Properties

Label 8800.2.a.cj.1.6
Level $8800$
Weight $2$
Character 8800.1
Self dual yes
Analytic conductor $70.268$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8800,2,Mod(1,8800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8800 = 2^{5} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.2683537787\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 8x^{5} - 2x^{4} + 16x^{3} + 5x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 1760)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.51372\) of defining polynomial
Character \(\chi\) \(=\) 8800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.13376 q^{3} +1.20437 q^{7} +1.55295 q^{9} +1.00000 q^{11} -4.14048 q^{13} -0.621669 q^{17} -4.76215 q^{19} +2.56983 q^{21} +4.66983 q^{23} -3.08766 q^{27} +2.10643 q^{29} +2.08954 q^{31} +2.13376 q^{33} +8.90878 q^{37} -8.83481 q^{39} +9.62524 q^{41} +10.2003 q^{43} -6.90511 q^{47} -5.54950 q^{49} -1.32650 q^{51} -3.32273 q^{53} -10.1613 q^{57} +10.7689 q^{59} +9.40465 q^{61} +1.87032 q^{63} +5.38505 q^{67} +9.96433 q^{69} -8.42895 q^{71} +8.46268 q^{73} +1.20437 q^{77} -6.44641 q^{79} -11.2472 q^{81} +0.675980 q^{83} +4.49462 q^{87} +15.6891 q^{89} -4.98666 q^{91} +4.45860 q^{93} +10.5470 q^{97} +1.55295 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{3} + 7 q^{7} + 6 q^{9} + 7 q^{11} + 10 q^{13} - 3 q^{17} + 7 q^{19} + 13 q^{21} + 14 q^{23} + 13 q^{27} - 11 q^{29} - 11 q^{31} + q^{33} + 13 q^{37} + 4 q^{39} + 4 q^{41} + 2 q^{43} + 22 q^{47}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.13376 1.23193 0.615965 0.787774i \(-0.288766\pi\)
0.615965 + 0.787774i \(0.288766\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.20437 0.455208 0.227604 0.973754i \(-0.426911\pi\)
0.227604 + 0.973754i \(0.426911\pi\)
\(8\) 0 0
\(9\) 1.55295 0.517651
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.14048 −1.14836 −0.574181 0.818728i \(-0.694680\pi\)
−0.574181 + 0.818728i \(0.694680\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.621669 −0.150777 −0.0753885 0.997154i \(-0.524020\pi\)
−0.0753885 + 0.997154i \(0.524020\pi\)
\(18\) 0 0
\(19\) −4.76215 −1.09251 −0.546256 0.837618i \(-0.683947\pi\)
−0.546256 + 0.837618i \(0.683947\pi\)
\(20\) 0 0
\(21\) 2.56983 0.560784
\(22\) 0 0
\(23\) 4.66983 0.973728 0.486864 0.873478i \(-0.338141\pi\)
0.486864 + 0.873478i \(0.338141\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.08766 −0.594221
\(28\) 0 0
\(29\) 2.10643 0.391154 0.195577 0.980688i \(-0.437342\pi\)
0.195577 + 0.980688i \(0.437342\pi\)
\(30\) 0 0
\(31\) 2.08954 0.375293 0.187647 0.982237i \(-0.439914\pi\)
0.187647 + 0.982237i \(0.439914\pi\)
\(32\) 0 0
\(33\) 2.13376 0.371441
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.90878 1.46459 0.732297 0.680985i \(-0.238448\pi\)
0.732297 + 0.680985i \(0.238448\pi\)
\(38\) 0 0
\(39\) −8.83481 −1.41470
\(40\) 0 0
\(41\) 9.62524 1.50321 0.751605 0.659614i \(-0.229280\pi\)
0.751605 + 0.659614i \(0.229280\pi\)
\(42\) 0 0
\(43\) 10.2003 1.55553 0.777764 0.628556i \(-0.216354\pi\)
0.777764 + 0.628556i \(0.216354\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.90511 −1.00721 −0.503607 0.863933i \(-0.667994\pi\)
−0.503607 + 0.863933i \(0.667994\pi\)
\(48\) 0 0
\(49\) −5.54950 −0.792786
\(50\) 0 0
\(51\) −1.32650 −0.185747
\(52\) 0 0
\(53\) −3.32273 −0.456412 −0.228206 0.973613i \(-0.573286\pi\)
−0.228206 + 0.973613i \(0.573286\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −10.1613 −1.34590
\(58\) 0 0
\(59\) 10.7689 1.40200 0.700998 0.713163i \(-0.252738\pi\)
0.700998 + 0.713163i \(0.252738\pi\)
\(60\) 0 0
\(61\) 9.40465 1.20414 0.602071 0.798443i \(-0.294342\pi\)
0.602071 + 0.798443i \(0.294342\pi\)
\(62\) 0 0
\(63\) 1.87032 0.235639
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.38505 0.657888 0.328944 0.944349i \(-0.393307\pi\)
0.328944 + 0.944349i \(0.393307\pi\)
\(68\) 0 0
\(69\) 9.96433 1.19956
\(70\) 0 0
\(71\) −8.42895 −1.00033 −0.500166 0.865929i \(-0.666728\pi\)
−0.500166 + 0.865929i \(0.666728\pi\)
\(72\) 0 0
\(73\) 8.46268 0.990482 0.495241 0.868756i \(-0.335080\pi\)
