Properties

Label 1764.2.i.d.373.2
Level $1764$
Weight $2$
Character 1764.373
Analytic conductor $14.086$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(373,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.373");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.2
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 1764.373
Dual form 1764.2.i.d.1537.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.619562 - 1.61745i) q^{3} +(0.119562 + 0.207087i) q^{5} +(-2.23229 + 2.00422i) q^{9} +O(q^{10})\) \(q+(-0.619562 - 1.61745i) q^{3} +(0.119562 + 0.207087i) q^{5} +(-2.23229 + 2.00422i) q^{9} +(2.56238 - 4.43818i) q^{11} +(-2.44282 + 4.23109i) q^{13} +(0.260877 - 0.321688i) q^{15} +(1.85185 + 3.20750i) q^{17} +(1.83009 - 3.16982i) q^{19} +(-3.71053 - 6.42683i) q^{23} +(2.47141 - 4.28061i) q^{25} +(4.62476 + 2.36887i) q^{27} +(-1.73229 - 3.00041i) q^{29} +0.717370 q^{31} +(-8.76608 - 1.39480i) q^{33} +(-2.30150 + 3.98632i) q^{37} +(8.35705 + 1.32972i) q^{39} +(2.80150 - 4.85235i) q^{41} +(-6.24433 - 10.8155i) q^{43} +(-0.681943 - 0.222649i) q^{45} -4.33981 q^{47} +(4.04063 - 4.98251i) q^{51} +(0.471410 + 0.816506i) q^{53} +1.22545 q^{55} +(-6.26088 - 0.996189i) q^{57} -7.57893 q^{59} -5.50808 q^{61} -1.16827 q^{65} -0.660190 q^{67} +(-8.09617 + 9.98342i) q^{69} +13.7414 q^{71} +(-1.83009 - 3.16982i) q^{73} +(-8.45486 - 1.34528i) q^{75} -6.22545 q^{79} +(0.966208 - 8.94799i) q^{81} +(4.85185 + 8.40365i) q^{83} +(-0.442820 + 0.766987i) q^{85} +(-3.77975 + 4.66082i) q^{87} +(-3.74433 + 6.48536i) q^{89} +(-0.444455 - 1.16031i) q^{93} +0.875237 q^{95} +(-8.57442 - 14.8513i) q^{97} +(3.17511 + 15.0429i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + q^{5} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 4 q^{3} + q^{5} - 4 q^{9} - 2 q^{11} + 3 q^{13} + q^{15} + 2 q^{17} + 3 q^{19} - 14 q^{23} + 6 q^{25} - 7 q^{27} - q^{29} + 6 q^{31} - 17 q^{33} + 3 q^{37} + 6 q^{39} - 3 q^{43} + 13 q^{45} - 42 q^{47} + 8 q^{51} - 6 q^{53} - 12 q^{55} - 37 q^{57} - 62 q^{59} - 12 q^{61} + 30 q^{65} + 12 q^{67} - 5 q^{69} + 34 q^{71} - 3 q^{73} - 8 q^{75} - 18 q^{79} + 32 q^{81} + 20 q^{83} + 15 q^{85} - 7 q^{87} + 12 q^{89} - 30 q^{93} + 40 q^{95} - 9 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.619562 1.61745i −0.357704 0.933835i
\(4\) 0 0
\(5\) 0.119562 + 0.207087i 0.0534696 + 0.0926120i 0.891521 0.452979i \(-0.149639\pi\)
−0.838052 + 0.545591i \(0.816305\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.23229 + 2.00422i −0.744096 + 0.668073i
\(10\) 0 0
\(11\) 2.56238 4.43818i 0.772587 1.33816i −0.163554 0.986534i \(-0.552296\pi\)
0.936141 0.351626i \(-0.114371\pi\)
\(12\) 0 0
\(13\) −2.44282 + 4.23109i −0.677516 + 1.17349i 0.298210 + 0.954500i \(0.403610\pi\)
−0.975727 + 0.218993i \(0.929723\pi\)
\(14\) 0 0
\(15\) 0.260877 0.321688i 0.0673581 0.0830595i
\(16\) 0 0
