Properties

Label 1760.2.b.f.1409.3
Level $1760$
Weight $2$
Character 1760.1409
Analytic conductor $14.054$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1760,2,Mod(1409,1760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1760.1409");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1760 = 2^{5} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1760.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0536707557\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 16x^{12} + 96x^{10} + 272x^{8} + 372x^{6} + 225x^{4} + 56x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1409.3
Root \(-1.51372i\) of defining polynomial
Character \(\chi\) \(=\) 1760.1409
Dual form 1760.2.b.f.1409.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.13376i q^{3} +(2.12532 - 0.694983i) q^{5} +1.20437i q^{7} -1.55295 q^{9} +1.00000 q^{11} +4.14048i q^{13} +(-1.48293 - 4.53494i) q^{15} -0.621669i q^{17} +4.76215 q^{19} +2.56983 q^{21} -4.66983i q^{23} +(4.03400 - 2.95413i) q^{25} -3.08766i q^{27} -2.10643 q^{29} +2.08954 q^{31} -2.13376i q^{33} +(0.837014 + 2.55967i) q^{35} +8.90878i q^{37} +8.83481 q^{39} +9.62524 q^{41} -10.2003i q^{43} +(-3.30052 + 1.07927i) q^{45} -6.90511i q^{47} +5.54950 q^{49} -1.32650 q^{51} +3.32273i q^{53} +(2.12532 - 0.694983i) q^{55} -10.1613i q^{57} -10.7689 q^{59} +9.40465 q^{61} -1.87032i q^{63} +(2.87756 + 8.79986i) q^{65} +5.38505i q^{67} -9.96433 q^{69} -8.42895 q^{71} -8.46268i q^{73} +(-6.30341 - 8.60760i) q^{75} +1.20437i q^{77} +6.44641 q^{79} -11.2472 q^{81} -0.675980i q^{83} +(-0.432050 - 1.32125i) q^{85} +4.49462i q^{87} -15.6891 q^{89} -4.98666 q^{91} -4.45860i q^{93} +(10.1211 - 3.30961i) q^{95} +10.5470i q^{97} -1.55295 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{5} - 12 q^{9} + 14 q^{11} + 12 q^{15} - 14 q^{19} + 26 q^{21} - 4 q^{25} + 22 q^{29} - 22 q^{31} - 2 q^{35} - 8 q^{39} + 8 q^{41} - 8 q^{45} - 32 q^{49} - 14 q^{51} + 2 q^{55} - 52 q^{59} - 10 q^{61}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1760\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(991\) \(1057\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.13376i 1.23193i −0.787774 0.615965i \(-0.788766\pi\)
0.787774 0.615965i \(-0.211234\pi\)
\(4\) 0 0
\(5\) 2.12532 0.694983i 0.950473 0.310806i
\(6\) 0 0
\(7\) 1.20437i 0.455208i 0.973754 + 0.227604i \(0.0730891\pi\)
−0.973754 + 0.227604i \(0.926911\pi\)
\(8\) 0 0
\(9\) −1.55295 −0.517651
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 4.14048i 1.14836i 0.818728 + 0.574181i \(0.194680\pi\)
−0.818728 + 0.574181i \(0.805320\pi\)
\(14\) 0 0
\(15\) −1.48293 4.53494i −0.382891 1.17092i
\(16\) 0 0
\(17\) 0.621669i 0.150777i −0.997154 0.0753885i \(-0.975980\pi\)
0.997154 0.0753885i \(-0.0240197\pi\)
\(18\) 0 0
\(19\) 4.76215 1.09251 0.546256 0.837618i \(-0.316053\pi\)
0.546256 + 0.837618i \(0.316053\pi\)
\(20\) 0 0
\(21\) 2.56983 0.560784
\(22\) 0 0
\(23\) 4.66983i 0.973728i −0.873478 0.486864i \(-0.838141\pi\)
0.873478 0.486864i \(-0.161859\pi\)
\(24\) 0 0
\(25\) 4.03400 2.95413i 0.806800 0.590825i
\(26\) 0 0
\(27\) 3.08766i 0.594221i
\(28\) 0 0
\(29\) −2.10643 −0.391154 −0.195577 0.980688i \(-0.562658\pi\)
−0.195577 + 0.980688i \(0.562658\pi\)
\(30\) 0 0
\(31\) 2.08954 0.375293 0.187647 0.982237i \(-0.439914\pi\)
0.187647 + 0.982237i \(0.439914\pi\)
\(32\) 0 0
\(33\) 2.13376i 0.371441i
\(34\) 0 0
\(35\) 0.837014 + 2.55967i 0.141481 + 0.432663i
\(36\) 0 0
\(37\) 8.90878i 1.46459i 0.680985 + 0.732297i \(0.261552\pi\)
−0.680985 + 0.732297i \(0.738448\pi\)
\(38\) 0 0
\(39\) 8.83481 1.41470
\(40\) 0 0
\(41\) 9.62524 1.50321 0.751605 0.659614i \(-0.229280\pi\)
0.751605 + 0.659614i \(0.229280\pi\)
\(42\) 0 0
\(43\) 10.2003i 1.55553i −0.628556 0.777764i \(-0.716354\pi\)
0.628556 0.777764i \(-0.283646\pi\)
\(44\) 0 0
\(45\) −3.30052 + 1.07927i −0.492013 + 0.160889i
\(46\) 0 0
\(47\) 6.90511i 1.00721i −0.863933 0.503607i \(-0.832006\pi\)
0.863933 0.503607i \(-0.167994\pi\)
\(48\) 0 0
\(49\) 5.54950 0.792786
\(50\) 0 0
\(51\) −1.32650 −0.185747
\(52\) 0 0
\(53\) 3.32273i 0.456412i 0.973613 + 0.228206i \(0.0732859\pi\)
−0.973613 + 0.228206i \(0.926714\pi\)
\(54\) 0 0
\(55\) 2.12532 0.694983i 0.286579 0.0937115i
\(56\) 0 0
\(57\) 10.1613i 1.34590i
\(58\) 0 0
\(59\) −10.7689 −1.40200 −0.700998 0.713163i \(-0.747262\pi\)
−0.700998 + 0.713163i \(0.747262\pi\)
\(60\) 0 0
\(61\) 9.40465 1.20414 0.602071 0.798443i \(-0.294342\pi\)
0.602071 + 0.798443i \(0.294342\pi\)
\(62\) 0 0
\(63\) 1.87032i 0.235639i
\(64\) 0 0
\(65\) 2.87756 + 8.79986i 0.356918 + 1.09149i
\(66\) 0 0
