Properties

Label 1760.2.b.f.1409.3
Level 17601760
Weight 22
Character 1760.1409
Analytic conductor 14.05414.054
Analytic rank 00
Dimension 1414
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1760,2,Mod(1409,1760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1760.1409");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1760=25511 1760 = 2^{5} \cdot 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1760.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 14.053670755714.0536707557
Analytic rank: 00
Dimension: 1414
Coefficient field: Q[x]/(x14+)\mathbb{Q}[x]/(x^{14} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x14+16x12+96x10+272x8+372x6+225x4+56x2+4 x^{14} + 16x^{12} + 96x^{10} + 272x^{8} + 372x^{6} + 225x^{4} + 56x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 213 2^{13}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1409.3
Root 1.51372i-1.51372i of defining polynomial
Character χ\chi == 1760.1409
Dual form 1760.2.b.f.1409.12

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.13376iq3+(2.125320.694983i)q5+1.20437iq71.55295q9+1.00000q11+4.14048iq13+(1.482934.53494i)q150.621669iq17+4.76215q19+2.56983q214.66983iq23+(4.034002.95413i)q253.08766iq272.10643q29+2.08954q312.13376iq33+(0.837014+2.55967i)q35+8.90878iq37+8.83481q39+9.62524q4110.2003iq43+(3.30052+1.07927i)q456.90511iq47+5.54950q491.32650q51+3.32273iq53+(2.125320.694983i)q5510.1613iq5710.7689q59+9.40465q611.87032iq63+(2.87756+8.79986i)q65+5.38505iq679.96433q698.42895q718.46268iq73+(6.303418.60760i)q75+1.20437iq77+6.44641q7911.2472q810.675980iq83+(0.4320501.32125i)q85+4.49462iq8715.6891q894.98666q914.45860iq93+(10.12113.30961i)q95+10.5470iq971.55295q99+O(q100)q-2.13376i q^{3} +(2.12532 - 0.694983i) q^{5} +1.20437i q^{7} -1.55295 q^{9} +1.00000 q^{11} +4.14048i q^{13} +(-1.48293 - 4.53494i) q^{15} -0.621669i q^{17} +4.76215 q^{19} +2.56983 q^{21} -4.66983i q^{23} +(4.03400 - 2.95413i) q^{25} -3.08766i q^{27} -2.10643 q^{29} +2.08954 q^{31} -2.13376i q^{33} +(0.837014 + 2.55967i) q^{35} +8.90878i q^{37} +8.83481 q^{39} +9.62524 q^{41} -10.2003i q^{43} +(-3.30052 + 1.07927i) q^{45} -6.90511i q^{47} +5.54950 q^{49} -1.32650 q^{51} +3.32273i q^{53} +(2.12532 - 0.694983i) q^{55} -10.1613i q^{57} -10.7689 q^{59} +9.40465 q^{61} -1.87032i q^{63} +(2.87756 + 8.79986i) q^{65} +5.38505i q^{67} -9.96433 q^{69} -8.42895 q^{71} -8.46268i q^{73} +(-6.30341 - 8.60760i) q^{75} +1.20437i q^{77} +6.44641 q^{79} -11.2472 q^{81} -0.675980i q^{83} +(-0.432050 - 1.32125i) q^{85} +4.49462i q^{87} -15.6891 q^{89} -4.98666 q^{91} -4.45860i q^{93} +(10.1211 - 3.30961i) q^{95} +10.5470i q^{97} -1.55295 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 14q+2q512q9+14q11+12q1514q19+26q214q25+22q2922q312q358q39+8q418q4532q4914q51+2q5552q5910q61+12q99+O(q100) 14 q + 2 q^{5} - 12 q^{9} + 14 q^{11} + 12 q^{15} - 14 q^{19} + 26 q^{21} - 4 q^{25} + 22 q^{29} - 22 q^{31} - 2 q^{35} - 8 q^{39} + 8 q^{41} - 8 q^{45} - 32 q^{49} - 14 q^{51} + 2 q^{55} - 52 q^{59} - 10 q^{61}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1760Z)×\left(\mathbb{Z}/1760\mathbb{Z}\right)^\times.

nn 321321 991991 10571057 15411541
χ(n)\chi(n) 11 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 2.13376i 1.23193i −0.787774 0.615965i 0.788766π-0.788766\pi
0.787774 0.615965i 0.211234π-0.211234\pi
44 0 0
55 2.12532 0.694983i 0.950473 0.310806i
66 0 0
77 1.20437i 0.455208i 0.973754 + 0.227604i 0.0730891π0.0730891\pi
−0.973754 + 0.227604i 0.926911π0.926911\pi
88 0 0
99 −1.55295 −0.517651
1010 0 0
1111 1.00000 0.301511
1212 0 0
1313 4.14048i 1.14836i 0.818728 + 0.574181i 0.194680π0.194680\pi
−0.818728 + 0.574181i 0.805320π0.805320\pi
1414 0 0
1515 −1.48293 4.53494i −0.382891 1.17092i
1616 0 0
1717 0.621669i 0.150777i −0.997154 0.0753885i 0.975980π-0.975980\pi
0.997154 0.0753885i 0.0240197π-0.0240197\pi
1818 0 0
1919 4.76215 1.09251 0.546256 0.837618i 0.316053π-0.316053\pi
0.546256 + 0.837618i 0.316053π0.316053\pi
2020 0 0
2121 2.56983 0.560784
2222 0 0
2323 4.66983i 0.973728i −0.873478 0.486864i 0.838141π-0.838141\pi
0.873478 0.486864i 0.161859π-0.161859\pi
2424 0 0
2525 4.03400 2.95413i 0.806800 0.590825i
2626 0 0
2727 3.08766i 0.594221i
2828 0 0
2929 −2.10643 −0.391154 −0.195577 0.980688i 0.562658π-0.562658\pi
−0.195577 + 0.980688i 0.562658π0.562658\pi
3030 0 0
3131 2.08954 0.375293 0.187647 0.982237i 0.439914π-0.439914\pi
0.187647 + 0.982237i 0.439914π0.439914\pi
3232 0 0
3333 2.13376i 0.371441i
3434 0 0
3535 0.837014 + 2.55967i 0.141481 + 0.432663i
3636 0 0
3737 8.90878i 1.46459i 0.680985 + 0.732297i 0.261552π0.261552\pi
−0.680985 + 0.732297i 0.738448π0.738448\pi
3838 0 0
3939 8.83481 1.41470
4040 0 0
4141 9.62524 1.50321 0.751605 0.659614i 0.229280π-0.229280\pi
0.751605 + 0.659614i 0.229280π0.229280\pi