\(17\) 1.85185 + 3.20750i 0.449139 + 0.777932i 0.998330 0.0577649i \(-0.0183974\pi\)
−0.549191 + 0.835697i \(0.685064\pi\)
\(18\) 0 0
\(19\) 1.83009 3.16982i 0.419853 0.727206i −0.576072 0.817399i \(-0.695415\pi\)
0.995924 + 0.0901932i \(0.0287484\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.71053 6.42683i −0.773700 1.34009i −0.935522 0.353267i \(-0.885071\pi\)
0.161823 0.986820i \(-0.448263\pi\)
\(24\) 0 0
\(25\) 2.47141 4.28061i 0.494282 0.856122i
\(26\) 0 0
\(27\) 4.62476 + 2.36887i 0.890036 + 0.455890i
\(28\) 0 0
\(29\) −1.73229 3.00041i −0.321678 0.557162i 0.659157 0.752006i \(-0.270913\pi\)
−0.980834 + 0.194844i \(0.937580\pi\)
\(30\) 0 0
\(31\) 0.717370 0.128843 0.0644217 0.997923i \(-0.479480\pi\)
0.0644217 + 0.997923i \(0.479480\pi\)
\(32\) 0 0
\(33\) −8.76608 1.39480i −1.52598 0.242804i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.30150 + 3.98632i −0.378365 + 0.655348i −0.990825 0.135154i \(-0.956847\pi\)
0.612459 + 0.790502i \(0.290180\pi\)
\(38\) 0 0
\(39\) 8.35705 + 1.32972i 1.33820 + 0.212925i
\(40\) 0 0
\(41\) 2.80150 4.85235i 0.437522 0.757810i −0.559976 0.828509i \(-0.689190\pi\)
0.997498 + 0.0706992i \(0.0225230\pi\)
\(42\) 0 0
\(43\) −6.24433 10.8155i −0.952251 1.64935i −0.740538 0.672015i \(-0.765429\pi\)
−0.211713 0.977332i \(-0.567904\pi\)
\(44\) 0 0
\(45\) −0.681943 0.222649i −0.101658 0.0331906i
\(46\) 0 0
\(47\) −4.33981 −0.633026 −0.316513 0.948588i \(-0.602512\pi\)
−0.316513 + 0.948588i \(0.602512\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 4.04063 4.98251i 0.565801 0.697691i
\(52\) 0 0
\(53\) 0.471410 + 0.816506i 0.0647531 + 0.112156i 0.896584 0.442873i \(-0.146041\pi\)
−0.831831 + 0.555029i \(0.812707\pi\)
\(54\) 0 0
\(55\) 1.22545 0.165240
\(56\) 0 0
\(57\) −6.26088 0.996189i −0.829273 0.131948i
\(58\) 0 0
\(59\) −7.57893 −0.986693 −0.493347 0.869833i \(-0.664227\pi\)
−0.493347 + 0.869833i \(0.664227\pi\)
\(60\) 0 0
\(61\) −5.50808 −0.705237 −0.352619 0.935767i \(-0.614709\pi\)
−0.352619 + 0.935767i \(0.614709\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.16827 −0.144906
\(66\) 0 0
\(67\) −0.660190 −0.0806550 −0.0403275 0.999187i \(-0.512840\pi\)
−0.0403275 + 0.999187i \(0.512840\pi\)
\(68\) 0 0
\(69\) −8.09617 + 9.98342i −0.974665 + 1.20186i
\(70\) 0 0
\(71\) 13.7414 1.63081 0.815405 0.578891i \(-0.196514\pi\)
0.815405 + 0.578891i \(0.196514\pi\)
\(72\) 0 0
\(73\) −1.83009 3.16982i −0.214196 0.370999i 0.738827 0.673895i \(-0.235380\pi\)
−0.953024 + 0.302896i \(0.902047\pi\)
\(74\) 0 0
\(75\) −8.45486 1.34528i −0.976283 0.155340i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.22545 −0.700418 −0.350209 0.936672i \(-0.613889\pi\)
−0.350209 + 0.936672i \(0.613889\pi\)
\(80\) 0 0
\(81\) 0.966208 8.94799i 0.107356 0.994221i
\(82\) 0 0
\(83\) 4.85185 + 8.40365i 0.532560 + 0.922420i 0.999277 + 0.0380138i \(0.0121031\pi\)