\(67\) 5.38505i 0.657888i 0.944349 + 0.328944i \(0.106693\pi\)
−0.944349 + 0.328944i \(0.893307\pi\)
\(68\) 0 0
\(69\) −9.96433 −1.19956
\(70\) 0 0
\(71\) −8.42895 −1.00033 −0.500166 0.865929i \(-0.666728\pi\)
−0.500166 + 0.865929i \(0.666728\pi\)
\(72\) 0 0
\(73\) 8.46268i 0.990482i −0.868756 0.495241i \(-0.835080\pi\)
0.868756 0.495241i \(-0.164920\pi\)
\(74\) 0 0
\(75\) −6.30341 8.60760i −0.727855 0.993920i
\(76\) 0 0
\(77\) 1.20437i 0.137250i
\(78\) 0 0
\(79\) 6.44641 0.725278 0.362639 0.931930i \(-0.381876\pi\)
0.362639 + 0.931930i \(0.381876\pi\)
\(80\) 0 0
\(81\) −11.2472 −1.24969
\(82\) 0 0
\(83\) 0.675980i 0.0741984i −0.999312 0.0370992i \(-0.988188\pi\)
0.999312 0.0370992i \(-0.0118118\pi\)
\(84\) 0 0
\(85\) −0.432050 1.32125i −0.0468624 0.143309i
\(86\) 0 0
\(87\) 4.49462i 0.481874i
\(88\) 0 0
\(89\) −15.6891 −1.66304 −0.831518 0.555497i \(-0.812528\pi\)
−0.831518 + 0.555497i \(0.812528\pi\)
\(90\) 0 0
\(91\) −4.98666 −0.522744
\(92\) 0 0
\(93\) 4.45860i 0.462335i
\(94\) 0 0
\(95\) 10.1211 3.30961i 1.03840 0.339559i
\(96\) 0 0
\(97\) 10.5470i 1.07088i 0.844572 + 0.535442i \(0.179855\pi\)
−0.844572 + 0.535442i \(0.820145\pi\)
\(98\) 0 0
\(99\) −1.55295 −0.156078
\(100\) 0 0
\(101\) −1.27495 −0.126862 −0.0634311 0.997986i \(-0.520204\pi\)
−0.0634311 + 0.997986i \(0.520204\pi\)
\(102\) 0 0
\(103\) 3.58766i 0.353503i 0.984256 + 0.176751i \(0.0565589\pi\)
−0.984256 + 0.176751i \(0.943441\pi\)
\(104\) 0 0
\(105\) 5.46173 1.78599i 0.533010 0.174295i
\(106\) 0 0
\(107\) 4.97478i 0.480930i 0.970658 + 0.240465i \(0.0772999\pi\)
−0.970658 + 0.240465i \(0.922700\pi\)
\(108\) 0 0
\(109\) −6.63873 −0.635875 −0.317937 0.948112i \(-0.602990\pi\)
−0.317937 + 0.948112i \(0.602990\pi\)
\(110\) 0 0
\(111\) 19.0092 1.80428
\(112\) 0 0
\(113\) 4.16340i 0.391660i −0.980638 0.195830i \(-0.937260\pi\)
0.980638 0.195830i \(-0.0627400\pi\)
\(114\) 0 0
\(115\) −3.24545 9.92491i −0.302640 0.925502i
\(116\) 0 0
\(117\) 6.42997i 0.594451i
\(118\) 0 0
\(119\) 0.748718 0.0686348
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 20.5380i 1.85185i
\(124\) 0 0
\(125\) 6.52048 9.08203i 0.583210 0.812322i
\(126\) 0 0
\(127\) 4.75874i 0.422270i 0.977457 + 0.211135i \(0.0677160\pi\)
−0.977457 + 0.211135i \(0.932284\pi\)
\(128\) 0 0
\(129\) −21.7650 −1.91630
\(130\) 0 0
\(131\) 10.8864 0.951146 0.475573 0.879676i \(-0.342241\pi\)
0.475573 + 0.879676i \(0.342241\pi\)
\(132\) 0 0
\(133\) 5.73537i 0.497320i
\(134\) 0 0
\(135\) −2.14587 6.56228i −0.184687 0.564791i
\(136\) 0 0
\(137\) 10.0795i 0.861146i −0.902556 0.430573i \(-0.858312\pi\)
0.902556 0.430573i \(-0.141688\pi\)
\(138\) 0 0
\(139\) −20.5862 −1.74610 −0.873048 0.487634i \(-0.837860\pi\)
−0.873048 + 0.487634i \(0.837860\pi\)
\(140\) 0 0
\(141\) −14.7339 −1.24082
\(142\) 0 0
\(143\) 4.14048i 0.346244i
\(144\) 0 0
\(145\) −4.47684 + 1.46393i −0.371781 + 0.121573i
\(146\) 0 0
\(147\) 11.8413i 0.976656i
\(148\) 0 0
\(149\) −6.65848 −0.545484 −0.272742 0.962087i \(-0.587931\pi\)
−0.272742 + 0.962087i \(0.587931\pi\)
\(150\) 0 0
\(151\) 20.8504 1.69678 0.848389 0.529373i \(-0.177573\pi\)
0.848389 + 0.529373i \(0.177573\pi\)
\(152\) 0 0
\(153\) 0.965422i 0.0780498i
\(154\) 0 0
\(155\) 4.44096 1.45220i 0.356706 0.116643i
\(156\) 0 0
\(157\) 15.8397i 1.26415i −0.774909 0.632073i \(-0.782204\pi\)
0.774909 0.632073i \(-0.217796\pi\)
\(158\) 0 0
\(159\) 7.08992 0.562267
\(160\) 0 0
\(161\) 5.62419 0.443248
\(162\) 0 0
\(163\) 1.86398i 0.145998i −0.997332 0.0729990i \(-0.976743\pi\)
0.997332 0.0729990i \(-0.0232570\pi\)
\(164\) 0 0
\(165\) −1.48293 4.53494i −0.115446 0.353045i
\(166\) 0 0
\(167\) 14.7054i 1.13794i 0.822359 + 0.568969i \(0.192658\pi\)
−0.822359 + 0.568969i \(0.807342\pi\)
\(168\) 0 0
\(169\) −4.14358 −0.318737
\(170\) 0 0
\(171\) −7.39539 −0.565540
\(172\) 0 0
\(173\) 11.9226i 0.906462i 0.891393 + 0.453231i \(0.149729\pi\)
−0.891393 + 0.453231i \(0.850271\pi\)
\(174\) 0 0
\(175\) 3.55785 + 4.85841i 0.268948 + 0.367261i
\(176\) 0 0
\(177\) 22.9784i 1.72716i
\(178\) 0 0
\(179\) −10.9996 −0.822151 −0.411075 0.911601i \(-0.634847\pi\)
−0.411075 + 0.911601i \(0.634847\pi\)
\(180\) 0 0
\(181\) −0.0996441 −0.00740649 −0.00370324 0.999993i \(-0.501179\pi\)
−0.00370324 + 0.999993i \(0.501179\pi\)
\(182\) 0 0
\(183\) 20.0673i 1.48342i
\(184\) 0 0
\(185\) 6.19145 + 18.9340i 0.455204 + 1.39206i
\(186\) 0 0
\(187\) 0.621669i 0.0454610i
\(188\) 0 0
\(189\) 3.71867 0.270494
\(190\) 0 0
\(191\) −20.5239 −1.48506 −0.742530 0.669813i \(-0.766374\pi\)
−0.742530 + 0.669813i \(0.766374\pi\)
\(192\) 0 0