0.495241 + 0.868756i \(0.335080\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.20437 0.137250
\(78\) 0 0
\(79\) −6.44641 −0.725278 −0.362639 0.931930i \(-0.618124\pi\)
−0.362639 + 0.931930i \(0.618124\pi\)
\(80\) 0 0
\(81\) −11.2472 −1.24969
\(82\) 0 0
\(83\) 0.675980 0.0741984 0.0370992 0.999312i \(-0.488188\pi\)
0.0370992 + 0.999312i \(0.488188\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.49462 0.481874
\(88\) 0 0
\(89\) 15.6891 1.66304 0.831518 0.555497i \(-0.187472\pi\)
0.831518 + 0.555497i \(0.187472\pi\)
\(90\) 0 0
\(91\) −4.98666 −0.522744
\(92\) 0 0
\(93\) 4.45860 0.462335
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.5470 1.07088 0.535442 0.844572i \(-0.320145\pi\)
0.535442 + 0.844572i \(0.320145\pi\)
\(98\) 0 0
\(99\) 1.55295 0.156078
\(100\) 0 0
\(101\) −1.27495 −0.126862 −0.0634311 0.997986i \(-0.520204\pi\)
−0.0634311 + 0.997986i \(0.520204\pi\)
\(102\) 0 0
\(103\) −3.58766 −0.353503 −0.176751 0.984256i \(-0.556559\pi\)
−0.176751 + 0.984256i \(0.556559\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.97478 0.480930 0.240465 0.970658i \(-0.422700\pi\)
0.240465 + 0.970658i \(0.422700\pi\)
\(108\) 0 0
\(109\) 6.63873 0.635875 0.317937 0.948112i \(-0.397010\pi\)
0.317937 + 0.948112i \(0.397010\pi\)
\(110\) 0 0
\(111\) 19.0092 1.80428
\(112\) 0 0
\(113\) 4.16340 0.391660 0.195830 0.980638i \(-0.437260\pi\)
0.195830 + 0.980638i \(0.437260\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −6.42997 −0.594451
\(118\) 0 0
\(119\) −0.748718 −0.0686348
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 20.5380 1.85185
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.75874 0.422270 0.211135 0.977457i \(-0.432284\pi\)
0.211135 + 0.977457i \(0.432284\pi\)
\(128\) 0 0
\(129\) 21.7650 1.91630
\(130\) 0 0
\(131\) 10.8864 0.951146 0.475573 0.879676i \(-0.342241\pi\)
0.475573 + 0.879676i \(0.342241\pi\)
\(132\) 0 0
\(133\) −5.73537 −0.497320
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.0795 −0.861146 −0.430573 0.902556i \(-0.641688\pi\)
−0.430573 + 0.902556i \(0.641688\pi\)
\(138\) 0 0
\(139\) 20.5862 1.74610 0.873048 0.487634i \(-0.162140\pi\)
0.873048 + 0.487634i \(0.162140\pi\)
\(140\) 0 0
\(141\) −14.7339 −1.24082
\(142\) 0 0
\(143\) −4.14048 −0.346244
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −11.8413 −0.976656
\(148\) 0 0
\(149\) 6.65848 0.545484 0.272742 0.962087i \(-0.412069\pi\)
0.272742 + 0.962087i \(0.412069\pi\)
\(150\) 0 0
\(151\) 20.8504 1.69678 0.848389 0.529373i \(-0.177573\pi\)
0.848389 + 0.529373i \(0.177573\pi\)
\(152\) 0 0
\(153\) −0.965422 −0.0780498
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −15.8397 −1.26415 −0.632073 0.774909i \(-0.717796\pi\)
−0.632073 + 0.774909i \(0.717796\pi\)
\(158\) 0 0
\(159\) −7.08992 −0.562267
\(160\) 0 0
\(161\) 5.62419 0.443248
\(162\) 0 0
\(163\) 1.86398 0.145998 0.0729990 0.997332i \(-0.476743\pi\)
0.0729990 + 0.997332i \(0.476743\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.7054 1.13794 0.568969 0.822359i \(-0.307342\pi\)
0.568969 + 0.822359i \(0.307342\pi\)
\(168\) 0 0
\(169\) 4.14358 0.318737
\(170\) 0 0
\(171\) −7.39539 −0.565540
\(172\) 0 0
\(173\) −11.9226 −0.906462 −0.453231 0.891393i \(-0.649729\pi\)
−0.453231 + 0.891393i \(0.649729\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 22.9784 1.72716
\(178\) 0 0
\(179\) 10.9996 0.822151 0.411075 0.911601i \(-0.365153\pi\)
0.411075 + 0.911601i \(0.365153\pi\)
\(180\) 0 0
\(181\) −0.0996441 −0.00740649 −0.00370324 0.999993i \(-0.501179\pi\)
−0.00370324 + 0.999993i \(0.501179\pi\)
\(182\) 0 0
\(183\) 20.0673 1.48342
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.621669 −0.0454610
\(188\) 0 0
\(189\) −3.71867 −0.270494
\(190\) 0 0
\(191\) −20.5239 −1.48506 −0.742530 0.669813i \(-0.766374\pi\)
−0.742530 + 0.669813i \(0.766374\pi\)
\(192\) 0 0
\(193\) 16.8714 1.21443 0.607214 0.794539i \(-0.292287\pi\)
0.607214 + 0.794539i \(0.292287\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.36235 0.0970631 0.0485316 0.998822i \(-0.484546\pi\)
0.0485316 + 0.998822i \(0.484546\pi\)
\(198\) 0 0
