.395661\pi\)
0.321951 + 0.946756i \(0.395661\pi\)
\(920\) 0 0
\(921\) 7.85344e6i 0.305078i
\(922\) 0 0
\(923\) 5.74066e7 2.21798
\(924\) 0 0
\(925\) 4.87707e6 0.187415
\(926\) 0 0
\(927\) 1.21235e7i 0.463370i
\(928\) 0 0
\(929\) −1.98337e7 −0.753987 −0.376994 0.926216i \(-0.623042\pi\)
−0.376994 + 0.926216i \(0.623042\pi\)
\(930\) 0 0
\(931\) 2.86503e7 1.08332
\(932\) 0 0
\(933\) 3.08687e7 1.16095
\(934\) 0 0
\(935\) −2.72699e6 + 7.98605e6i −0.102013 + 0.298747i
\(936\) 0 0
\(937\) 4.78808e6i 0.178161i 0.996024 + 0.0890804i \(0.0283928\pi\)
−0.996024 + 0.0890804i \(0.971607\pi\)
\(938\) 0 0
\(939\) 2.02079e7i 0.747925i
\(940\) 0 0
\(941\) 3.97857e6i 0.146472i 0.997315 + 0.0732358i \(0.0233326\pi\)
−0.997315 + 0.0732358i \(0.976667\pi\)
\(942\) 0 0
\(943\) 1.24628e7 0.456389
\(944\) 0 0
\(945\) 219227.i 0.00798574i
\(946\) 0 0
\(947\) 6.12959e6i 0.222104i 0.993815 + 0.111052i \(0.0354220\pi\)
−0.993815 + 0.111052i \(0.964578\pi\)
\(948\) 0 0
\(949\) −6.65392e7 −2.39835
\(950\) 0 0
\(951\) 3.72617e7i 1.33602i
\(952\) 0 0
\(953\) 2.77177e7i 0.988611i 0.869288 + 0.494305i \(0.164578\pi\)
−0.869288 + 0.494305i \(0.835422\pi\)
\(954\) 0 0
\(955\) 2.25577e6i 0.0800363i
\(956\) 0 0
\(957\) 6.19402e6 + 2.11507e6i 0.218622 + 0.0746526i
\(958\) 0 0
\(959\) −5.92009e6 −0.207865
\(960\) 0 0
\(961\) 4.24080e6 0.148129
\(962\) 0 0
\(963\) −1.75057e7 −0.608294
\(964\) 0 0
\(965\) 1.04458e7i 0.361095i
\(966\) 0 0
\(967\) −2.03671e6 −0.0700428 −0.0350214 0.999387i \(-0.511150\pi\)
−0.0350214 + 0.999387i \(0.511150\pi\)
\(968\) 0 0
\(969\) −3.16046e7 −1.08129
\(970\) 0 0
\(971\) 1.99075e7i 0.677593i −0.940860 0.338797i \(-0.889980\pi\)
0.940860 0.338797i \(-0.110020\pi\)
\(972\) 0 0
\(973\) 1.11985e6 0.0379208
\(974\) 0 0
\(975\) −5.40637e7 −1.82135
\(976\) 0 0
\(977\) 1.08541e7 0.363795 0.181897 0.983318i \(-0.441776\pi\)
0.181897 + 0.983318i \(0.441776\pi\)
\(978\) 0 0
\(979\) 2.08149e7 + 7.10766e6i 0.694093 + 0.237012i
\(980\) 0 0
\(981\) 4.46919e6i 0.148271i
\(982\) 0 0
\(983\) 2.24671e7i 0.741587i −0.928715 0.370794i \(-0.879086\pi\)
0.928715 0.370794i \(-0.120914\pi\)
\(984\) 0 0
\(985\) 5.09178e6i 0.167217i
\(986\) 0 0
\(987\) −4.55963e6 −0.148983
\(988\) 0 0
\(989\) 2.00406e7i 0.651509i
\(990\) 0 0
\(991\) 5.54826e7i 1.79462i 0.441402 + 0.897310i \(0.354481\pi\)
−0.441402 + 0.897310i \(0.645519\pi\)
\(992\) 0 0
\(993\) 4.13344e7 1.33027
\(994\) 0 0
\(995\) 8.15695e6i 0.261198i
\(996\) 0 0
\(997\) 3.87606e7i 1.23496i 0.786588 + 0.617479i \(0.211846\pi\)
−0.786588 + 0.617479i \(0.788154\pi\)
\(998\) 0 0
\(999\) 988571.i 0.0313396i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.6.e.d.175.15 yes 16
4.3 odd 2 inner 176.6.e.d.175.2 yes 16
11.10 odd 2 inner 176.6.e.d.175.16 yes 16
44.43 even 2 inner 176.6.e.d.175.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
176.6.e.d.175.1 16 44.43 even 2 inner
176.6.e.d.175.2 yes 16 4.3 odd 2 inner
176.6.e.d.175.15 yes 16 1.1 even 1 trivial
176.6.e.d.175.16 yes 16 11.10 odd 2 inner