4242 0 0
4343 10.2003i 1.55553i −0.628556 0.777764i 0.716354π-0.716354\pi
0.628556 0.777764i 0.283646π-0.283646\pi
4444 0 0
4545 −3.30052 + 1.07927i −0.492013 + 0.160889i
4646 0 0
4747 6.90511i 1.00721i −0.863933 0.503607i 0.832006π-0.832006\pi
0.863933 0.503607i 0.167994π-0.167994\pi
4848 0 0
4949 5.54950 0.792786
5050 0 0
5151 −1.32650 −0.185747
5252 0 0
5353 3.32273i 0.456412i 0.973613 + 0.228206i 0.0732859π0.0732859\pi
−0.973613 + 0.228206i 0.926714π0.926714\pi
5454 0 0
5555 2.12532 0.694983i 0.286579 0.0937115i
5656 0 0
5757 10.1613i 1.34590i
5858 0 0
5959 −10.7689 −1.40200 −0.700998 0.713163i 0.747262π-0.747262\pi
−0.700998 + 0.713163i 0.747262π0.747262\pi
6060 0 0
6161 9.40465 1.20414 0.602071 0.798443i 0.294342π-0.294342\pi
0.602071 + 0.798443i 0.294342π0.294342\pi
6262 0 0
6363 1.87032i 0.235639i
6464 0 0
6565 2.87756 + 8.79986i 0.356918 + 1.09149i
6666 0 0
6767 5.38505i 0.657888i 0.944349 + 0.328944i 0.106693π0.106693\pi
−0.944349 + 0.328944i 0.893307π0.893307\pi
6868 0 0
6969 −9.96433 −1.19956
7070 0 0
7171 −8.42895 −1.00033 −0.500166 0.865929i 0.666728π-0.666728\pi
−0.500166 + 0.865929i 0.666728π0.666728\pi
7272 0 0
7373 8.46268i 0.990482i −0.868756 0.495241i 0.835080π-0.835080\pi
0.868756 0.495241i 0.164920π-0.164920\pi
7474 0 0
7575 −6.30341 8.60760i −0.727855 0.993920i
7676 0 0
7777 1.20437i 0.137250i
7878 0 0
7979 6.44641 0.725278 0.362639 0.931930i 0.381876π-0.381876\pi
0.362639 + 0.931930i 0.381876π0.381876\pi
8080 0 0
8181 −11.2472 −1.24969
8282 0 0
8383 0.675980i 0.0741984i −0.999312 0.0370992i 0.988188π-0.988188\pi
0.999312 0.0370992i 0.0118118π-0.0118118\pi
8484 0 0
8585 −0.432050 1.32125i −0.0468624 0.143309i
8686 0 0
8787 4.49462i 0.481874i
8888 0 0
8989 −15.6891 −1.66304 −0.831518 0.555497i 0.812528π-0.812528\pi
−0.831518 + 0.555497i 0.812528π0.812528\pi
9090 0 0
9191 −4.98666 −0.522744
9292 0 0
9393 4.45860i 0.462335i
9494 0 0
9595 10.1211 3.30961i 1.03840 0.339559i
9696 0 0
9797 10.5470i 1.07088i 0.844572 + 0.535442i 0.179855π0.179855\pi
−0.844572 + 0.535442i 0.820145π0.820145\pi
9898 0 0
9999 −1.55295 −0.156078
100100 0 0
101101 −1.27495 −0.126862 −0.0634311 0.997986i 0.520204π-0.520204\pi
−0.0634311 + 0.997986i 0.520204π0.520204\pi
102102 0 0
103103 3.58766i 0.353503i 0.984256 + 0.176751i 0.0565589π0.0565589\pi
−0.984256 + 0.176751i 0.943441π0.943441\pi
104104 0 0
105105 5.46173 1.78599i 0.533010 0.174295i
106106 0 0
107107 4.97478i 0.480930i 0.970658 + 0.240465i 0.0772999π0.0772999\pi
−0.970658 + 0.240465i 0.922700π0.922700\pi
108108 0 0
109109 −6.63873 −0.635875 −0.317937 0.948112i 0.602990π-0.602990\pi
−0.317937 + 0.948112i 0.602990π0.602990\pi
110110 0 0
111111 19.0092 1.80428
112112 0 0
113113 4.16340i 0.391660i −0.980638 0.195830i 0.937260π-0.937260\pi
0.980638 0.195830i 0.0627400π-0.0627400\pi
114114 0 0
115115 −3.24545 9.92491i −0.302640 0.925502i
116116 0 0
117117 6.42997i 0.594451i
118118 0 0
119119 0.748718 0.0686348
120120 0 0
121121 1.00000 0.0909091
122122 0 0
123123 20.5380i 1.85185i
124124 0 0
125125 6.52048 9.08203i 0.583210 0.812322i
126126 0 0
127127 4.75874i 0.422270i 0.977457 + 0.211135i 0.0677160π0.0677160\pi
−0.977457 + 0.211135i 0.932284π0.932284\pi
128128 0 0
129129 −21.7650 −1.91630
130130 0 0
131131 10.8864 0.951146 0.475573 0.879676i 0.342241π-0.342241\pi
0.475573 + 0.879676i 0.342241π0.342241\pi
132132 0 0
133133 5.73537i 0.497320i
134134 0 0
135135 −2.14587 6.56228i −0.184687 0.564791i
136136 0 0
137137 10.0795i 0.861146i −0.902556 0.430573i 0.858312π-0.858312\pi
0.902556 0.430573i 0.141688π-0.141688\pi
138138 0 0
139139 −20.5862 −1.74610 −0.873048 0.487634i 0.837860π-0.837860\pi
−0.873048 + 0.487634i 0.837860π0.837860\pi
140140 0 0
141141 −14.7339 −1.24082
142142 0 0
143143 4.14048i 0.346244i
144144 0 0
145145 −4.47684 + 1.46393i −0.371781 + 0.121573i
146146 0 0
147147 11.8413i 0.976656i
148148 0 0
149149 −6.65848 −0.545484 −0.272742 0.962087i 0.587931π-0.587931\pi
−0.272742 + 0.962087i 0.587931π0.587931\pi
150150 0 0
151151 20.8504 1.69678 0.848389 0.529373i 0.177573π-0.177573\pi
0.848389 + 0.529373i 0.177573π0.177573\pi
152152 0 0
153153 0.965422i 0.0780498i
154154 0 0
155155 4.44096 1.45220i 0.356706 0.116643i
156156 0 0
157157 15.8397i 1.26415i −0.774909 0.632073i 0.782204π-0.782204\pi
0.774909 0.632073i 0.217796π-0.217796\pi
158158 0 0
159159 7.08992 0.562267
160160 0 0
161161 5.62419 0.443248
162162 0 0
163163 1.86398i 0.145998i −0.997332 0.0729990i 0.976743π-0.976743\pi
0.997332 0.0729990i 0.0232570π-0.0232570\pi
164164 0 0
165165 −1.48293 4.53494i −0.115446 0.353045i
166166 0 0
167167 14.7054i 1.13794i 0.822359 + 0.568969i 0.192658π0.192658\pi
−0.822359 + 0.568969i 0.807342π0.807342\pi
168168 0 0
169169 −4.14358 −0.318737
170170 0 0
171171 −7.39539 −0.565540