\(193\) 16.8714i 1.21443i −0.794539 0.607214i \(-0.792287\pi\)
0.794539 0.607214i \(-0.207713\pi\)
\(194\) 0 0
\(195\) 18.7768 6.14004i 1.34464 0.439698i
\(196\) 0 0
\(197\) 1.36235i 0.0970631i 0.998822 + 0.0485316i \(0.0154541\pi\)
−0.998822 + 0.0485316i \(0.984546\pi\)
\(198\) 0 0
\(199\) 20.1085 1.42546 0.712728 0.701440i \(-0.247459\pi\)
0.712728 + 0.701440i \(0.247459\pi\)
\(200\) 0 0
\(201\) 11.4904 0.810472
\(202\) 0 0
\(203\) 2.53691i 0.178056i
\(204\) 0 0
\(205\) 20.4567 6.68938i 1.42876 0.467206i
\(206\) 0 0
\(207\) 7.25203i 0.504051i
\(208\) 0 0
\(209\) 4.76215 0.329405
\(210\) 0 0
\(211\) −6.77219 −0.466217 −0.233109 0.972451i \(-0.574890\pi\)
−0.233109 + 0.972451i \(0.574890\pi\)
\(212\) 0 0
\(213\) 17.9854i 1.23234i
\(214\) 0 0
\(215\) −7.08902 21.6789i −0.483467 1.47849i
\(216\) 0 0
\(217\) 2.51658i 0.170836i
\(218\) 0 0
\(219\) −18.0574 −1.22020
\(220\) 0 0
\(221\) 2.57401 0.173147
\(222\) 0 0
\(223\) 2.11259i 0.141470i 0.997495 + 0.0707349i \(0.0225344\pi\)
−0.997495 + 0.0707349i \(0.977466\pi\)
\(224\) 0 0
\(225\) −6.26460 + 4.58762i −0.417640 + 0.305841i
\(226\) 0 0
\(227\) 7.64802i 0.507617i 0.967254 + 0.253808i \(0.0816833\pi\)
−0.967254 + 0.253808i \(0.918317\pi\)
\(228\) 0 0
\(229\) −12.2471 −0.809310 −0.404655 0.914469i \(-0.632608\pi\)
−0.404655 + 0.914469i \(0.632608\pi\)
\(230\) 0 0
\(231\) 2.56983 0.169083
\(232\) 0 0
\(233\) 15.9502i 1.04493i −0.852659 0.522467i \(-0.825012\pi\)
0.852659 0.522467i \(-0.174988\pi\)
\(234\) 0 0
\(235\) −4.79893 14.6756i −0.313048 0.957330i
\(236\) 0 0
\(237\) 13.7551i 0.893492i
\(238\) 0 0
\(239\) 28.5217 1.84491 0.922456 0.386101i \(-0.126178\pi\)
0.922456 + 0.386101i \(0.126178\pi\)
\(240\) 0 0
\(241\) 4.51452 0.290806 0.145403 0.989373i \(-0.453552\pi\)
0.145403 + 0.989373i \(0.453552\pi\)
\(242\) 0 0
\(243\) 14.7359i 0.945308i
\(244\) 0 0
\(245\) 11.7945 3.85681i 0.753522 0.246402i
\(246\) 0 0
\(247\) 19.7176i 1.25460i
\(248\) 0 0
\(249\) −1.44238 −0.0914072
\(250\) 0 0
\(251\) −14.1643 −0.894044 −0.447022 0.894523i \(-0.647515\pi\)
−0.447022 + 0.894523i \(0.647515\pi\)
\(252\) 0 0
\(253\) 4.66983i 0.293590i
\(254\) 0 0
\(255\) −2.81923 + 0.921892i −0.176547 + 0.0577311i
\(256\) 0 0
\(257\) 3.25007i 0.202734i 0.994849 + 0.101367i \(0.0323216\pi\)
−0.994849 + 0.101367i \(0.967678\pi\)
\(258\) 0 0
\(259\) −10.7294 −0.666695
\(260\) 0 0
\(261\) 3.27118 0.202481
\(262\) 0 0
\(263\) 5.56822i 0.343351i 0.985154 + 0.171676i \(0.0549181\pi\)
−0.985154 + 0.171676i \(0.945082\pi\)
\(264\) 0 0
\(265\) 2.30924 + 7.06187i 0.141855 + 0.433807i
\(266\) 0 0
\(267\) 33.4768i 2.04874i
\(268\) 0 0
\(269\) 14.2454 0.868557 0.434279 0.900779i \(-0.357003\pi\)
0.434279 + 0.900779i \(0.357003\pi\)
\(270\) 0 0
\(271\) −16.5866 −1.00757 −0.503783 0.863830i \(-0.668059\pi\)
−0.503783 + 0.863830i \(0.668059\pi\)
\(272\) 0 0
\(273\) 10.6404i 0.643983i
\(274\) 0 0
\(275\) 4.03400 2.95413i 0.243259 0.178141i
\(276\) 0 0
\(277\) 3.39484i 0.203976i −0.994786 0.101988i \(-0.967480\pi\)
0.994786 0.101988i \(-0.0325204\pi\)
\(278\) 0 0
\(279\) −3.24496 −0.194271
\(280\) 0 0
\(281\) −17.2362 −1.02823 −0.514113 0.857723i \(-0.671879\pi\)
−0.514113 + 0.857723i \(0.671879\pi\)
\(282\) 0 0
\(283\) 31.9797i 1.90100i 0.310732 + 0.950498i \(0.399426\pi\)
−0.310732 + 0.950498i \(0.600574\pi\)
\(284\) 0 0
\(285\) −7.06194 21.5961i −0.418313 1.27924i
\(286\) 0 0
\(287\) 11.5923i 0.684273i
\(288\) 0 0
\(289\) 16.6135 0.977266
\(290\) 0 0
\(291\) 22.5048 1.31925
\(292\) 0 0
\(293\) 10.1889i 0.595240i 0.954684 + 0.297620i \(0.0961928\pi\)
−0.954684 + 0.297620i \(0.903807\pi\)
\(294\) 0 0
\(295\) −22.8875 + 7.48423i −1.33256 + 0.435748i
\(296\) 0 0
\(297\) 3.08766i 0.179164i
\(298\) 0 0
\(299\) 19.3354 1.11819
\(300\) 0 0
\(301\) 12.2849 0.708088
\(302\) 0 0
\(303\) 2.72044i 0.156285i
\(304\) 0 0
\(305\) 19.9879 6.53607i 1.14450 0.374254i
\(306\) 0 0
\(307\) 20.3727i 1.16273i 0.813643 + 0.581365i \(0.197481\pi\)
−0.813643 + 0.581365i \(0.802519\pi\)
\(308\) 0 0
\(309\) 7.65523 0.435491
\(310\) 0 0
\(311\) −4.63809 −0.263002 −0.131501 0.991316i \(-0.541980\pi\)
−0.131501 + 0.991316i \(0.541980\pi\)
\(312\) 0 0
\(313\) 25.9376i 1.46608i 0.680185 + 0.733040i \(0.261899\pi\)
−0.680185 + 0.733040i \(0.738101\pi\)
\(314\) 0 0
\(315\) −1.29984 3.97504i −0.0732378 0.223968i
\(316\) 0 0
\(317\) 6.99840i 0.393069i 0.980497 + 0.196535i \(0.0629688\pi\)
−0.980497 + 0.196535i \(0.937031\pi\)
\(318\) 0 0
\(319\) −2.10643 −0.117937
\(320\) 0 0
\(321\) 10.6150 0.592472
\(322\) 0 0
\(323\) 2.96048i 0.164726i
\(324\) 0 0