−0.466718 + 0.884406i \(0.654564\pi\)
\(84\) 0 0
\(85\) −0.442820 + 0.766987i −0.0480306 + 0.0831914i
\(86\) 0 0
\(87\) −3.77975 + 4.66082i −0.405232 + 0.499693i
\(88\) 0 0
\(89\) −3.74433 + 6.48536i −0.396898 + 0.687447i −0.993341 0.115208i \(-0.963247\pi\)
0.596444 + 0.802655i \(0.296580\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.444455 1.16031i −0.0460878 0.120318i
\(94\) 0 0
\(95\) 0.875237 0.0897974
\(96\) 0 0
\(97\) −8.57442 14.8513i −0.870600 1.50792i −0.861377 0.507967i \(-0.830397\pi\)
−0.00922376 0.999957i \(-0.502936\pi\)
\(98\) 0 0
\(99\) 3.17511 + 15.0429i 0.319110 + 1.51186i
\(100\) 0 0
\(101\) 3.59097 6.21975i 0.357315 0.618888i −0.630196 0.776436i \(-0.717026\pi\)
0.987511 + 0.157548i \(0.0503589\pi\)
\(102\) 0 0
\(103\) −6.41423 11.1098i −0.632013 1.09468i −0.987140 0.159860i \(-0.948896\pi\)
0.355127 0.934818i \(-0.384438\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.78263 + 6.55171i −0.365681 + 0.633377i −0.988885 0.148681i \(-0.952497\pi\)
0.623204 + 0.782059i \(0.285830\pi\)
\(108\) 0 0
\(109\) 3.49028 + 6.04535i 0.334309 + 0.579040i 0.983352 0.181712i \(-0.0581639\pi\)
−0.649043 + 0.760752i \(0.724831\pi\)
\(110\) 0 0
\(111\) 7.87360 + 1.25280i 0.747329 + 0.118910i
\(112\) 0 0
\(113\) 9.78495 16.9480i 0.920491 1.59434i 0.121834 0.992550i \(-0.461122\pi\)
0.798657 0.601787i \(-0.205544\pi\)
\(114\) 0 0
\(115\) 0.887275 1.53681i 0.0827388 0.143308i
\(116\) 0 0
\(117\) −3.02696 14.3410i −0.279842 1.32582i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.63160 13.2183i −0.693782 1.20167i
\(122\) 0 0
\(123\) −9.58414 1.52496i −0.864172 0.137501i
\(124\) 0 0
\(125\) 2.37756 0.212655
\(126\) 0 0
\(127\) −16.8090 −1.49156 −0.745780 0.666192i \(-0.767923\pi\)
−0.745780 + 0.666192i \(0.767923\pi\)
\(128\) 0 0
\(129\) −13.6248 + 16.8007i −1.19959 + 1.47922i
\(130\) 0 0
\(131\) 2.44966 + 4.24293i 0.214027 + 0.370706i 0.952971 0.303061i \(-0.0980085\pi\)
−0.738944 + 0.673767i \(0.764675\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.0623817 + 1.24095i 0.00536896 + 0.106804i
\(136\) 0 0
\(137\) −2.72257 + 4.71563i −0.232605 + 0.402884i −0.958574 0.284844i \(-0.908058\pi\)
0.725969 + 0.687727i \(0.241392\pi\)
\(138\) 0 0
\(139\) 2.83009 4.90187i 0.240046 0.415771i −0.720681 0.693266i \(-0.756171\pi\)
0.960727 + 0.277495i \(0.0895043\pi\)
\(140\) 0 0
\(141\) 2.68878 + 7.01942i 0.226436 + 0.591142i
\(142\) 0 0
\(143\) 12.5189 + 21.6833i 1.04688 + 1.81325i
\(144\) 0 0
\(145\) 0.414230 0.717468i 0.0343999 0.0595824i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.14132 1.97682i −0.0935002 0.161947i 0.815481 0.578783i \(-0.196472\pi\)
−0.908982 + 0.416836i \(0.863139\pi\)
\(150\) 0 0
\(151\) −5.63160 + 9.75422i −0.458293 + 0.793787i −0.998871 0.0475071i \(-0.984872\pi\)
0.540578 + 0.841294i \(0.318206\pi\)
\(152\) 0 0
\(153\) −10.5624 3.44854i −0.853918 0.278798i