172172 0 0
173173 11.9226i 0.906462i 0.891393 + 0.453231i 0.149729π0.149729\pi
−0.891393 + 0.453231i 0.850271π0.850271\pi
174174 0 0
175175 3.55785 + 4.85841i 0.268948 + 0.367261i
176176 0 0
177177 22.9784i 1.72716i
178178 0 0
179179 −10.9996 −0.822151 −0.411075 0.911601i 0.634847π-0.634847\pi
−0.411075 + 0.911601i 0.634847π0.634847\pi
180180 0 0
181181 −0.0996441 −0.00740649 −0.00370324 0.999993i 0.501179π-0.501179\pi
−0.00370324 + 0.999993i 0.501179π0.501179\pi
182182 0 0
183183 20.0673i 1.48342i
184184 0 0
185185 6.19145 + 18.9340i 0.455204 + 1.39206i
186186 0 0
187187 0.621669i 0.0454610i
188188 0 0
189189 3.71867 0.270494
190190 0 0
191191 −20.5239 −1.48506 −0.742530 0.669813i 0.766374π-0.766374\pi
−0.742530 + 0.669813i 0.766374π0.766374\pi
192192 0 0
193193 16.8714i 1.21443i −0.794539 0.607214i 0.792287π-0.792287\pi
0.794539 0.607214i 0.207713π-0.207713\pi
194194 0 0
195195 18.7768 6.14004i 1.34464 0.439698i
196196 0 0
197197 1.36235i 0.0970631i 0.998822 + 0.0485316i 0.0154541π0.0154541\pi
−0.998822 + 0.0485316i 0.984546π0.984546\pi
198198 0 0
199199 20.1085 1.42546 0.712728 0.701440i 0.247459π-0.247459\pi
0.712728 + 0.701440i 0.247459π0.247459\pi
200200 0 0
201201 11.4904 0.810472
202202 0 0
203203 2.53691i 0.178056i
204204 0 0
205205 20.4567 6.68938i 1.42876 0.467206i
206206 0 0
207207 7.25203i 0.504051i
208208 0 0
209209 4.76215 0.329405
210210 0 0
211211 −6.77219 −0.466217 −0.233109 0.972451i 0.574890π-0.574890\pi
−0.233109 + 0.972451i 0.574890π0.574890\pi
212212 0 0
213213 17.9854i 1.23234i
214214 0 0
215215 −7.08902 21.6789i −0.483467 1.47849i
216216 0 0
217217 2.51658i 0.170836i
218218 0 0
219219 −18.0574 −1.22020
220220 0 0
221221 2.57401 0.173147
222222 0 0
223223 2.11259i 0.141470i 0.997495 + 0.0707349i 0.0225344π0.0225344\pi
−0.997495 + 0.0707349i 0.977466π0.977466\pi
224224 0 0
225225 −6.26460 + 4.58762i −0.417640 + 0.305841i
226226 0 0
227227 7.64802i 0.507617i 0.967254 + 0.253808i 0.0816833π0.0816833\pi
−0.967254 + 0.253808i 0.918317π0.918317\pi
228228 0 0
229229 −12.2471 −0.809310 −0.404655 0.914469i 0.632608π-0.632608\pi
−0.404655 + 0.914469i 0.632608π0.632608\pi
230230 0 0
231231 2.56983 0.169083
232232 0 0
233233 15.9502i 1.04493i −0.852659 0.522467i 0.825012π-0.825012\pi
0.852659 0.522467i 0.174988π-0.174988\pi
234234 0 0
235235 −4.79893 14.6756i −0.313048 0.957330i
236236 0 0
237237 13.7551i 0.893492i
238238 0 0
239239 28.5217 1.84491 0.922456 0.386101i 0.126178π-0.126178\pi
0.922456 + 0.386101i 0.126178π0.126178\pi
240240 0 0
241241 4.51452 0.290806 0.145403 0.989373i 0.453552π-0.453552\pi
0.145403 + 0.989373i 0.453552π0.453552\pi
242242 0 0
243243 14.7359i 0.945308i
244244 0 0
245245 11.7945 3.85681i 0.753522 0.246402i
246246 0 0
247247 19.7176i 1.25460i
248248 0 0
249249 −1.44238 −0.0914072
250250 0 0
251251 −14.1643 −0.894044 −0.447022 0.894523i 0.647515π-0.647515\pi
−0.447022 + 0.894523i 0.647515π0.647515\pi
252252 0 0
253253 4.66983i 0.293590i
254254 0 0
255255 −2.81923 + 0.921892i −0.176547 + 0.0577311i
256256 0 0
257257 3.25007i 0.202734i 0.994849 + 0.101367i 0.0323216π0.0323216\pi
−0.994849 + 0.101367i 0.967678π0.967678\pi
258258 0 0
259259 −10.7294 −0.666695
260260 0 0
261261 3.27118 0.202481
262262 0 0
263263 5.56822i 0.343351i 0.985154 + 0.171676i 0.0549181π0.0549181\pi
−0.985154 + 0.171676i 0.945082π0.945082\pi
264264 0 0
265265 2.30924 + 7.06187i 0.141855 + 0.433807i
266266 0 0
267267 33.4768i 2.04874i
268268 0 0
269269 14.2454 0.868557 0.434279 0.900779i 0.357003π-0.357003\pi
0.434279 + 0.900779i 0.357003π0.357003\pi
270270 0 0
271271 −16.5866 −1.00757 −0.503783 0.863830i 0.668059π-0.668059\pi
−0.503783 + 0.863830i 0.668059π0.668059\pi
272272 0 0
273273 10.6404i 0.643983i
274274 0 0
275275 4.03400 2.95413i 0.243259 0.178141i
276276 0 0
277277 3.39484i 0.203976i −0.994786 0.101988i 0.967480π-0.967480\pi
0.994786 0.101988i 0.0325204π-0.0325204\pi
278278 0 0
279279 −3.24496 −0.194271
280280 0 0
281281 −17.2362 −1.02823 −0.514113 0.857723i 0.671879π-0.671879\pi
−0.514113 + 0.857723i 0.671879π0.671879\pi
282282 0 0
283283 31.9797i 1.90100i 0.310732 + 0.950498i 0.399426π0.399426\pi
−0.310732 + 0.950498i 0.600574π0.600574\pi
284284 0 0
285285 −7.06194 21.5961i −0.418313 1.27924i
286286 0 0
287287 11.5923i 0.684273i
288288 0 0
289289 16.6135 0.977266
290290 0 0
291291 22.5048 1.31925
292292 0 0
293293 10.1889i 0.595240i 0.954684 + 0.297620i 0.0961928π0.0961928\pi
−0.954684 + 0.297620i 0.903807π0.903807\pi
294294 0 0
295295 −22.8875 + 7.48423i −1.33256 + 0.435748i
296296 0 0
297297 3.08766i 0.179164i
298298 0 0
299299 19.3354 1.11819
300300 0 0
301301 12.2849 0.708088
302302 0 0
303303 2.72044i 0.156285i
304304 0 0
305305 19.9879 6.53607i 1.14450 0.374254i
306306 0 0