\(325\) 12.2315 + 16.7027i 0.678482 + 0.926499i
\(326\) 0 0
\(327\) 14.1655i 0.783353i
\(328\) 0 0
\(329\) 8.31628 0.458491
\(330\) 0 0
\(331\) −6.73753 −0.370328 −0.185164 0.982708i \(-0.559282\pi\)
−0.185164 + 0.982708i \(0.559282\pi\)
\(332\) 0 0
\(333\) 13.8349i 0.758148i
\(334\) 0 0
\(335\) 3.74252 + 11.4450i 0.204475 + 0.625305i
\(336\) 0 0
\(337\) 3.20655i 0.174672i 0.996179 + 0.0873361i \(0.0278354\pi\)
−0.996179 + 0.0873361i \(0.972165\pi\)
\(338\) 0 0
\(339\) −8.88371 −0.482497
\(340\) 0 0
\(341\) 2.08954 0.113155
\(342\) 0 0
\(343\) 15.1142i 0.816090i
\(344\) 0 0
\(345\) −21.1774 + 6.92504i −1.14015 + 0.372831i
\(346\) 0 0
\(347\) 12.6613i 0.679696i 0.940480 + 0.339848i \(0.110376\pi\)
−0.940480 + 0.339848i \(0.889624\pi\)
\(348\) 0 0
\(349\) 0.596140 0.0319106 0.0159553 0.999873i \(-0.494921\pi\)
0.0159553 + 0.999873i \(0.494921\pi\)
\(350\) 0 0
\(351\) 12.7844 0.682381
\(352\) 0 0
\(353\) 21.4134i 1.13972i 0.821742 + 0.569860i \(0.193003\pi\)
−0.821742 + 0.569860i \(0.806997\pi\)
\(354\) 0 0
\(355\) −17.9142 + 5.85798i −0.950789 + 0.310909i
\(356\) 0 0
\(357\) 1.59759i 0.0845533i
\(358\) 0 0
\(359\) −17.2379 −0.909781 −0.454891 0.890547i \(-0.650322\pi\)
−0.454891 + 0.890547i \(0.650322\pi\)
\(360\) 0 0
\(361\) 3.67808 0.193583
\(362\) 0 0
\(363\) 2.13376i 0.111994i
\(364\) 0 0
\(365\) −5.88142 17.9859i −0.307848 0.941427i
\(366\) 0 0
\(367\) 31.2870i 1.63317i 0.577228 + 0.816583i \(0.304134\pi\)
−0.577228 + 0.816583i \(0.695866\pi\)
\(368\) 0 0
\(369\) −14.9475 −0.778137
\(370\) 0 0
\(371\) −4.00178 −0.207762
\(372\) 0 0
\(373\) 18.6441i 0.965355i 0.875798 + 0.482677i \(0.160336\pi\)
−0.875798 + 0.482677i \(0.839664\pi\)
\(374\) 0 0
\(375\) −19.3789 13.9132i −1.00072 0.718473i
\(376\) 0 0
\(377\) 8.72162i 0.449186i
\(378\) 0 0
\(379\) −33.4682 −1.71915 −0.859574 0.511011i \(-0.829271\pi\)
−0.859574 + 0.511011i \(0.829271\pi\)
\(380\) 0 0
\(381\) 10.1540 0.520207
\(382\) 0 0
\(383\) 32.4451i 1.65787i −0.559347 0.828934i \(-0.688948\pi\)
0.559347 0.828934i \(-0.311052\pi\)
\(384\) 0 0
\(385\) 0.837014 + 2.55967i 0.0426582 + 0.130453i
\(386\) 0 0
\(387\) 15.8405i 0.805220i
\(388\) 0 0
\(389\) 17.2080 0.872481 0.436241 0.899830i \(-0.356310\pi\)
0.436241 + 0.899830i \(0.356310\pi\)
\(390\) 0 0
\(391\) −2.90309 −0.146816
\(392\) 0 0
\(393\) 23.2289i 1.17174i
\(394\) 0 0
\(395\) 13.7007 4.48015i 0.689358 0.225421i
\(396\) 0 0
\(397\) 24.8359i 1.24648i 0.782032 + 0.623238i \(0.214183\pi\)
−0.782032 + 0.623238i \(0.785817\pi\)
\(398\) 0 0
\(399\) 12.2379 0.612663
\(400\) 0 0
\(401\) −11.6749 −0.583017 −0.291509 0.956568i \(-0.594157\pi\)
−0.291509 + 0.956568i \(0.594157\pi\)
\(402\) 0 0
\(403\) 8.65172i 0.430973i
\(404\) 0 0
\(405\) −23.9039 + 7.81661i −1.18780 + 0.388410i
\(406\) 0 0
\(407\) 8.90878i 0.441592i
\(408\) 0 0
\(409\) 32.7457 1.61917 0.809584 0.587003i \(-0.199692\pi\)
0.809584 + 0.587003i \(0.199692\pi\)
\(410\) 0 0
\(411\) −21.5072 −1.06087
\(412\) 0 0
\(413\) 12.9697i 0.638199i
\(414\) 0 0
\(415\) −0.469794 1.43668i −0.0230613 0.0705236i
\(416\) 0 0
\(417\) 43.9260i 2.15107i
\(418\) 0 0
\(419\) 40.3114 1.96934 0.984670 0.174429i \(-0.0558079\pi\)
0.984670 + 0.174429i \(0.0558079\pi\)
\(420\) 0 0
\(421\) −13.2601 −0.646256 −0.323128 0.946355i \(-0.604734\pi\)
−0.323128 + 0.946355i \(0.604734\pi\)
\(422\) 0 0
\(423\) 10.7233i 0.521385i
\(424\) 0 0
\(425\) −1.83649 2.50781i −0.0890828 0.121647i
\(426\) 0 0
\(427\) 11.3266i 0.548135i
\(428\) 0 0
\(429\) 8.83481 0.426549
\(430\) 0 0
\(431\) −0.602928 −0.0290420 −0.0145210 0.999895i \(-0.504622\pi\)
−0.0145210 + 0.999895i \(0.504622\pi\)
\(432\) 0 0
\(433\) 35.5966i 1.71066i −0.518080 0.855332i \(-0.673353\pi\)
0.518080 0.855332i \(-0.326647\pi\)
\(434\) 0 0
\(435\) 3.12368 + 9.55252i 0.149769 + 0.458008i
\(436\) 0 0
\(437\) 22.2384i 1.06381i
\(438\) 0 0
\(439\) −11.2346 −0.536198 −0.268099 0.963391i \(-0.586395\pi\)
−0.268099 + 0.963391i \(0.586395\pi\)
\(440\) 0 0
\(441\) −8.61811 −0.410386
\(442\) 0 0
\(443\) 24.5417i 1.16601i −0.812468 0.583006i \(-0.801877\pi\)
0.812468 0.583006i \(-0.198123\pi\)
\(444\) 0 0
\(445\) −33.3443 + 10.9036i −1.58067 + 0.516882i
\(446\) 0 0
\(447\) 14.2076i 0.671998i
\(448\) 0 0
\(449\) 11.7896 0.556384 0.278192 0.960526i \(-0.410265\pi\)
0.278192 + 0.960526i \(0.410265\pi\)
\(450\) 0 0
\(451\) 9.62524 0.453235
\(452\) 0 0
\(453\) 44.4898i 2.09031i
\(454\) 0 0
\(455\) −10.5983 + 3.46564i −0.496854 + 0.162472i
\(456\) 0 0
\(457\) 20.9828i 0.981534i −0.871291 0.490767i \(-0.836717\pi\)
0.871291 0.490767i \(-0.163283\pi\)
\(458\) 0 0
\(459\) −1.91950 −0.0895948