\(199\) −20.1085 −1.42546 −0.712728 0.701440i \(-0.752541\pi\)
−0.712728 + 0.701440i \(0.752541\pi\)
\(200\) 0 0
\(201\) 11.4904 0.810472
\(202\) 0 0
\(203\) 2.53691 0.178056
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 7.25203 0.504051
\(208\) 0 0
\(209\) −4.76215 −0.329405
\(210\) 0 0
\(211\) −6.77219 −0.466217 −0.233109 0.972451i \(-0.574890\pi\)
−0.233109 + 0.972451i \(0.574890\pi\)
\(212\) 0 0
\(213\) −17.9854 −1.23234
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.51658 0.170836
\(218\) 0 0
\(219\) 18.0574 1.22020
\(220\) 0 0
\(221\) 2.57401 0.173147
\(222\) 0 0
\(223\) −2.11259 −0.141470 −0.0707349 0.997495i \(-0.522534\pi\)
−0.0707349 + 0.997495i \(0.522534\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.64802 0.507617 0.253808 0.967254i \(-0.418317\pi\)
0.253808 + 0.967254i \(0.418317\pi\)
\(228\) 0 0
\(229\) 12.2471 0.809310 0.404655 0.914469i \(-0.367392\pi\)
0.404655 + 0.914469i \(0.367392\pi\)
\(230\) 0 0
\(231\) 2.56983 0.169083
\(232\) 0 0
\(233\) 15.9502 1.04493 0.522467 0.852659i \(-0.325012\pi\)
0.522467 + 0.852659i \(0.325012\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −13.7551 −0.893492
\(238\) 0 0
\(239\) −28.5217 −1.84491 −0.922456 0.386101i \(-0.873822\pi\)
−0.922456 + 0.386101i \(0.873822\pi\)
\(240\) 0 0
\(241\) 4.51452 0.290806 0.145403 0.989373i \(-0.453552\pi\)
0.145403 + 0.989373i \(0.453552\pi\)
\(242\) 0 0
\(243\) −14.7359 −0.945308
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 19.7176 1.25460
\(248\) 0 0
\(249\) 1.44238 0.0914072
\(250\) 0 0
\(251\) −14.1643 −0.894044 −0.447022 0.894523i \(-0.647515\pi\)
−0.447022 + 0.894523i \(0.647515\pi\)
\(252\) 0 0
\(253\) 4.66983 0.293590
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.25007 0.202734 0.101367 0.994849i \(-0.467678\pi\)
0.101367 + 0.994849i \(0.467678\pi\)
\(258\) 0 0
\(259\) 10.7294 0.666695
\(260\) 0 0
\(261\) 3.27118 0.202481
\(262\) 0 0
\(263\) −5.56822 −0.343351 −0.171676 0.985154i \(-0.554918\pi\)
−0.171676 + 0.985154i \(0.554918\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 33.4768 2.04874
\(268\) 0 0
\(269\) −14.2454 −0.868557 −0.434279 0.900779i \(-0.642997\pi\)
−0.434279 + 0.900779i \(0.642997\pi\)
\(270\) 0 0
\(271\) −16.5866 −1.00757 −0.503783 0.863830i \(-0.668059\pi\)
−0.503783 + 0.863830i \(0.668059\pi\)
\(272\) 0 0
\(273\) −10.6404 −0.643983
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −3.39484 −0.203976 −0.101988 0.994786i \(-0.532520\pi\)
−0.101988 + 0.994786i \(0.532520\pi\)
\(278\) 0 0
\(279\) 3.24496 0.194271
\(280\) 0 0
\(281\) −17.2362 −1.02823 −0.514113 0.857723i \(-0.671879\pi\)
−0.514113 + 0.857723i \(0.671879\pi\)
\(282\) 0 0
\(283\) −31.9797 −1.90100 −0.950498 0.310732i \(-0.899426\pi\)
−0.950498 + 0.310732i \(0.899426\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.5923 0.684273
\(288\) 0 0
\(289\) −16.6135 −0.977266
\(290\) 0 0
\(291\) 22.5048 1.31925
\(292\) 0 0
\(293\) −10.1889 −0.595240 −0.297620 0.954684i \(-0.596193\pi\)
−0.297620 + 0.954684i \(0.596193\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −3.08766 −0.179164
\(298\) 0 0
\(299\) −19.3354 −1.11819
\(300\) 0 0
\(301\) 12.2849 0.708088
\(302\) 0 0
\(303\) −2.72044 −0.156285
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 20.3727 1.16273 0.581365 0.813643i \(-0.302519\pi\)
0.581365 + 0.813643i \(0.302519\pi\)
\(308\) 0 0
\(309\) −7.65523 −0.435491
\(310\) 0 0
\(311\) −4.63809 −0.263002 −0.131501 0.991316i \(-0.541980\pi\)
−0.131501 + 0.991316i \(0.541980\pi\)
\(312\) 0 0
\(313\) −25.9376 −1.46608 −0.733040 0.680185i \(-0.761899\pi\)
−0.733040 + 0.680185i \(0.761899\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.99840 0.393069 0.196535 0.980497i \(-0.437031\pi\)
0.196535 + 0.980497i \(0.437031\pi\)
\(318\) 0 0
\(319\) 2.10643 0.117937
\(320\) 0 0
\(321\) 10.6150 0.592472
\(322\) 0 0
\(323\) 2.96048 0.164726
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 14.1655 0.783353
\(328\) 0 0
\(329\) −8.31628 −0.458491
\(330\) 0 0
\(331\) −6.73753 −0.370328 −0.185164 0.982708i \(-0.559282\pi\)
−0.185164 + 0.982708i \(0.559282\pi\)
\(332\) 0 0