307307 20.3727i 1.16273i 0.813643 + 0.581365i 0.197481π0.197481\pi
−0.813643 + 0.581365i 0.802519π0.802519\pi
308308 0 0
309309 7.65523 0.435491
310310 0 0
311311 −4.63809 −0.263002 −0.131501 0.991316i 0.541980π-0.541980\pi
−0.131501 + 0.991316i 0.541980π0.541980\pi
312312 0 0
313313 25.9376i 1.46608i 0.680185 + 0.733040i 0.261899π0.261899\pi
−0.680185 + 0.733040i 0.738101π0.738101\pi
314314 0 0
315315 −1.29984 3.97504i −0.0732378 0.223968i
316316 0 0
317317 6.99840i 0.393069i 0.980497 + 0.196535i 0.0629688π0.0629688\pi
−0.980497 + 0.196535i 0.937031π0.937031\pi
318318 0 0
319319 −2.10643 −0.117937
320320 0 0
321321 10.6150 0.592472
322322 0 0
323323 2.96048i 0.164726i
324324 0 0
325325 12.2315 + 16.7027i 0.678482 + 0.926499i
326326 0 0
327327 14.1655i 0.783353i
328328 0 0
329329 8.31628 0.458491
330330 0 0
331331 −6.73753 −0.370328 −0.185164 0.982708i 0.559282π-0.559282\pi
−0.185164 + 0.982708i 0.559282π0.559282\pi
332332 0 0
333333 13.8349i 0.758148i
334334 0 0
335335 3.74252 + 11.4450i 0.204475 + 0.625305i
336336 0 0
337337 3.20655i 0.174672i 0.996179 + 0.0873361i 0.0278354π0.0278354\pi
−0.996179 + 0.0873361i 0.972165π0.972165\pi
338338 0 0
339339 −8.88371 −0.482497
340340 0 0
341341 2.08954 0.113155
342342 0 0
343343 15.1142i 0.816090i
344344 0 0
345345 −21.1774 + 6.92504i −1.14015 + 0.372831i
346346 0 0
347347 12.6613i 0.679696i 0.940480 + 0.339848i 0.110376π0.110376\pi
−0.940480 + 0.339848i 0.889624π0.889624\pi
348348 0 0
349349 0.596140 0.0319106 0.0159553 0.999873i 0.494921π-0.494921\pi
0.0159553 + 0.999873i 0.494921π0.494921\pi
350350 0 0
351351 12.7844 0.682381
352352 0 0
353353 21.4134i 1.13972i 0.821742 + 0.569860i 0.193003π0.193003\pi
−0.821742 + 0.569860i 0.806997π0.806997\pi
354354 0 0
355355 −17.9142 + 5.85798i −0.950789 + 0.310909i
356356 0 0
357357 1.59759i 0.0845533i
358358 0 0
359359 −17.2379 −0.909781 −0.454891 0.890547i 0.650322π-0.650322\pi
−0.454891 + 0.890547i 0.650322π0.650322\pi
360360 0 0
361361 3.67808 0.193583
362362 0 0
363363 2.13376i 0.111994i
364364 0 0
365365 −5.88142 17.9859i −0.307848 0.941427i
366366 0 0
367367 31.2870i 1.63317i 0.577228 + 0.816583i 0.304134π0.304134\pi
−0.577228 + 0.816583i 0.695866π0.695866\pi
368368 0 0
369369 −14.9475 −0.778137
370370 0 0
371371 −4.00178 −0.207762
372372 0 0
373373 18.6441i 0.965355i 0.875798 + 0.482677i 0.160336π0.160336\pi
−0.875798 + 0.482677i 0.839664π0.839664\pi
374374 0 0
375375 −19.3789 13.9132i −1.00072 0.718473i
376376 0 0
377377 8.72162i 0.449186i
378378 0 0
379379 −33.4682 −1.71915 −0.859574 0.511011i 0.829271π-0.829271\pi
−0.859574 + 0.511011i 0.829271π0.829271\pi
380380 0 0
381381 10.1540 0.520207
382382 0 0
383383 32.4451i 1.65787i −0.559347 0.828934i 0.688948π-0.688948\pi
0.559347 0.828934i 0.311052π-0.311052\pi
384384 0 0
385385 0.837014 + 2.55967i 0.0426582 + 0.130453i
386386 0 0
387387 15.8405i 0.805220i
388388 0 0
389389 17.2080 0.872481 0.436241 0.899830i 0.356310π-0.356310\pi
0.436241 + 0.899830i 0.356310π0.356310\pi
390390 0 0
391391 −2.90309 −0.146816
392392 0 0
393393 23.2289i 1.17174i
394394 0 0
395395 13.7007 4.48015i 0.689358 0.225421i
396396 0 0
397397 24.8359i 1.24648i 0.782032 + 0.623238i 0.214183π0.214183\pi
−0.782032 + 0.623238i 0.785817π0.785817\pi
398398 0 0
399399 12.2379 0.612663
400400 0 0
401401 −11.6749 −0.583017 −0.291509 0.956568i 0.594157π-0.594157\pi
−0.291509 + 0.956568i 0.594157π0.594157\pi
402402 0 0
403403 8.65172i 0.430973i
404404 0 0
405405 −23.9039 + 7.81661i −1.18780 + 0.388410i
406406 0 0
407407 8.90878i 0.441592i
408408 0 0
409409 32.7457 1.61917 0.809584 0.587003i 0.199692π-0.199692\pi
0.809584 + 0.587003i 0.199692π0.199692\pi
410410 0 0
411411 −21.5072 −1.06087
412412 0 0
413413 12.9697i 0.638199i
414414 0 0
415415 −0.469794 1.43668i −0.0230613 0.0705236i
416416 0 0
417417 43.9260i 2.15107i
418418 0 0
419419 40.3114 1.96934 0.984670 0.174429i 0.0558079π-0.0558079\pi
0.984670 + 0.174429i 0.0558079π0.0558079\pi
420420 0 0
421421 −13.2601 −0.646256 −0.323128 0.946355i 0.604734π-0.604734\pi
−0.323128 + 0.946355i 0.604734π0.604734\pi
422422 0 0
423423 10.7233i 0.521385i
424424 0 0
425425 −1.83649 2.50781i −0.0890828 0.121647i
426426 0 0
427427 11.3266i 0.548135i
428428 0 0
429429 8.83481 0.426549
430430 0 0
431431 −0.602928 −0.0290420 −0.0145210 0.999895i 0.504622π-0.504622\pi
−0.0145210 + 0.999895i 0.504622π0.504622\pi
432432 0 0
433433 35.5966i 1.71066i −0.518080 0.855332i 0.673353π-0.673353\pi
0.518080 0.855332i 0.326647π-0.326647\pi
434434 0 0
435435 3.12368 + 9.55252i 0.149769 + 0.458008i
436436 0 0
437437 22.2384i 1.06381i
438438 0 0
439439 −11.2346 −0.536198 −0.268099 0.963391i 0.586395π-0.586395\pi
−0.268099 + 0.963391i 0.586395π0.586395\pi
440440 0 0
441441 −8.61811 −0.410386
442442 0 0
443443 24.5417i 1.16601i −0.812468 0.583006i 0.801877π-0.801877\pi