\(460\) 0 0
\(461\) −29.8844 −1.39186 −0.695928 0.718111i \(-0.745007\pi\)
−0.695928 + 0.718111i \(0.745007\pi\)
\(462\) 0 0
\(463\) 24.4425i 1.13594i 0.823049 + 0.567970i \(0.192271\pi\)
−0.823049 + 0.567970i \(0.807729\pi\)
\(464\) 0 0
\(465\) −3.09865 9.47596i −0.143696 0.439437i
\(466\) 0 0
\(467\) 3.13953i 0.145280i −0.997358 0.0726401i \(-0.976858\pi\)
0.997358 0.0726401i \(-0.0231425\pi\)
\(468\) 0 0
\(469\) −6.48557 −0.299476
\(470\) 0 0
\(471\) −33.7982 −1.55734
\(472\) 0 0
\(473\) 10.2003i 0.469009i
\(474\) 0 0
\(475\) 19.2105 14.0680i 0.881438 0.645484i
\(476\) 0 0
\(477\) 5.16004i 0.236262i
\(478\) 0 0
\(479\) −12.5709 −0.574380 −0.287190 0.957874i \(-0.592721\pi\)
−0.287190 + 0.957874i \(0.592721\pi\)
\(480\) 0 0
\(481\) −36.8866 −1.68189
\(482\) 0 0
\(483\) 12.0007i 0.546051i
\(484\) 0 0
\(485\) 7.32997 + 22.4157i 0.332837 + 1.01785i
\(486\) 0 0
\(487\) 13.2520i 0.600503i −0.953860 0.300252i \(-0.902929\pi\)
0.953860 0.300252i \(-0.0970707\pi\)
\(488\) 0 0
\(489\) −3.97729 −0.179859
\(490\) 0 0
\(491\) 11.3070 0.510278 0.255139 0.966904i \(-0.417879\pi\)
0.255139 + 0.966904i \(0.417879\pi\)
\(492\) 0 0
\(493\) 1.30950i 0.0589770i
\(494\) 0 0
\(495\) −3.30052 + 1.07927i −0.148348 + 0.0485098i
\(496\) 0 0
\(497\) 10.1515i 0.455359i
\(498\) 0 0
\(499\) 6.06431 0.271476 0.135738 0.990745i \(-0.456659\pi\)
0.135738 + 0.990745i \(0.456659\pi\)
\(500\) 0 0
\(501\) 31.3779 1.40186
\(502\) 0 0
\(503\) 39.7943i 1.77434i −0.461444 0.887169i \(-0.652669\pi\)
0.461444 0.887169i \(-0.347331\pi\)
\(504\) 0 0
\(505\) −2.70968 + 0.886068i −0.120579 + 0.0394295i
\(506\) 0 0
\(507\) 8.84143i 0.392662i
\(508\) 0 0
\(509\) −11.1058 −0.492258 −0.246129 0.969237i \(-0.579159\pi\)
−0.246129 + 0.969237i \(0.579159\pi\)
\(510\) 0 0
\(511\) 10.1922 0.450875
\(512\) 0 0
\(513\) 14.7039i 0.649193i
\(514\) 0 0
\(515\) 2.49336 + 7.62494i 0.109871 + 0.335995i
\(516\) 0 0
\(517\) 6.90511i 0.303686i
\(518\) 0 0
\(519\) 25.4401 1.11670
\(520\) 0 0
\(521\) −8.57831 −0.375822 −0.187911 0.982186i \(-0.560172\pi\)
−0.187911 + 0.982186i \(0.560172\pi\)
\(522\) 0 0
\(523\) 25.6845i 1.12311i 0.827441 + 0.561553i \(0.189796\pi\)
−0.827441 + 0.561553i \(0.810204\pi\)
\(524\) 0 0
\(525\) 10.3667 7.59162i 0.452440 0.331325i
\(526\) 0 0
\(527\) 1.29901i 0.0565856i
\(528\) 0 0
\(529\) 1.19266 0.0518546
\(530\) 0 0
\(531\) 16.7236 0.725744
\(532\) 0 0
\(533\) 39.8531i 1.72623i
\(534\) 0 0
\(535\) 3.45739 + 10.5730i 0.149476 + 0.457111i
\(536\) 0 0
\(537\) 23.4706i 1.01283i
\(538\) 0 0
\(539\) 5.54950 0.239034
\(540\) 0 0
\(541\) −5.62955 −0.242033 −0.121017 0.992650i \(-0.538615\pi\)
−0.121017 + 0.992650i \(0.538615\pi\)
\(542\) 0 0
\(543\) 0.212617i 0.00912427i
\(544\) 0 0
\(545\) −14.1094 + 4.61380i −0.604382 + 0.197634i
\(546\) 0 0
\(547\) 44.0338i 1.88275i 0.337365 + 0.941374i \(0.390464\pi\)
−0.337365 + 0.941374i \(0.609536\pi\)
\(548\) 0 0
\(549\) −14.6050 −0.623325
\(550\) 0 0
\(551\) −10.0311 −0.427340
\(552\) 0 0
\(553\) 7.76384i 0.330152i
\(554\) 0 0
\(555\) 40.4008 13.2111i 1.71492 0.560780i
\(556\) 0 0
\(557\) 40.5943i 1.72003i 0.510265 + 0.860017i \(0.329547\pi\)
−0.510265 + 0.860017i \(0.670453\pi\)
\(558\) 0 0
\(559\) 42.2341 1.78631
\(560\) 0 0
\(561\) −1.32650 −0.0560047
\(562\) 0 0
\(563\) 6.63333i 0.279562i 0.990182 + 0.139781i \(0.0446398\pi\)
−0.990182 + 0.139781i \(0.955360\pi\)
\(564\) 0 0
\(565\) −2.89349 8.84857i −0.121730 0.372262i
\(566\) 0 0
\(567\) 13.5457i 0.568868i
\(568\) 0 0
\(569\) 18.3346 0.768625 0.384313 0.923203i \(-0.374438\pi\)
0.384313 + 0.923203i \(0.374438\pi\)
\(570\) 0 0
\(571\) 9.13047 0.382098 0.191049 0.981580i \(-0.438811\pi\)
0.191049 + 0.981580i \(0.438811\pi\)
\(572\) 0 0
\(573\) 43.7932i 1.82949i
\(574\) 0 0
\(575\) −13.7953 18.8381i −0.575303 0.785603i
\(576\) 0 0
\(577\) 9.93656i 0.413665i −0.978376 0.206832i \(-0.933685\pi\)
0.978376 0.206832i \(-0.0663154\pi\)
\(578\) 0 0
\(579\) −35.9995 −1.49609
\(580\) 0 0
\(581\) 0.814127 0.0337757
\(582\) 0 0
\(583\) 3.32273i 0.137613i
\(584\) 0 0
\(585\) −4.46872 13.6658i −0.184759 0.565010i
\(586\) 0 0
\(587\) 1.66282i 0.0686318i 0.999411 + 0.0343159i \(0.0109252\pi\)
−0.999411 + 0.0343159i \(0.989075\pi\)
\(588\) 0 0
\(589\) 9.95073 0.410013
\(590\) 0 0
\(591\) 2.90693 0.119575
\(592\) 0 0
\(593\) 22.3866i 0.919307i −0.888098 0.459653i \(-0.847974\pi\)
0.888098 0.459653i \(-0.152026\pi\)
\(594\) 0 0
\(595\) 1.59127 0.520346i 0.0652356 0.0213321i
\(596\) 0 0
\(597\) 42.9069i 1.75606i
\(598\) 0 0
\(599\) −36.9636 −1.51029 −0.755147 0.655556i \(-0.772434\pi\)