\(333\) 13.8349 0.758148
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.20655 0.174672 0.0873361 0.996179i \(-0.472165\pi\)
0.0873361 + 0.996179i \(0.472165\pi\)
\(338\) 0 0
\(339\) 8.88371 0.482497
\(340\) 0 0
\(341\) 2.08954 0.113155
\(342\) 0 0
\(343\) −15.1142 −0.816090
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.6613 0.679696 0.339848 0.940480i \(-0.389624\pi\)
0.339848 + 0.940480i \(0.389624\pi\)
\(348\) 0 0
\(349\) −0.596140 −0.0319106 −0.0159553 0.999873i \(-0.505079\pi\)
−0.0159553 + 0.999873i \(0.505079\pi\)
\(350\) 0 0
\(351\) 12.7844 0.682381
\(352\) 0 0
\(353\) −21.4134 −1.13972 −0.569860 0.821742i \(-0.693003\pi\)
−0.569860 + 0.821742i \(0.693003\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1.59759 −0.0845533
\(358\) 0 0
\(359\) 17.2379 0.909781 0.454891 0.890547i \(-0.349678\pi\)
0.454891 + 0.890547i \(0.349678\pi\)
\(360\) 0 0
\(361\) 3.67808 0.193583
\(362\) 0 0
\(363\) 2.13376 0.111994
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 31.2870 1.63317 0.816583 0.577228i \(-0.195866\pi\)
0.816583 + 0.577228i \(0.195866\pi\)
\(368\) 0 0
\(369\) 14.9475 0.778137
\(370\) 0 0
\(371\) −4.00178 −0.207762
\(372\) 0 0
\(373\) −18.6441 −0.965355 −0.482677 0.875798i \(-0.660336\pi\)
−0.482677 + 0.875798i \(0.660336\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.72162 −0.449186
\(378\) 0 0
\(379\) 33.4682 1.71915 0.859574 0.511011i \(-0.170729\pi\)
0.859574 + 0.511011i \(0.170729\pi\)
\(380\) 0 0
\(381\) 10.1540 0.520207
\(382\) 0 0
\(383\) 32.4451 1.65787 0.828934 0.559347i \(-0.188948\pi\)
0.828934 + 0.559347i \(0.188948\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 15.8405 0.805220
\(388\) 0 0
\(389\) −17.2080 −0.872481 −0.436241 0.899830i \(-0.643690\pi\)
−0.436241 + 0.899830i \(0.643690\pi\)
\(390\) 0 0
\(391\) −2.90309 −0.146816
\(392\) 0 0
\(393\) 23.2289 1.17174
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 24.8359 1.24648 0.623238 0.782032i \(-0.285817\pi\)
0.623238 + 0.782032i \(0.285817\pi\)
\(398\) 0 0
\(399\) −12.2379 −0.612663
\(400\) 0 0
\(401\) −11.6749 −0.583017 −0.291509 0.956568i \(-0.594157\pi\)
−0.291509 + 0.956568i \(0.594157\pi\)
\(402\) 0 0
\(403\) −8.65172 −0.430973
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.90878 0.441592
\(408\) 0 0
\(409\) −32.7457 −1.61917 −0.809584 0.587003i \(-0.800308\pi\)
−0.809584 + 0.587003i \(0.800308\pi\)
\(410\) 0 0
\(411\) −21.5072 −1.06087
\(412\) 0 0
\(413\) 12.9697 0.638199
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 43.9260 2.15107
\(418\) 0 0
\(419\) −40.3114 −1.96934 −0.984670 0.174429i \(-0.944192\pi\)
−0.984670 + 0.174429i \(0.944192\pi\)
\(420\) 0 0
\(421\) −13.2601 −0.646256 −0.323128 0.946355i \(-0.604734\pi\)
−0.323128 + 0.946355i \(0.604734\pi\)
\(422\) 0 0
\(423\) −10.7233 −0.521385
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 11.3266 0.548135
\(428\) 0 0
\(429\) −8.83481 −0.426549
\(430\) 0 0
\(431\) −0.602928 −0.0290420 −0.0145210 0.999895i \(-0.504622\pi\)
−0.0145210 + 0.999895i \(0.504622\pi\)
\(432\) 0 0
\(433\) 35.5966 1.71066 0.855332 0.518080i \(-0.173353\pi\)
0.855332 + 0.518080i \(0.173353\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −22.2384 −1.06381
\(438\) 0 0
\(439\) 11.2346 0.536198 0.268099 0.963391i \(-0.413605\pi\)
0.268099 + 0.963391i \(0.413605\pi\)
\(440\) 0 0
\(441\) −8.61811 −0.410386
\(442\) 0 0
\(443\) 24.5417 1.16601 0.583006 0.812468i \(-0.301877\pi\)
0.583006 + 0.812468i \(0.301877\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 14.2076 0.671998
\(448\) 0 0
\(449\) −11.7896 −0.556384 −0.278192 0.960526i \(-0.589735\pi\)
−0.278192 + 0.960526i \(0.589735\pi\)
\(450\) 0 0
\(451\) 9.62524 0.453235
\(452\) 0 0
\(453\) 44.4898 2.09031
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −20.9828 −0.981534 −0.490767 0.871291i \(-0.663283\pi\)
−0.490767 + 0.871291i \(0.663283\pi\)
\(458\) 0 0
\(459\) 1.91950 0.0895948
\(460\) 0 0
\(461\) −29.8844 −1.39186 −0.695928 0.718111i \(-0.745007\pi\)
−0.695928 + 0.718111i \(0.745007\pi\)
\(462\) 0 0
\(463\) −24.4425 −1.13594 −0.567970 0.823049i \(-0.692271\pi\)