0.812468 0.583006i 0.198123π-0.198123\pi
444444 0 0
445445 −33.3443 + 10.9036i −1.58067 + 0.516882i
446446 0 0
447447 14.2076i 0.671998i
448448 0 0
449449 11.7896 0.556384 0.278192 0.960526i 0.410265π-0.410265\pi
0.278192 + 0.960526i 0.410265π0.410265\pi
450450 0 0
451451 9.62524 0.453235
452452 0 0
453453 44.4898i 2.09031i
454454 0 0
455455 −10.5983 + 3.46564i −0.496854 + 0.162472i
456456 0 0
457457 20.9828i 0.981534i −0.871291 0.490767i 0.836717π-0.836717\pi
0.871291 0.490767i 0.163283π-0.163283\pi
458458 0 0
459459 −1.91950 −0.0895948
460460 0 0
461461 −29.8844 −1.39186 −0.695928 0.718111i 0.745007π-0.745007\pi
−0.695928 + 0.718111i 0.745007π0.745007\pi
462462 0 0
463463 24.4425i 1.13594i 0.823049 + 0.567970i 0.192271π0.192271\pi
−0.823049 + 0.567970i 0.807729π0.807729\pi
464464 0 0
465465 −3.09865 9.47596i −0.143696 0.439437i
466466 0 0
467467 3.13953i 0.145280i −0.997358 0.0726401i 0.976858π-0.976858\pi
0.997358 0.0726401i 0.0231425π-0.0231425\pi
468468 0 0
469469 −6.48557 −0.299476
470470 0 0
471471 −33.7982 −1.55734
472472 0 0
473473 10.2003i 0.469009i
474474 0 0
475475 19.2105 14.0680i 0.881438 0.645484i
476476 0 0
477477 5.16004i 0.236262i
478478 0 0
479479 −12.5709 −0.574380 −0.287190 0.957874i 0.592721π-0.592721\pi
−0.287190 + 0.957874i 0.592721π0.592721\pi
480480 0 0
481481 −36.8866 −1.68189
482482 0 0
483483 12.0007i 0.546051i
484484 0 0
485485 7.32997 + 22.4157i 0.332837 + 1.01785i
486486 0 0
487487 13.2520i 0.600503i −0.953860 0.300252i 0.902929π-0.902929\pi
0.953860 0.300252i 0.0970707π-0.0970707\pi
488488 0 0
489489 −3.97729 −0.179859
490490 0 0
491491 11.3070 0.510278 0.255139 0.966904i 0.417879π-0.417879\pi
0.255139 + 0.966904i 0.417879π0.417879\pi
492492 0 0
493493 1.30950i 0.0589770i
494494 0 0
495495 −3.30052 + 1.07927i −0.148348 + 0.0485098i
496496 0 0
497497 10.1515i 0.455359i
498498 0 0
499499 6.06431 0.271476 0.135738 0.990745i 0.456659π-0.456659\pi
0.135738 + 0.990745i 0.456659π0.456659\pi
500500 0 0
501501 31.3779 1.40186
502502 0 0
503503 39.7943i 1.77434i −0.461444 0.887169i 0.652669π-0.652669\pi
0.461444 0.887169i 0.347331π-0.347331\pi
504504 0 0
505505 −2.70968 + 0.886068i −0.120579 + 0.0394295i
506506 0 0
507507 8.84143i 0.392662i
508508 0 0
509509 −11.1058 −0.492258 −0.246129 0.969237i 0.579159π-0.579159\pi
−0.246129 + 0.969237i 0.579159π0.579159\pi
510510 0 0
511511 10.1922 0.450875
512512 0 0
513513 14.7039i 0.649193i
514514 0 0
515515 2.49336 + 7.62494i 0.109871 + 0.335995i
516516 0 0
517517 6.90511i 0.303686i
518518 0 0
519519 25.4401 1.11670
520520 0 0
521521 −8.57831 −0.375822 −0.187911 0.982186i 0.560172π-0.560172\pi
−0.187911 + 0.982186i 0.560172π0.560172\pi
522522 0 0
523523 25.6845i 1.12311i 0.827441 + 0.561553i 0.189796π0.189796\pi
−0.827441 + 0.561553i 0.810204π0.810204\pi
524524 0 0
525525 10.3667 7.59162i 0.452440 0.331325i
526526 0 0
527527 1.29901i 0.0565856i
528528 0 0
529529 1.19266 0.0518546
530530 0 0
531531 16.7236 0.725744
532532 0 0
533533 39.8531i 1.72623i
534534 0 0
535535 3.45739 + 10.5730i 0.149476 + 0.457111i
536536 0 0
537537 23.4706i 1.01283i
538538 0 0
539539 5.54950 0.239034
540540 0 0
541541 −5.62955 −0.242033 −0.121017 0.992650i 0.538615π-0.538615\pi
−0.121017 + 0.992650i 0.538615π0.538615\pi
542542 0 0
543543 0.212617i 0.00912427i
544544 0 0
545545 −14.1094 + 4.61380i −0.604382 + 0.197634i
546546 0 0
547547 44.0338i 1.88275i 0.337365 + 0.941374i 0.390464π0.390464\pi
−0.337365 + 0.941374i 0.609536π0.609536\pi
548548 0 0
549549 −14.6050 −0.623325
550550 0 0
551551 −10.0311 −0.427340
552552 0 0
553553 7.76384i 0.330152i
554554 0 0
555555 40.4008 13.2111i 1.71492 0.560780i
556556 0 0
557557 40.5943i 1.72003i 0.510265 + 0.860017i 0.329547π0.329547\pi
−0.510265 + 0.860017i 0.670453π0.670453\pi
558558 0 0
559559 42.2341 1.78631
560560 0 0
561561 −1.32650 −0.0560047
562562 0 0
563563 6.63333i 0.279562i 0.990182 + 0.139781i 0.0446398π0.0446398\pi
−0.990182 + 0.139781i 0.955360π0.955360\pi
564564 0 0
565565 −2.89349 8.84857i −0.121730 0.372262i
566566 0 0
567567 13.5457i 0.568868i
568568 0 0
569569 18.3346 0.768625 0.384313 0.923203i 0.374438π-0.374438\pi
0.384313 + 0.923203i 0.374438π0.374438\pi
570570 0 0
571571 9.13047 0.382098 0.191049 0.981580i 0.438811π-0.438811\pi
0.191049 + 0.981580i 0.438811π0.438811\pi
572572 0 0
573573 43.7932i 1.82949i
574574 0 0
575575 −13.7953 18.8381i −0.575303 0.785603i
576576 0 0
577577 9.93656i 0.413665i −0.978376 0.206832i 0.933685π-0.933685\pi
0.978376 0.206832i 0.0663154π-0.0663154\pi
578578 0 0
579579 −35.9995 −1.49609
580580 0 0
581581 0.814127 0.0337757
582582 0 0
583583 3.32273i 0.137613i
584584 0 0
585585 −4.46872 13.6658i −0.184759 0.565010i
586586 0 0
587587 1.66282i 0.0686318i 0.999411 + 0.0343159i 0.0109252π0.0109252\pi