−0.755147 + 0.655556i \(0.772434\pi\)
\(600\) 0 0
\(601\) −1.08085 −0.0440887 −0.0220443 0.999757i \(-0.507017\pi\)
−0.0220443 + 0.999757i \(0.507017\pi\)
\(602\) 0 0
\(603\) 8.36272i 0.340556i
\(604\) 0 0
\(605\) 2.12532 0.694983i 0.0864067 0.0282551i
\(606\) 0 0
\(607\) 15.9873i 0.648903i 0.945902 + 0.324451i \(0.105180\pi\)
−0.945902 + 0.324451i \(0.894820\pi\)
\(608\) 0 0
\(609\) −5.41317 −0.219353
\(610\) 0 0
\(611\) 28.5905 1.15665
\(612\) 0 0
\(613\) 13.6367i 0.550781i 0.961332 + 0.275390i \(0.0888071\pi\)
−0.961332 + 0.275390i \(0.911193\pi\)
\(614\) 0 0
\(615\) −14.2736 43.6499i −0.575565 1.76013i
\(616\) 0 0
\(617\) 40.9104i 1.64699i −0.567323 0.823496i \(-0.692021\pi\)
0.567323 0.823496i \(-0.307979\pi\)
\(618\) 0 0
\(619\) −42.1598 −1.69454 −0.847272 0.531159i \(-0.821757\pi\)
−0.847272 + 0.531159i \(0.821757\pi\)
\(620\) 0 0
\(621\) −14.4189 −0.578609
\(622\) 0 0
\(623\) 18.8954i 0.757027i
\(624\) 0 0
\(625\) 7.54627 23.8339i 0.301851 0.953355i
\(626\) 0 0
\(627\) 10.1613i 0.405804i
\(628\) 0 0
\(629\) 5.53831 0.220827
\(630\) 0 0
\(631\) −29.6308 −1.17958 −0.589792 0.807555i \(-0.700790\pi\)
−0.589792 + 0.807555i \(0.700790\pi\)
\(632\) 0 0
\(633\) 14.4503i 0.574347i
\(634\) 0 0
\(635\) 3.30724 + 10.1139i 0.131244 + 0.401356i
\(636\) 0 0
\(637\) 22.9776i 0.910406i
\(638\) 0 0
\(639\) 13.0898 0.517823
\(640\) 0 0
\(641\) 36.4240 1.43866 0.719330 0.694668i \(-0.244449\pi\)
0.719330 + 0.694668i \(0.244449\pi\)
\(642\) 0 0
\(643\) 26.9899i 1.06438i −0.846626 0.532188i \(-0.821370\pi\)
0.846626 0.532188i \(-0.178630\pi\)
\(644\) 0 0
\(645\) −46.2577 + 15.1263i −1.82139 + 0.595598i
\(646\) 0 0
\(647\) 30.6852i 1.20636i 0.797605 + 0.603181i \(0.206100\pi\)
−0.797605 + 0.603181i \(0.793900\pi\)
\(648\) 0 0
\(649\) −10.7689 −0.422718
\(650\) 0 0
\(651\) 5.36978 0.210458
\(652\) 0 0
\(653\) 21.9274i 0.858085i 0.903284 + 0.429042i \(0.141149\pi\)
−0.903284 + 0.429042i \(0.858851\pi\)
\(654\) 0 0
\(655\) 23.1370 7.56583i 0.904039 0.295622i
\(656\) 0 0
\(657\) 13.1421i 0.512724i
\(658\) 0 0
\(659\) −19.1287 −0.745148 −0.372574 0.928003i \(-0.621525\pi\)
−0.372574 + 0.928003i \(0.621525\pi\)
\(660\) 0 0
\(661\) −50.9975 −1.98357 −0.991786 0.127912i \(-0.959172\pi\)
−0.991786 + 0.127912i \(0.959172\pi\)
\(662\) 0 0
\(663\) 5.49233i 0.213304i
\(664\) 0 0
\(665\) 3.98599 + 12.1895i 0.154570 + 0.472689i
\(666\) 0 0
\(667\) 9.83667i 0.380877i
\(668\) 0 0
\(669\) 4.50778 0.174281
\(670\) 0 0
\(671\) 9.40465 0.363062
\(672\) 0 0
\(673\) 23.3223i 0.899010i −0.893278 0.449505i \(-0.851600\pi\)
0.893278 0.449505i \(-0.148400\pi\)
\(674\) 0 0
\(675\) −9.12134 12.4556i −0.351081 0.479417i
\(676\) 0 0
\(677\) 6.30482i 0.242314i −0.992633 0.121157i \(-0.961340\pi\)
0.992633 0.121157i \(-0.0386605\pi\)
\(678\) 0 0
\(679\) −12.7024 −0.487475
\(680\) 0 0
\(681\) 16.3191 0.625348
\(682\) 0 0
\(683\) 36.8716i 1.41085i −0.708783 0.705426i \(-0.750756\pi\)
0.708783 0.705426i \(-0.249244\pi\)
\(684\) 0 0
\(685\) −7.00505 21.4221i −0.267649 0.818496i
\(686\) 0 0
\(687\) 26.1324i 0.997013i
\(688\) 0 0
\(689\) −13.7577 −0.524126
\(690\) 0 0
\(691\) 35.5795 1.35351 0.676754 0.736209i \(-0.263386\pi\)
0.676754 + 0.736209i \(0.263386\pi\)
\(692\) 0 0
\(693\) 1.87032i 0.0710477i
\(694\) 0 0
\(695\) −43.7523 + 14.3070i −1.65962 + 0.542697i
\(696\) 0 0
\(697\) 5.98372i 0.226649i
\(698\) 0 0
\(699\) −34.0340 −1.28729
\(700\) 0 0
\(701\) 12.1069 0.457271 0.228636 0.973512i \(-0.426574\pi\)
0.228636 + 0.973512i \(0.426574\pi\)
\(702\) 0 0
\(703\) 42.4249i 1.60009i
\(704\) 0 0
\(705\) −31.3142 + 10.2398i −1.17936 + 0.385653i
\(706\) 0 0
\(707\) 1.53551i 0.0577486i
\(708\) 0 0
\(709\) 31.1844 1.17115 0.585577 0.810617i \(-0.300868\pi\)
0.585577 + 0.810617i \(0.300868\pi\)
\(710\) 0 0
\(711\) −10.0110 −0.375441
\(712\) 0 0
\(713\) 9.75783i 0.365433i
\(714\) 0 0
\(715\) 2.87756 + 8.79986i 0.107615 + 0.329096i
\(716\) 0 0
\(717\) 60.8585i 2.27280i
\(718\) 0 0
\(719\) 44.1954 1.64821 0.824106 0.566436i \(-0.191678\pi\)
0.824106 + 0.566436i \(0.191678\pi\)
\(720\) 0 0
\(721\) −4.32086 −0.160917
\(722\) 0 0
\(723\) 9.63292i 0.358252i
\(724\) 0 0
\(725\) −8.49732 + 6.22265i −0.315583 + 0.231104i
\(726\) 0 0
\(727\) 0.419917i 0.0155739i −0.999970 0.00778694i \(-0.997521\pi\)
0.999970 0.00778694i \(-0.00247868\pi\)
\(728\) 0 0
\(729\) −2.29867 −0.0851359
\(730\) 0 0
\(731\) −6.34120 −0.234538
\(732\) 0 0
\(733\) 15.6107i 0.576595i −0.957541 0.288297i \(-0.906911\pi\)
0.957541 0.288297i \(-0.0930892\pi\)
\(734\) 0 0
\(735\) −8.22952 25.1667i −0.303550 0.928286i
\(736\) 0 0