−0.567970 + 0.823049i \(0.692271\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.13953 −0.145280 −0.0726401 0.997358i \(-0.523142\pi\)
−0.0726401 + 0.997358i \(0.523142\pi\)
\(468\) 0 0
\(469\) 6.48557 0.299476
\(470\) 0 0
\(471\) −33.7982 −1.55734
\(472\) 0 0
\(473\) 10.2003 0.469009
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.16004 −0.236262
\(478\) 0 0
\(479\) 12.5709 0.574380 0.287190 0.957874i \(-0.407279\pi\)
0.287190 + 0.957874i \(0.407279\pi\)
\(480\) 0 0
\(481\) −36.8866 −1.68189
\(482\) 0 0
\(483\) 12.0007 0.546051
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −13.2520 −0.600503 −0.300252 0.953860i \(-0.597071\pi\)
−0.300252 + 0.953860i \(0.597071\pi\)
\(488\) 0 0
\(489\) 3.97729 0.179859
\(490\) 0 0
\(491\) 11.3070 0.510278 0.255139 0.966904i \(-0.417879\pi\)
0.255139 + 0.966904i \(0.417879\pi\)
\(492\) 0 0
\(493\) −1.30950 −0.0589770
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.1515 −0.455359
\(498\) 0 0
\(499\) −6.06431 −0.271476 −0.135738 0.990745i \(-0.543341\pi\)
−0.135738 + 0.990745i \(0.543341\pi\)
\(500\) 0 0
\(501\) 31.3779 1.40186
\(502\) 0 0
\(503\) 39.7943 1.77434 0.887169 0.461444i \(-0.152669\pi\)
0.887169 + 0.461444i \(0.152669\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 8.84143 0.392662
\(508\) 0 0
\(509\) 11.1058 0.492258 0.246129 0.969237i \(-0.420841\pi\)
0.246129 + 0.969237i \(0.420841\pi\)
\(510\) 0 0
\(511\) 10.1922 0.450875
\(512\) 0 0
\(513\) 14.7039 0.649193
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −6.90511 −0.303686
\(518\) 0 0
\(519\) −25.4401 −1.11670
\(520\) 0 0
\(521\) −8.57831 −0.375822 −0.187911 0.982186i \(-0.560172\pi\)
−0.187911 + 0.982186i \(0.560172\pi\)
\(522\) 0 0
\(523\) −25.6845 −1.12311 −0.561553 0.827441i \(-0.689796\pi\)
−0.561553 + 0.827441i \(0.689796\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.29901 −0.0565856
\(528\) 0 0
\(529\) −1.19266 −0.0518546
\(530\) 0 0
\(531\) 16.7236 0.725744
\(532\) 0 0
\(533\) −39.8531 −1.72623
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 23.4706 1.01283
\(538\) 0 0
\(539\) −5.54950 −0.239034
\(540\) 0 0
\(541\) −5.62955 −0.242033 −0.121017 0.992650i \(-0.538615\pi\)
−0.121017 + 0.992650i \(0.538615\pi\)
\(542\) 0 0
\(543\) −0.212617 −0.00912427
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 44.0338 1.88275 0.941374 0.337365i \(-0.109536\pi\)
0.941374 + 0.337365i \(0.109536\pi\)
\(548\) 0 0
\(549\) 14.6050 0.623325
\(550\) 0 0
\(551\) −10.0311 −0.427340
\(552\) 0 0
\(553\) −7.76384 −0.330152
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 40.5943 1.72003 0.860017 0.510265i \(-0.170453\pi\)
0.860017 + 0.510265i \(0.170453\pi\)
\(558\) 0 0
\(559\) −42.2341 −1.78631
\(560\) 0 0
\(561\) −1.32650 −0.0560047
\(562\) 0 0
\(563\) −6.63333 −0.279562 −0.139781 0.990182i \(-0.544640\pi\)
−0.139781 + 0.990182i \(0.544640\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −13.5457 −0.568868
\(568\) 0 0
\(569\) −18.3346 −0.768625 −0.384313 0.923203i \(-0.625562\pi\)
−0.384313 + 0.923203i \(0.625562\pi\)
\(570\) 0 0
\(571\) 9.13047 0.382098 0.191049 0.981580i \(-0.438811\pi\)
0.191049 + 0.981580i \(0.438811\pi\)
\(572\) 0 0
\(573\) −43.7932 −1.82949
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −9.93656 −0.413665 −0.206832 0.978376i \(-0.566315\pi\)
−0.206832 + 0.978376i \(0.566315\pi\)
\(578\) 0 0
\(579\) 35.9995 1.49609
\(580\) 0 0
\(581\) 0.814127 0.0337757
\(582\) 0 0
\(583\) −3.32273 −0.137613
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.66282 0.0686318 0.0343159 0.999411i \(-0.489075\pi\)
0.0343159 + 0.999411i \(0.489075\pi\)
\(588\) 0 0
\(589\) −9.95073 −0.410013
\(590\) 0 0
\(591\) 2.90693 0.119575
\(592\) 0 0
\(593\) 22.3866 0.919307 0.459653 0.888098i \(-0.347974\pi\)
0.459653 + 0.888098i \(0.347974\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −42.9069 −1.75606
\(598\) 0 0
\(599\) 36.9636 1.51029 0.755147 0.655556i \(-0.227566\pi\)
0.755147 + 0.655556i \(0.227566\pi\)
\(600\) 0 0
\(601\) −1.08085 −0.0440887 −0.0220443 0.999757i \(-0.507017\pi\)
−0.0220443 + 0.999757i \(0.507017\pi\)