−0.999411 + 0.0343159i 0.989075π0.989075\pi
588588 0 0
589589 9.95073 0.410013
590590 0 0
591591 2.90693 0.119575
592592 0 0
593593 22.3866i 0.919307i −0.888098 0.459653i 0.847974π-0.847974\pi
0.888098 0.459653i 0.152026π-0.152026\pi
594594 0 0
595595 1.59127 0.520346i 0.0652356 0.0213321i
596596 0 0
597597 42.9069i 1.75606i
598598 0 0
599599 −36.9636 −1.51029 −0.755147 0.655556i 0.772434π-0.772434\pi
−0.755147 + 0.655556i 0.772434π0.772434\pi
600600 0 0
601601 −1.08085 −0.0440887 −0.0220443 0.999757i 0.507017π-0.507017\pi
−0.0220443 + 0.999757i 0.507017π0.507017\pi
602602 0 0
603603 8.36272i 0.340556i
604604 0 0
605605 2.12532 0.694983i 0.0864067 0.0282551i
606606 0 0
607607 15.9873i 0.648903i 0.945902 + 0.324451i 0.105180π0.105180\pi
−0.945902 + 0.324451i 0.894820π0.894820\pi
608608 0 0
609609 −5.41317 −0.219353
610610 0 0
611611 28.5905 1.15665
612612 0 0
613613 13.6367i 0.550781i 0.961332 + 0.275390i 0.0888071π0.0888071\pi
−0.961332 + 0.275390i 0.911193π0.911193\pi
614614 0 0
615615 −14.2736 43.6499i −0.575565 1.76013i
616616 0 0
617617 40.9104i 1.64699i −0.567323 0.823496i 0.692021π-0.692021\pi
0.567323 0.823496i 0.307979π-0.307979\pi
618618 0 0
619619 −42.1598 −1.69454 −0.847272 0.531159i 0.821757π-0.821757\pi
−0.847272 + 0.531159i 0.821757π0.821757\pi
620620 0 0
621621 −14.4189 −0.578609
622622 0 0
623623 18.8954i 0.757027i
624624 0 0
625625 7.54627 23.8339i 0.301851 0.953355i
626626 0 0
627627 10.1613i 0.405804i
628628 0 0
629629 5.53831 0.220827
630630 0 0
631631 −29.6308 −1.17958 −0.589792 0.807555i 0.700790π-0.700790\pi
−0.589792 + 0.807555i 0.700790π0.700790\pi
632632 0 0
633633 14.4503i 0.574347i
634634 0 0
635635 3.30724 + 10.1139i 0.131244 + 0.401356i
636636 0 0
637637 22.9776i 0.910406i
638638 0 0
639639 13.0898 0.517823
640640 0 0
641641 36.4240 1.43866 0.719330 0.694668i 0.244449π-0.244449\pi
0.719330 + 0.694668i 0.244449π0.244449\pi
642642 0 0
643643 26.9899i 1.06438i −0.846626 0.532188i 0.821370π-0.821370\pi
0.846626 0.532188i 0.178630π-0.178630\pi
644644 0 0
645645 −46.2577 + 15.1263i −1.82139 + 0.595598i
646646 0 0
647647 30.6852i 1.20636i 0.797605 + 0.603181i 0.206100π0.206100\pi
−0.797605 + 0.603181i 0.793900π0.793900\pi
648648 0 0
649649 −10.7689 −0.422718
650650 0 0
651651 5.36978 0.210458
652652 0 0
653653 21.9274i 0.858085i 0.903284 + 0.429042i 0.141149π0.141149\pi
−0.903284 + 0.429042i 0.858851π0.858851\pi
654654 0 0
655655 23.1370 7.56583i 0.904039 0.295622i
656656 0 0
657657 13.1421i 0.512724i
658658 0 0
659659 −19.1287 −0.745148 −0.372574 0.928003i 0.621525π-0.621525\pi
−0.372574 + 0.928003i 0.621525π0.621525\pi
660660 0 0
661661 −50.9975 −1.98357 −0.991786 0.127912i 0.959172π-0.959172\pi
−0.991786 + 0.127912i 0.959172π0.959172\pi
662662 0 0
663663 5.49233i 0.213304i
664664 0 0
665665 3.98599 + 12.1895i 0.154570 + 0.472689i
666666 0 0
667667 9.83667i 0.380877i
668668 0 0
669669 4.50778 0.174281
670670 0 0
671671 9.40465 0.363062
672672 0 0
673673 23.3223i 0.899010i −0.893278 0.449505i 0.851600π-0.851600\pi
0.893278 0.449505i 0.148400π-0.148400\pi
674674 0 0
675675 −9.12134 12.4556i −0.351081 0.479417i
676676 0 0
677677 6.30482i 0.242314i −0.992633 0.121157i 0.961340π-0.961340\pi
0.992633 0.121157i 0.0386605π-0.0386605\pi
678678 0 0
679679 −12.7024 −0.487475
680680 0 0
681681 16.3191 0.625348
682682 0 0
683683 36.8716i 1.41085i −0.708783 0.705426i 0.750756π-0.750756\pi
0.708783 0.705426i 0.249244π-0.249244\pi
684684 0 0
685685 −7.00505 21.4221i −0.267649 0.818496i
686686 0 0
687687 26.1324i 0.997013i
688688 0 0
689689 −13.7577 −0.524126
690690 0 0
691691 35.5795 1.35351 0.676754 0.736209i 0.263386π-0.263386\pi
0.676754 + 0.736209i 0.263386π0.263386\pi
692692 0 0
693693 1.87032i 0.0710477i
694694 0 0
695695 −43.7523 + 14.3070i −1.65962 + 0.542697i
696696 0 0
697697 5.98372i 0.226649i
698698 0 0
699699 −34.0340 −1.28729
700700 0 0
701701 12.1069 0.457271 0.228636 0.973512i 0.426574π-0.426574\pi
0.228636 + 0.973512i 0.426574π0.426574\pi
702702 0 0
703703 42.4249i 1.60009i
704704 0 0
705705 −31.3142 + 10.2398i −1.17936 + 0.385653i
706706 0 0
707707 1.53551i 0.0577486i
708708 0 0
709709 31.1844 1.17115 0.585577 0.810617i 0.300868π-0.300868\pi
0.585577 + 0.810617i 0.300868π0.300868\pi
710710 0 0
711711 −10.0110 −0.375441
712712 0 0
713713 9.75783i 0.365433i
714714 0 0
715715 2.87756 + 8.79986i 0.107615 + 0.329096i
716716 0 0
717717 60.8585i 2.27280i
718718 0 0
719719 44.1954 1.64821 0.824106 0.566436i 0.191678π-0.191678\pi
0.824106 + 0.566436i 0.191678π0.191678\pi
720720 0 0
721721 −4.32086 −0.160917
722722 0 0
723723 9.63292i 0.358252i
724724 0 0
725725 −8.49732 + 6.22265i −0.315583 + 0.231104i
726726 0 0
727727 0.419917i 0.0155739i −0.999970 0.00778694i 0.997521π-0.997521\pi