\(737\) 5.38505i 0.198361i
\(738\) 0 0
\(739\) 12.5531 0.461773 0.230887 0.972981i \(-0.425837\pi\)
0.230887 + 0.972981i \(0.425837\pi\)
\(740\) 0 0
\(741\) 42.0727 1.54558
\(742\) 0 0
\(743\) 41.3322i 1.51633i −0.652061 0.758166i \(-0.726096\pi\)
0.652061 0.758166i \(-0.273904\pi\)
\(744\) 0 0
\(745\) −14.1514 + 4.62753i −0.518468 + 0.169540i
\(746\) 0 0
\(747\) 1.04976i 0.0384088i
\(748\) 0 0
\(749\) −5.99146 −0.218923
\(750\) 0 0
\(751\) −13.6104 −0.496652 −0.248326 0.968677i \(-0.579880\pi\)
−0.248326 + 0.968677i \(0.579880\pi\)
\(752\) 0 0
\(753\) 30.2233i 1.10140i
\(754\) 0 0
\(755\) 44.3138 14.4906i 1.61274 0.527369i
\(756\) 0 0
\(757\) 15.8830i 0.577279i 0.957438 + 0.288640i \(0.0932029\pi\)
−0.957438 + 0.288640i \(0.906797\pi\)
\(758\) 0 0
\(759\) −9.96433 −0.361682
\(760\) 0 0
\(761\) −0.731594 −0.0265203 −0.0132601 0.999912i \(-0.504221\pi\)
−0.0132601 + 0.999912i \(0.504221\pi\)
\(762\) 0 0
\(763\) 7.99546i 0.289455i
\(764\) 0 0
\(765\) 0.670952 + 2.05183i 0.0242583 + 0.0741842i
\(766\) 0 0
\(767\) 44.5886i 1.61000i
\(768\) 0 0
\(769\) 28.1471 1.01501 0.507505 0.861649i \(-0.330568\pi\)
0.507505 + 0.861649i \(0.330568\pi\)
\(770\) 0 0
\(771\) 6.93488 0.249753
\(772\) 0 0
\(773\) 27.3629i 0.984176i −0.870545 0.492088i \(-0.836234\pi\)
0.870545 0.492088i \(-0.163766\pi\)
\(774\) 0 0
\(775\) 8.42922 6.17278i 0.302786 0.221733i
\(776\) 0 0
\(777\) 22.8941i 0.821321i
\(778\) 0 0
\(779\) 45.8368 1.64228
\(780\) 0 0
\(781\) −8.42895 −0.301612
\(782\) 0 0
\(783\) 6.50393i 0.232432i
\(784\) 0 0
\(785\) −11.0083 33.6645i −0.392904 1.20154i
\(786\) 0 0
\(787\) 15.3954i 0.548788i 0.961617 + 0.274394i \(0.0884773\pi\)
−0.961617 + 0.274394i \(0.911523\pi\)
\(788\) 0 0
\(789\) 11.8813 0.422985
\(790\) 0 0
\(791\) 5.01426 0.178286
\(792\) 0 0
\(793\) 38.9398i 1.38279i
\(794\) 0 0
\(795\) 15.0684 4.92737i 0.534420 0.174756i
\(796\) 0 0
\(797\) 48.3762i 1.71357i 0.515673 + 0.856786i \(0.327542\pi\)
−0.515673 + 0.856786i \(0.672458\pi\)
\(798\) 0 0
\(799\) −4.29269 −0.151865
\(800\) 0 0
\(801\) 24.3644 0.860872
\(802\) 0 0
\(803\) 8.46268i 0.298642i
\(804\) 0 0
\(805\) 11.9532 3.90872i 0.421296 0.137764i
\(806\) 0 0
\(807\) 30.3963i 1.07000i
\(808\) 0 0
\(809\) 34.1856 1.20190 0.600950 0.799287i \(-0.294789\pi\)
0.600950 + 0.799287i \(0.294789\pi\)
\(810\) 0 0
\(811\) −28.5790 −1.00354 −0.501771 0.865000i \(-0.667318\pi\)
−0.501771 + 0.865000i \(0.667318\pi\)
\(812\) 0 0
\(813\) 35.3920i 1.24125i
\(814\) 0 0
\(815\) −1.29543 3.96155i −0.0453770 0.138767i
\(816\) 0 0
\(817\) 48.5753i 1.69943i
\(818\) 0 0
\(819\) 7.74404 0.270599
\(820\) 0 0
\(821\) −48.9846 −1.70957 −0.854787 0.518978i \(-0.826313\pi\)
−0.854787 + 0.518978i \(0.826313\pi\)
\(822\) 0 0
\(823\) 51.9200i 1.80982i 0.425605 + 0.904909i \(0.360061\pi\)
−0.425605 + 0.904909i \(0.639939\pi\)
\(824\) 0 0
\(825\) −6.30341 8.60760i −0.219457 0.299678i
\(826\) 0 0
\(827\) 55.7187i 1.93753i −0.247980 0.968765i \(-0.579767\pi\)
0.247980 0.968765i \(-0.420233\pi\)
\(828\) 0 0
\(829\) 55.7521 1.93635 0.968175 0.250274i \(-0.0805206\pi\)
0.968175 + 0.250274i \(0.0805206\pi\)
\(830\) 0 0
\(831\) −7.24379 −0.251284
\(832\) 0 0
\(833\) 3.44995i 0.119534i
\(834\) 0 0
\(835\) 10.2200 + 31.2537i 0.353678 + 1.08158i
\(836\) 0 0
\(837\) 6.45180i 0.223007i
\(838\) 0 0
\(839\) −19.2438 −0.664369 −0.332184 0.943214i \(-0.607786\pi\)
−0.332184 + 0.943214i \(0.607786\pi\)
\(840\) 0 0
\(841\) −24.5630 −0.846999
\(842\) 0 0
\(843\) 36.7780i 1.26670i
\(844\) 0 0
\(845\) −8.80645 + 2.87972i −0.302951 + 0.0990654i
\(846\) 0 0
\(847\) 1.20437i 0.0413825i
\(848\) 0 0
\(849\) 68.2371 2.34189
\(850\) 0 0
\(851\) 41.6025 1.42612
\(852\) 0 0
\(853\) 33.8108i 1.15766i −0.815448 0.578830i \(-0.803509\pi\)
0.815448 0.578830i \(-0.196491\pi\)
\(854\) 0 0
\(855\) −15.7176 + 5.13967i −0.537530 + 0.175773i
\(856\) 0 0
\(857\) 58.4040i 1.99504i 0.0703617 + 0.997522i \(0.477585\pi\)
−0.0703617 + 0.997522i \(0.522415\pi\)
\(858\) 0 0
\(859\) −23.8572 −0.813998 −0.406999 0.913429i \(-0.633425\pi\)
−0.406999 + 0.913429i \(0.633425\pi\)
\(860\) 0 0
\(861\) 24.7353 0.842976
\(862\) 0 0
\(863\) 4.37835i 0.149041i −0.997219 0.0745204i \(-0.976257\pi\)
0.997219 0.0745204i \(-0.0237426\pi\)
\(864\) 0 0
\(865\) 8.28604 + 25.3395i 0.281734 + 0.861568i
\(866\) 0 0
\(867\) 35.4494i 1.20392i
\(868\) 0 0
\(869\) 6.44641 0.218680
\(870\) 0 0
\(871\) −22.2967 −0.755494
\(872\) 0 0
\(873\) 16.3790i 0.554344i
\(874\) 0 0
\(875\) 10.9381 + 7.85305i 0.369775 + 0.265482i
\(876\) 0 0
\(877\) 46.8329i 1.58143i 0.612182 + 0.790717i \(0.290292\pi\)