\(602\) 0 0
\(603\) 8.36272 0.340556
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 15.9873 0.648903 0.324451 0.945902i \(-0.394820\pi\)
0.324451 + 0.945902i \(0.394820\pi\)
\(608\) 0 0
\(609\) 5.41317 0.219353
\(610\) 0 0
\(611\) 28.5905 1.15665
\(612\) 0 0
\(613\) −13.6367 −0.550781 −0.275390 0.961332i \(-0.588807\pi\)
−0.275390 + 0.961332i \(0.588807\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −40.9104 −1.64699 −0.823496 0.567323i \(-0.807979\pi\)
−0.823496 + 0.567323i \(0.807979\pi\)
\(618\) 0 0
\(619\) 42.1598 1.69454 0.847272 0.531159i \(-0.178243\pi\)
0.847272 + 0.531159i \(0.178243\pi\)
\(620\) 0 0
\(621\) −14.4189 −0.578609
\(622\) 0 0
\(623\) 18.8954 0.757027
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −10.1613 −0.405804
\(628\) 0 0
\(629\) −5.53831 −0.220827
\(630\) 0 0
\(631\) −29.6308 −1.17958 −0.589792 0.807555i \(-0.700790\pi\)
−0.589792 + 0.807555i \(0.700790\pi\)
\(632\) 0 0
\(633\) −14.4503 −0.574347
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 22.9776 0.910406
\(638\) 0 0
\(639\) −13.0898 −0.517823
\(640\) 0 0
\(641\) 36.4240 1.43866 0.719330 0.694668i \(-0.244449\pi\)
0.719330 + 0.694668i \(0.244449\pi\)
\(642\) 0 0
\(643\) 26.9899 1.06438 0.532188 0.846626i \(-0.321370\pi\)
0.532188 + 0.846626i \(0.321370\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 30.6852 1.20636 0.603181 0.797605i \(-0.293900\pi\)
0.603181 + 0.797605i \(0.293900\pi\)
\(648\) 0 0
\(649\) 10.7689 0.422718
\(650\) 0 0
\(651\) 5.36978 0.210458
\(652\) 0 0
\(653\) −21.9274 −0.858085 −0.429042 0.903284i \(-0.641149\pi\)
−0.429042 + 0.903284i \(0.641149\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 13.1421 0.512724
\(658\) 0 0
\(659\) 19.1287 0.745148 0.372574 0.928003i \(-0.378475\pi\)
0.372574 + 0.928003i \(0.378475\pi\)
\(660\) 0 0
\(661\) −50.9975 −1.98357 −0.991786 0.127912i \(-0.959172\pi\)
−0.991786 + 0.127912i \(0.959172\pi\)
\(662\) 0 0
\(663\) 5.49233 0.213304
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.83667 0.380877
\(668\) 0 0
\(669\) −4.50778 −0.174281
\(670\) 0 0
\(671\) 9.40465 0.363062
\(672\) 0 0
\(673\) 23.3223 0.899010 0.449505 0.893278i \(-0.351600\pi\)
0.449505 + 0.893278i \(0.351600\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.30482 −0.242314 −0.121157 0.992633i \(-0.538660\pi\)
−0.121157 + 0.992633i \(0.538660\pi\)
\(678\) 0 0
\(679\) 12.7024 0.487475
\(680\) 0 0
\(681\) 16.3191 0.625348
\(682\) 0 0
\(683\) 36.8716 1.41085 0.705426 0.708783i \(-0.250756\pi\)
0.705426 + 0.708783i \(0.250756\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 26.1324 0.997013
\(688\) 0 0
\(689\) 13.7577 0.524126
\(690\) 0 0
\(691\) 35.5795 1.35351 0.676754 0.736209i \(-0.263386\pi\)
0.676754 + 0.736209i \(0.263386\pi\)
\(692\) 0 0
\(693\) 1.87032 0.0710477
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −5.98372 −0.226649
\(698\) 0 0
\(699\) 34.0340 1.28729
\(700\) 0 0
\(701\) 12.1069 0.457271 0.228636 0.973512i \(-0.426574\pi\)
0.228636 + 0.973512i \(0.426574\pi\)
\(702\) 0 0
\(703\) −42.4249 −1.60009
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.53551 −0.0577486
\(708\) 0 0
\(709\) −31.1844 −1.17115 −0.585577 0.810617i \(-0.699132\pi\)
−0.585577 + 0.810617i \(0.699132\pi\)
\(710\) 0 0
\(711\) −10.0110 −0.375441
\(712\) 0 0
\(713\) 9.75783 0.365433
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −60.8585 −2.27280
\(718\) 0 0
\(719\) −44.1954 −1.64821 −0.824106 0.566436i \(-0.808322\pi\)
−0.824106 + 0.566436i \(0.808322\pi\)
\(720\) 0 0
\(721\) −4.32086 −0.160917
\(722\) 0 0
\(723\) 9.63292 0.358252
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −0.419917 −0.0155739 −0.00778694 0.999970i \(-0.502479\pi\)
−0.00778694 + 0.999970i \(0.502479\pi\)
\(728\) 0 0
\(729\) 2.29867 0.0851359
\(730\) 0 0
\(731\) −6.34120 −0.234538
\(732\) 0 0
\(733\) 15.6107 0.576595 0.288297 0.957541i \(-0.406911\pi\)
0.288297 + 0.957541i \(0.406911\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.38505 0.198361
\(738\) 0 0
\(739\) −12.5531 −0.461773 −0.230887 0.972981i \(-0.574163\pi\)
−0.230887 + 0.972981i \(0.574163\pi\)