0.999970 0.00778694i 0.00247868π-0.00247868\pi
728728 0 0
729729 −2.29867 −0.0851359
730730 0 0
731731 −6.34120 −0.234538
732732 0 0
733733 15.6107i 0.576595i −0.957541 0.288297i 0.906911π-0.906911\pi
0.957541 0.288297i 0.0930892π-0.0930892\pi
734734 0 0
735735 −8.22952 25.1667i −0.303550 0.928286i
736736 0 0
737737 5.38505i 0.198361i
738738 0 0
739739 12.5531 0.461773 0.230887 0.972981i 0.425837π-0.425837\pi
0.230887 + 0.972981i 0.425837π0.425837\pi
740740 0 0
741741 42.0727 1.54558
742742 0 0
743743 41.3322i 1.51633i −0.652061 0.758166i 0.726096π-0.726096\pi
0.652061 0.758166i 0.273904π-0.273904\pi
744744 0 0
745745 −14.1514 + 4.62753i −0.518468 + 0.169540i
746746 0 0
747747 1.04976i 0.0384088i
748748 0 0
749749 −5.99146 −0.218923
750750 0 0
751751 −13.6104 −0.496652 −0.248326 0.968677i 0.579880π-0.579880\pi
−0.248326 + 0.968677i 0.579880π0.579880\pi
752752 0 0
753753 30.2233i 1.10140i
754754 0 0
755755 44.3138 14.4906i 1.61274 0.527369i
756756 0 0
757757 15.8830i 0.577279i 0.957438 + 0.288640i 0.0932029π0.0932029\pi
−0.957438 + 0.288640i 0.906797π0.906797\pi
758758 0 0
759759 −9.96433 −0.361682
760760 0 0
761761 −0.731594 −0.0265203 −0.0132601 0.999912i 0.504221π-0.504221\pi
−0.0132601 + 0.999912i 0.504221π0.504221\pi
762762 0 0
763763 7.99546i 0.289455i
764764 0 0
765765 0.670952 + 2.05183i 0.0242583 + 0.0741842i
766766 0 0
767767 44.5886i 1.61000i
768768 0 0
769769 28.1471 1.01501 0.507505 0.861649i 0.330568π-0.330568\pi
0.507505 + 0.861649i 0.330568π0.330568\pi
770770 0 0
771771 6.93488 0.249753
772772 0 0
773773 27.3629i 0.984176i −0.870545 0.492088i 0.836234π-0.836234\pi
0.870545 0.492088i 0.163766π-0.163766\pi
774774 0 0
775775 8.42922 6.17278i 0.302786 0.221733i
776776 0 0
777777 22.8941i 0.821321i
778778 0 0
779779 45.8368 1.64228
780780 0 0
781781 −8.42895 −0.301612
782782 0 0
783783 6.50393i 0.232432i
784784 0 0
785785 −11.0083 33.6645i −0.392904 1.20154i
786786 0 0
787787 15.3954i 0.548788i 0.961617 + 0.274394i 0.0884773π0.0884773\pi
−0.961617 + 0.274394i 0.911523π0.911523\pi
788788 0 0
789789 11.8813 0.422985
790790 0 0
791791 5.01426 0.178286
792792 0 0
793793 38.9398i 1.38279i
794794 0 0
795795 15.0684 4.92737i 0.534420 0.174756i
796796 0 0
797797 48.3762i 1.71357i 0.515673 + 0.856786i 0.327542π0.327542\pi
−0.515673 + 0.856786i 0.672458π0.672458\pi
798798 0 0
799799 −4.29269 −0.151865
800800 0 0
801801 24.3644 0.860872
802802 0 0
803803 8.46268i 0.298642i
804804 0 0
805805 11.9532 3.90872i 0.421296 0.137764i
806806 0 0
807807 30.3963i 1.07000i
808808 0 0
809809 34.1856 1.20190 0.600950 0.799287i 0.294789π-0.294789\pi
0.600950 + 0.799287i 0.294789π0.294789\pi
810810 0 0
811811 −28.5790 −1.00354 −0.501771 0.865000i 0.667318π-0.667318\pi
−0.501771 + 0.865000i 0.667318π0.667318\pi
812812 0 0
813813 35.3920i 1.24125i
814814 0 0
815815 −1.29543 3.96155i −0.0453770 0.138767i
816816 0 0
817817 48.5753i 1.69943i
818818 0 0
819819 7.74404 0.270599
820820 0 0
821821 −48.9846 −1.70957 −0.854787 0.518978i 0.826313π-0.826313\pi
−0.854787 + 0.518978i 0.826313π0.826313\pi
822822 0 0
823823 51.9200i 1.80982i 0.425605 + 0.904909i 0.360061π0.360061\pi
−0.425605 + 0.904909i 0.639939π0.639939\pi
824824 0 0
825825 −6.30341 8.60760i −0.219457 0.299678i
826826 0 0
827827 55.7187i 1.93753i −0.247980 0.968765i 0.579767π-0.579767\pi
0.247980 0.968765i 0.420233π-0.420233\pi
828828 0 0
829829 55.7521 1.93635 0.968175 0.250274i 0.0805206π-0.0805206\pi
0.968175 + 0.250274i 0.0805206π0.0805206\pi
830830 0 0
831831 −7.24379 −0.251284
832832 0 0
833833 3.44995i 0.119534i
834834 0 0
835835 10.2200 + 31.2537i 0.353678 + 1.08158i
836836 0 0
837837 6.45180i 0.223007i
838838 0 0
839839 −19.2438 −0.664369 −0.332184 0.943214i 0.607786π-0.607786\pi
−0.332184 + 0.943214i 0.607786π0.607786\pi
840840 0 0
841841 −24.5630 −0.846999
842842 0 0
843843 36.7780i 1.26670i
844844 0 0
845845 −8.80645 + 2.87972i −0.302951 + 0.0990654i
846846 0 0
847847 1.20437i 0.0413825i
848848 0 0
849849 68.2371 2.34189
850850 0 0
851851 41.6025 1.42612
852852 0 0
853853 33.8108i 1.15766i −0.815448 0.578830i 0.803509π-0.803509\pi
0.815448 0.578830i 0.196491π-0.196491\pi
854854 0 0
855855 −15.7176 + 5.13967i −0.537530 + 0.175773i
856856 0 0
857857 58.4040i 1.99504i 0.0703617 + 0.997522i 0.477585π0.477585\pi
−0.0703617 + 0.997522i 0.522415π0.522415\pi
858858 0 0
859859 −23.8572 −0.813998 −0.406999 0.913429i 0.633425π-0.633425\pi
−0.406999 + 0.913429i 0.633425π0.633425\pi
860860 0 0
861861 24.7353 0.842976
862862 0 0
863863 4.37835i 0.149041i −0.997219 0.0745204i 0.976257π-0.976257\pi
0.997219 0.0745204i 0.0237426π-0.0237426\pi
864864 0 0
865865 8.28604 + 25.3395i 0.281734 + 0.861568i
866866 0 0
867867 35.4494i 1.20392i
868868 0 0
869869 6.44641 0.218680
870870 0 0
871871 −22.2967 −0.755494
872872 0 0