−0.612182 + 0.790717i \(0.709708\pi\)
\(878\) 0 0
\(879\) 21.7406 0.733293
\(880\) 0 0
\(881\) 2.72179 0.0916993 0.0458496 0.998948i \(-0.485400\pi\)
0.0458496 + 0.998948i \(0.485400\pi\)
\(882\) 0 0
\(883\) 22.8773i 0.769881i 0.922941 + 0.384941i \(0.125778\pi\)
−0.922941 + 0.384941i \(0.874222\pi\)
\(884\) 0 0
\(885\) 15.9696 + 48.8365i 0.536811 + 1.64162i
\(886\) 0 0
\(887\) 37.0004i 1.24235i −0.783672 0.621175i \(-0.786656\pi\)
0.783672 0.621175i \(-0.213344\pi\)
\(888\) 0 0
\(889\) −5.73127 −0.192221
\(890\) 0 0
\(891\) −11.2472 −0.376795
\(892\) 0 0
\(893\) 32.8832i 1.10039i
\(894\) 0 0
\(895\) −23.3778 + 7.64455i −0.781432 + 0.255529i
\(896\) 0 0
\(897\) 41.2571i 1.37753i
\(898\) 0 0
\(899\) −4.40147 −0.146797
\(900\) 0 0
\(901\) 2.06564 0.0688164
\(902\) 0 0
\(903\) 26.2130i 0.872315i
\(904\) 0 0
\(905\) −0.211776 + 0.0692510i −0.00703967 + 0.00230198i
\(906\) 0 0
\(907\) 6.01498i 0.199724i −0.995001 0.0998621i \(-0.968160\pi\)
0.995001 0.0998621i \(-0.0318402\pi\)
\(908\) 0 0
\(909\) 1.97993 0.0656703
\(910\) 0 0
\(911\) −9.98170 −0.330708 −0.165354 0.986234i \(-0.552877\pi\)
−0.165354 + 0.986234i \(0.552877\pi\)
\(912\) 0 0
\(913\) 0.675980i 0.0223717i
\(914\) 0 0
\(915\) −13.9464 42.6495i −0.461055 1.40995i
\(916\) 0 0
\(917\) 13.1112i 0.432969i
\(918\) 0 0
\(919\) 36.3004 1.19744 0.598719 0.800959i \(-0.295677\pi\)
0.598719 + 0.800959i \(0.295677\pi\)
\(920\) 0 0
\(921\) 43.4705 1.43240
\(922\) 0 0
\(923\) 34.8999i 1.14874i
\(924\) 0 0
\(925\) 26.3177 + 35.9380i 0.865319 + 1.18163i
\(926\) 0 0
\(927\) 5.57147i 0.182991i
\(928\) 0 0
\(929\) −25.3480 −0.831640 −0.415820 0.909447i \(-0.636505\pi\)
−0.415820 + 0.909447i \(0.636505\pi\)
\(930\) 0 0
\(931\) 26.4276 0.866128
\(932\) 0 0
\(933\) 9.89659i 0.324000i
\(934\) 0 0
\(935\) −0.432050 1.32125i −0.0141295 0.0432094i
\(936\) 0 0
\(937\) 36.8662i 1.20437i −0.798358 0.602183i \(-0.794298\pi\)
0.798358 0.602183i \(-0.205702\pi\)
\(938\) 0 0
\(939\) 55.3448 1.80611
\(940\) 0 0
\(941\) 10.2385 0.333764 0.166882 0.985977i \(-0.446630\pi\)
0.166882 + 0.985977i \(0.446630\pi\)
\(942\) 0 0
\(943\) 44.9483i 1.46372i
\(944\) 0 0
\(945\) 7.90339 2.58442i 0.257097 0.0840710i
\(946\) 0 0
\(947\) 16.4386i 0.534183i 0.963671 + 0.267092i \(0.0860626\pi\)
−0.963671 + 0.267092i \(0.913937\pi\)
\(948\) 0 0
\(949\) 35.0396 1.13743
\(950\) 0 0
\(951\) 14.9329 0.484234
\(952\) 0 0
\(953\) 57.7188i 1.86969i 0.355050 + 0.934847i \(0.384464\pi\)
−0.355050 + 0.934847i \(0.615536\pi\)
\(954\) 0 0
\(955\) −43.6200 + 14.2638i −1.41151 + 0.461565i
\(956\) 0 0
\(957\) 4.49462i 0.145290i
\(958\) 0 0
\(959\) 12.1394 0.392000
\(960\) 0 0
\(961\) −26.6338 −0.859155
\(962\) 0 0
\(963\) 7.72559i 0.248954i
\(964\) 0 0
\(965\) −11.7253 35.8571i −0.377451 1.15428i
\(966\) 0 0
\(967\) 31.9836i 1.02852i −0.857633 0.514262i \(-0.828066\pi\)
0.857633 0.514262i \(-0.171934\pi\)
\(968\) 0 0
\(969\) −6.31697 −0.202930
\(970\) 0 0
\(971\) 47.6080 1.52781 0.763906 0.645327i \(-0.223279\pi\)
0.763906 + 0.645327i \(0.223279\pi\)
\(972\) 0 0
\(973\) 24.7933i 0.794837i
\(974\) 0 0
\(975\) 35.6396 26.0992i 1.14138 0.835842i
\(976\) 0 0
\(977\) 5.75975i 0.184271i 0.995746 + 0.0921353i \(0.0293692\pi\)
−0.995746 + 0.0921353i \(0.970631\pi\)
\(978\) 0 0
\(979\) −15.6891 −0.501425
\(980\) 0 0
\(981\) 10.3096 0.329161
\(982\) 0 0
\(983\) 31.8921i 1.01720i −0.861003 0.508601i \(-0.830163\pi\)
0.861003 0.508601i \(-0.169837\pi\)
\(984\) 0 0
\(985\) 0.946807 + 2.89543i 0.0301678 + 0.0922559i
\(986\) 0 0
\(987\) 17.7450i 0.564829i
\(988\) 0 0
\(989\) −47.6336 −1.51466
\(990\) 0 0
\(991\) −43.6276 −1.38588 −0.692938 0.720997i \(-0.743684\pi\)
−0.692938 + 0.720997i \(0.743684\pi\)
\(992\) 0 0
\(993\) 14.3763i 0.456218i
\(994\) 0 0
\(995\) 42.7372 13.9751i 1.35486 0.443040i
\(996\) 0 0
\(997\) 39.0472i 1.23664i −0.785927 0.618319i \(-0.787814\pi\)
0.785927 0.618319i \(-0.212186\pi\)
\(998\) 0 0
\(999\) 27.5073 0.870292
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1760.2.b.f.1409.3 yes 14
4.3 odd 2 1760.2.b.e.1409.12 yes 14
5.2 odd 4 8800.2.a.cd.1.2 7
5.3 odd 4 8800.2.a.cj.1.6 7
5.4 even 2 inner 1760.2.b.f.1409.12 yes 14
20.3 even 4 8800.2.a.cc.1.2 7
20.7 even 4 8800.2.a.ci.1.6 7
20.19 odd 2 1760.2.b.e.1409.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1760.2.b.e.1409.3 14 20.19 odd 2
1760.2.b.e.1409.12 yes 14 4.3 odd 2
1760.2.b.f.1409.3 yes 14 1.1 even 1 trivial
1760.2.b.f.1409.12 yes 14 5.4 even 2 inner
8800.2.a.cc.1.2 7 20.3 even 4
8800.2.a.cd.1.2 7 5.2 odd 4
8800.2.a.ci.1.6 7 20.7 even 4
8800.2.a.cj.1.6 7 5.3 odd 4