\(740\) 0 0
\(741\) 42.0727 1.54558
\(742\) 0 0
\(743\) 41.3322 1.51633 0.758166 0.652061i \(-0.226096\pi\)
0.758166 + 0.652061i \(0.226096\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.04976 0.0384088
\(748\) 0 0
\(749\) 5.99146 0.218923
\(750\) 0 0
\(751\) −13.6104 −0.496652 −0.248326 0.968677i \(-0.579880\pi\)
−0.248326 + 0.968677i \(0.579880\pi\)
\(752\) 0 0
\(753\) −30.2233 −1.10140
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 15.8830 0.577279 0.288640 0.957438i \(-0.406797\pi\)
0.288640 + 0.957438i \(0.406797\pi\)
\(758\) 0 0
\(759\) 9.96433 0.361682
\(760\) 0 0
\(761\) −0.731594 −0.0265203 −0.0132601 0.999912i \(-0.504221\pi\)
−0.0132601 + 0.999912i \(0.504221\pi\)
\(762\) 0 0
\(763\) 7.99546 0.289455
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −44.5886 −1.61000
\(768\) 0 0
\(769\) −28.1471 −1.01501 −0.507505 0.861649i \(-0.669432\pi\)
−0.507505 + 0.861649i \(0.669432\pi\)
\(770\) 0 0
\(771\) 6.93488 0.249753
\(772\) 0 0
\(773\) 27.3629 0.984176 0.492088 0.870545i \(-0.336234\pi\)
0.492088 + 0.870545i \(0.336234\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 22.8941 0.821321
\(778\) 0 0
\(779\) −45.8368 −1.64228
\(780\) 0 0
\(781\) −8.42895 −0.301612
\(782\) 0 0
\(783\) −6.50393 −0.232432
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 15.3954 0.548788 0.274394 0.961617i \(-0.411523\pi\)
0.274394 + 0.961617i \(0.411523\pi\)
\(788\) 0 0
\(789\) −11.8813 −0.422985
\(790\) 0 0
\(791\) 5.01426 0.178286
\(792\) 0 0
\(793\) −38.9398 −1.38279
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 48.3762 1.71357 0.856786 0.515673i \(-0.172458\pi\)
0.856786 + 0.515673i \(0.172458\pi\)
\(798\) 0 0
\(799\) 4.29269 0.151865
\(800\) 0 0
\(801\) 24.3644 0.860872
\(802\) 0 0
\(803\) 8.46268 0.298642
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −30.3963 −1.07000
\(808\) 0 0
\(809\) −34.1856 −1.20190 −0.600950 0.799287i \(-0.705211\pi\)
−0.600950 + 0.799287i \(0.705211\pi\)
\(810\) 0 0
\(811\) −28.5790 −1.00354 −0.501771 0.865000i \(-0.667318\pi\)
−0.501771 + 0.865000i \(0.667318\pi\)
\(812\) 0 0
\(813\) −35.3920 −1.24125
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −48.5753 −1.69943
\(818\) 0 0
\(819\) −7.74404 −0.270599
\(820\) 0 0
\(821\) −48.9846 −1.70957 −0.854787 0.518978i \(-0.826313\pi\)
−0.854787 + 0.518978i \(0.826313\pi\)
\(822\) 0 0
\(823\) −51.9200 −1.80982 −0.904909 0.425605i \(-0.860061\pi\)
−0.904909 + 0.425605i \(0.860061\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −55.7187 −1.93753 −0.968765 0.247980i \(-0.920233\pi\)
−0.968765 + 0.247980i \(0.920233\pi\)
\(828\) 0 0
\(829\) −55.7521 −1.93635 −0.968175 0.250274i \(-0.919479\pi\)
−0.968175 + 0.250274i \(0.919479\pi\)
\(830\) 0 0
\(831\) −7.24379 −0.251284
\(832\) 0 0
\(833\) 3.44995 0.119534
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −6.45180 −0.223007
\(838\) 0 0
\(839\) 19.2438 0.664369 0.332184 0.943214i \(-0.392214\pi\)
0.332184 + 0.943214i \(0.392214\pi\)
\(840\) 0 0
\(841\) −24.5630 −0.846999
\(842\) 0 0
\(843\) −36.7780 −1.26670
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.20437 0.0413825
\(848\) 0 0
\(849\) −68.2371 −2.34189
\(850\) 0 0
\(851\) 41.6025 1.42612
\(852\) 0 0
\(853\) 33.8108 1.15766 0.578830 0.815448i \(-0.303509\pi\)
0.578830 + 0.815448i \(0.303509\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 58.4040 1.99504 0.997522 0.0703617i \(-0.0224153\pi\)
0.997522 + 0.0703617i \(0.0224153\pi\)
\(858\) 0 0
\(859\) 23.8572 0.813998 0.406999 0.913429i \(-0.366575\pi\)
0.406999 + 0.913429i \(0.366575\pi\)
\(860\) 0 0
\(861\) 24.7353 0.842976
\(862\) 0 0
\(863\) 4.37835 0.149041 0.0745204 0.997219i \(-0.476257\pi\)
0.0745204 + 0.997219i \(0.476257\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −35.4494 −1.20392
\(868\) 0 0
\(869\) −6.44641 −0.218680
\(870\) 0 0
\(871\) −22.2967 −0.755494
\(872\) 0 0
\(873\) 16.3790 0.554344
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 46.8329 1.58143 0.790717 0.612182i \(-0.209708\pi\)
0.790717 + 0.612182i \(0.209708\pi\)
\(878\) 0 0
\(879\) −21.7406 −0.733293
\(880\) 0 0