873873 16.3790i 0.554344i
874874 0 0
875875 10.9381 + 7.85305i 0.369775 + 0.265482i
876876 0 0
877877 46.8329i 1.58143i 0.612182 + 0.790717i 0.290292π0.290292\pi
−0.612182 + 0.790717i 0.709708π0.709708\pi
878878 0 0
879879 21.7406 0.733293
880880 0 0
881881 2.72179 0.0916993 0.0458496 0.998948i 0.485400π-0.485400\pi
0.0458496 + 0.998948i 0.485400π0.485400\pi
882882 0 0
883883 22.8773i 0.769881i 0.922941 + 0.384941i 0.125778π0.125778\pi
−0.922941 + 0.384941i 0.874222π0.874222\pi
884884 0 0
885885 15.9696 + 48.8365i 0.536811 + 1.64162i
886886 0 0
887887 37.0004i 1.24235i −0.783672 0.621175i 0.786656π-0.786656\pi
0.783672 0.621175i 0.213344π-0.213344\pi
888888 0 0
889889 −5.73127 −0.192221
890890 0 0
891891 −11.2472 −0.376795
892892 0 0
893893 32.8832i 1.10039i
894894 0 0
895895 −23.3778 + 7.64455i −0.781432 + 0.255529i
896896 0 0
897897 41.2571i 1.37753i
898898 0 0
899899 −4.40147 −0.146797
900900 0 0
901901 2.06564 0.0688164
902902 0 0
903903 26.2130i 0.872315i
904904 0 0
905905 −0.211776 + 0.0692510i −0.00703967 + 0.00230198i
906906 0 0
907907 6.01498i 0.199724i −0.995001 0.0998621i 0.968160π-0.968160\pi
0.995001 0.0998621i 0.0318402π-0.0318402\pi
908908 0 0
909909 1.97993 0.0656703
910910 0 0
911911 −9.98170 −0.330708 −0.165354 0.986234i 0.552877π-0.552877\pi
−0.165354 + 0.986234i 0.552877π0.552877\pi
912912 0 0
913913 0.675980i 0.0223717i
914914 0 0
915915 −13.9464 42.6495i −0.461055 1.40995i
916916 0 0
917917 13.1112i 0.432969i
918918 0 0
919919 36.3004 1.19744 0.598719 0.800959i 0.295677π-0.295677\pi
0.598719 + 0.800959i 0.295677π0.295677\pi
920920 0 0
921921 43.4705 1.43240
922922 0 0
923923 34.8999i 1.14874i
924924 0 0
925925 26.3177 + 35.9380i 0.865319 + 1.18163i
926926 0 0
927927 5.57147i 0.182991i
928928 0 0
929929 −25.3480 −0.831640 −0.415820 0.909447i 0.636505π-0.636505\pi
−0.415820 + 0.909447i 0.636505π0.636505\pi
930930 0 0
931931 26.4276 0.866128
932932 0 0
933933 9.89659i 0.324000i
934934 0 0
935935 −0.432050 1.32125i −0.0141295 0.0432094i
936936 0 0
937937 36.8662i 1.20437i −0.798358 0.602183i 0.794298π-0.794298\pi
0.798358 0.602183i 0.205702π-0.205702\pi
938938 0 0
939939 55.3448 1.80611
940940 0 0
941941 10.2385 0.333764 0.166882 0.985977i 0.446630π-0.446630\pi
0.166882 + 0.985977i 0.446630π0.446630\pi
942942 0 0
943943 44.9483i 1.46372i
944944 0 0
945945 7.90339 2.58442i 0.257097 0.0840710i
946946 0 0
947947 16.4386i 0.534183i 0.963671 + 0.267092i 0.0860626π0.0860626\pi
−0.963671 + 0.267092i 0.913937π0.913937\pi
948948 0 0
949949 35.0396 1.13743
950950 0 0
951951 14.9329 0.484234
952952 0 0
953953 57.7188i 1.86969i 0.355050 + 0.934847i 0.384464π0.384464\pi
−0.355050 + 0.934847i 0.615536π0.615536\pi
954954 0 0
955955 −43.6200 + 14.2638i −1.41151 + 0.461565i
956956 0 0
957957 4.49462i 0.145290i
958958 0 0
959959 12.1394 0.392000
960960 0 0
961961 −26.6338 −0.859155
962962 0 0
963963 7.72559i 0.248954i
964964 0 0
965965 −11.7253 35.8571i −0.377451 1.15428i
966966 0 0
967967 31.9836i 1.02852i −0.857633 0.514262i 0.828066π-0.828066\pi
0.857633 0.514262i 0.171934π-0.171934\pi
968968 0 0
969969 −6.31697 −0.202930
970970 0 0
971971 47.6080 1.52781 0.763906 0.645327i 0.223279π-0.223279\pi
0.763906 + 0.645327i 0.223279π0.223279\pi
972972 0 0
973973 24.7933i 0.794837i
974974 0 0
975975 35.6396 26.0992i 1.14138 0.835842i
976976 0 0
977977 5.75975i 0.184271i 0.995746 + 0.0921353i 0.0293692π0.0293692\pi
−0.995746 + 0.0921353i 0.970631π0.970631\pi
978978 0 0
979979 −15.6891 −0.501425
980980 0 0
981981 10.3096 0.329161
982982 0 0
983983 31.8921i 1.01720i −0.861003 0.508601i 0.830163π-0.830163\pi
0.861003 0.508601i 0.169837π-0.169837\pi
984984 0 0
985985 0.946807 + 2.89543i 0.0301678 + 0.0922559i
986986 0 0
987987 17.7450i 0.564829i
988988 0 0
989989 −47.6336 −1.51466
990990 0 0
991991 −43.6276 −1.38588 −0.692938 0.720997i 0.743684π-0.743684\pi
−0.692938 + 0.720997i 0.743684π0.743684\pi
992992 0 0
993993 14.3763i 0.456218i
994994 0 0
995995 42.7372 13.9751i 1.35486 0.443040i
996996 0 0
997997 39.0472i 1.23664i −0.785927 0.618319i 0.787814π-0.787814\pi
0.785927 0.618319i 0.212186π-0.212186\pi
998998 0 0
999999 27.5073 0.870292
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1760.2.b.f.1409.3 yes 14
4.3 odd 2 1760.2.b.e.1409.12 yes 14
5.2 odd 4 8800.2.a.cd.1.2 7
5.3 odd 4 8800.2.a.cj.1.6 7
5.4 even 2 inner 1760.2.b.f.1409.12 yes 14
20.3 even 4 8800.2.a.cc.1.2 7
20.7 even 4 8800.2.a.ci.1.6 7
20.19 odd 2 1760.2.b.e.1409.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1760.2.b.e.1409.3 14 20.19 odd 2
1760.2.b.e.1409.12 yes 14 4.3 odd 2
1760.2.b.f.1409.3 yes 14 1.1 even 1 trivial
1760.2.b.f.1409.12 yes 14 5.4 even 2 inner
8800.2.a.cc.1.2 7 20.3 even 4
8800.2.a.cd.1.2 7 5.2 odd 4
8800.2.a.ci.1.6 7 20.7 even 4
8800.2.a.cj.1.6 7 5.3 odd 4