\(881\) 2.72179 0.0916993 0.0458496 0.998948i \(-0.485400\pi\)
0.0458496 + 0.998948i \(0.485400\pi\)
\(882\) 0 0
\(883\) −22.8773 −0.769881 −0.384941 0.922941i \(-0.625778\pi\)
−0.384941 + 0.922941i \(0.625778\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −37.0004 −1.24235 −0.621175 0.783672i \(-0.713344\pi\)
−0.621175 + 0.783672i \(0.713344\pi\)
\(888\) 0 0
\(889\) 5.73127 0.192221
\(890\) 0 0
\(891\) −11.2472 −0.376795
\(892\) 0 0
\(893\) 32.8832 1.10039
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −41.2571 −1.37753
\(898\) 0 0
\(899\) 4.40147 0.146797
\(900\) 0 0
\(901\) 2.06564 0.0688164
\(902\) 0 0
\(903\) 26.2130 0.872315
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −6.01498 −0.199724 −0.0998621 0.995001i \(-0.531840\pi\)
−0.0998621 + 0.995001i \(0.531840\pi\)
\(908\) 0 0
\(909\) −1.97993 −0.0656703
\(910\) 0 0
\(911\) −9.98170 −0.330708 −0.165354 0.986234i \(-0.552877\pi\)
−0.165354 + 0.986234i \(0.552877\pi\)
\(912\) 0 0
\(913\) 0.675980 0.0223717
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 13.1112 0.432969
\(918\) 0 0
\(919\) −36.3004 −1.19744 −0.598719 0.800959i \(-0.704323\pi\)
−0.598719 + 0.800959i \(0.704323\pi\)
\(920\) 0 0
\(921\) 43.4705 1.43240
\(922\) 0 0
\(923\) 34.8999 1.14874
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −5.57147 −0.182991
\(928\) 0 0
\(929\) 25.3480 0.831640 0.415820 0.909447i \(-0.363495\pi\)
0.415820 + 0.909447i \(0.363495\pi\)
\(930\) 0 0
\(931\) 26.4276 0.866128
\(932\) 0 0
\(933\) −9.89659 −0.324000
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −36.8662 −1.20437 −0.602183 0.798358i \(-0.705702\pi\)
−0.602183 + 0.798358i \(0.705702\pi\)
\(938\) 0 0
\(939\) −55.3448 −1.80611
\(940\) 0 0
\(941\) 10.2385 0.333764 0.166882 0.985977i \(-0.446630\pi\)
0.166882 + 0.985977i \(0.446630\pi\)
\(942\) 0 0
\(943\) 44.9483 1.46372
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16.4386 0.534183 0.267092 0.963671i \(-0.413937\pi\)
0.267092 + 0.963671i \(0.413937\pi\)
\(948\) 0 0
\(949\) −35.0396 −1.13743
\(950\) 0 0
\(951\) 14.9329 0.484234
\(952\) 0 0
\(953\) −57.7188 −1.86969 −0.934847 0.355050i \(-0.884464\pi\)
−0.934847 + 0.355050i \(0.884464\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4.49462 0.145290
\(958\) 0 0
\(959\) −12.1394 −0.392000
\(960\) 0 0
\(961\) −26.6338 −0.859155
\(962\) 0 0
\(963\) 7.72559 0.248954
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −31.9836 −1.02852 −0.514262 0.857633i \(-0.671934\pi\)
−0.514262 + 0.857633i \(0.671934\pi\)
\(968\) 0 0
\(969\) 6.31697 0.202930
\(970\) 0 0
\(971\) 47.6080 1.52781 0.763906 0.645327i \(-0.223279\pi\)
0.763906 + 0.645327i \(0.223279\pi\)
\(972\) 0 0
\(973\) 24.7933 0.794837
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.75975 0.184271 0.0921353 0.995746i \(-0.470631\pi\)
0.0921353 + 0.995746i \(0.470631\pi\)
\(978\) 0 0
\(979\) 15.6891 0.501425
\(980\) 0 0
\(981\) 10.3096 0.329161
\(982\) 0 0
\(983\) 31.8921 1.01720 0.508601 0.861003i \(-0.330163\pi\)
0.508601 + 0.861003i \(0.330163\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −17.7450 −0.564829
\(988\) 0 0
\(989\) 47.6336 1.51466
\(990\) 0 0
\(991\) −43.6276 −1.38588 −0.692938 0.720997i \(-0.743684\pi\)
−0.692938 + 0.720997i \(0.743684\pi\)
\(992\) 0 0
\(993\) −14.3763 −0.456218
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −39.0472 −1.23664 −0.618319 0.785927i \(-0.712186\pi\)
−0.618319 + 0.785927i \(0.712186\pi\)
\(998\) 0 0
\(999\) −27.5073 −0.870292
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8800.2.a.cj.1.6 7
4.3 odd 2 8800.2.a.cc.1.2 7
5.2 odd 4 1760.2.b.f.1409.3 yes 14
5.3 odd 4 1760.2.b.f.1409.12 yes 14
5.4 even 2 8800.2.a.cd.1.2 7
20.3 even 4 1760.2.b.e.1409.3 14
20.7 even 4 1760.2.b.e.1409.12 yes 14
20.19 odd 2 8800.2.a.ci.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1760.2.b.e.1409.3 14 20.3 even 4
1760.2.b.e.1409.12 yes 14 20.7 even 4
1760.2.b.f.1409.3 yes 14 5.2 odd 4
1760.2.b.f.1409.12 yes 14 5.3 odd 4
8800.2.a.cc.1.2 7 4.3 odd 2
8800.2.a.cd.1.2 7 5.4 even 2
8800.2.a.ci.1.6 7 20.19 odd 2
8800.2.a.cj.1.6 7 1.1 even 1 trivial