\(154\) 0 0
\(155\) 0.0857699 + 0.148558i 0.00688921 + 0.0119325i
\(156\) 0 0
\(157\) −5.54583 −0.442605 −0.221303 0.975205i \(-0.571031\pi\)
−0.221303 + 0.975205i \(0.571031\pi\)
\(158\) 0 0
\(159\) 1.02859 1.26836i 0.0815725 0.100587i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −3.33009 + 5.76789i −0.260833 + 0.451776i −0.966464 0.256804i \(-0.917331\pi\)
0.705630 + 0.708580i \(0.250664\pi\)
\(164\) 0 0
\(165\) −0.759242 1.98210i −0.0591069 0.154307i
\(166\) 0 0
\(167\) 2.20370 3.81691i 0.170527 0.295362i −0.768077 0.640357i \(-0.778786\pi\)
0.938604 + 0.344996i \(0.112120\pi\)
\(168\) 0 0
\(169\) −5.43474 9.41325i −0.418057 0.724096i
\(170\) 0 0
\(171\) 2.26771 + 10.7439i 0.173416 + 0.821603i
\(172\) 0 0
\(173\) −25.3308 −1.92586 −0.962932 0.269745i \(-0.913061\pi\)
−0.962932 + 0.269745i \(0.913061\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.69562 + 12.2585i 0.352944 + 0.921409i
\(178\) 0 0
\(179\) −4.77292 8.26693i −0.356744 0.617899i 0.630670 0.776051i \(-0.282780\pi\)
−0.987415 + 0.158151i \(0.949447\pi\)
\(180\) 0 0
\(181\) −12.3743 −0.919774 −0.459887 0.887978i \(-0.652110\pi\)
−0.459887 + 0.887978i \(0.652110\pi\)
\(182\) 0 0
\(183\) 3.41260 + 8.90904i 0.252266 + 0.658575i
\(184\) 0 0
\(185\) −1.10069 −0.0809241
\(186\) 0 0
\(187\) 18.9806 1.38800
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.1683 0.952823 0.476411 0.879223i \(-0.341937\pi\)
0.476411 + 0.879223i \(0.341937\pi\)
\(192\) 0 0
\(193\) 11.1488 0.802511 0.401256 0.915966i \(-0.368574\pi\)
0.401256 + 0.915966i \(0.368574\pi\)
\(194\) 0 0
\(195\) 0.723815 + 1.88962i 0.0518335 + 0.135318i
\(196\) 0 0
\(197\) −0.144194 −0.0102734 −0.00513669 0.999987i \(-0.501635\pi\)
−0.00513669 + 0.999987i \(0.501635\pi\)
\(198\) 0 0
\(199\) −9.73461 16.8608i −0.690068 1.19523i −0.971815 0.235744i \(-0.924247\pi\)
0.281747 0.959489i \(-0.409086\pi\)
\(200\) 0 0
\(201\) 0.409028 + 1.06782i 0.0288506 + 0.0753185i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.33981 0.0935764
\(206\) 0 0
\(207\) 21.1638 + 6.90981i 1.47098 + 0.480265i
\(208\) 0 0
\(209\) −9.37880 16.2446i −0.648745 1.12366i
\(210\) 0 0
\(211\) 1.61436 2.79615i 0.111137 0.192495i −0.805092 0.593150i \(-0.797884\pi\)
0.916229 + 0.400655i \(0.131217\pi\)
\(212\) 0 0
\(213\) −8.51367 22.2261i −0.583347 1.52291i
\(214\) 0 0
\(215\) 1.49316 2.58623i 0.101833 0.176380i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −3.99316 + 4.92398i −0.269833 + 0.332732i
\(220\) 0 0
\(221\) −18.0949 −1.21720
\(222\) 0 0
\(223\) 10.3856 + 17.9885i 0.695474 + 1.20460i 0.970021 + 0.243022i \(0.0781389\pi\)
−0.274547 + 0.961574i \(0.588528\pi\)
\(224\) 0 0
\(225\) 3.06238 + 14.5088i 0.204159 + 0.967253i
\(226\) 0 0
\(227\) 10.9714 19.0030i 0.728198 1.26128i −0.229446 0.973321i \(-0.573691\pi\)
0.957644 0.287955i \(-0.0929752\pi\)
\(228\) 0 0
\(229\) 11.3856 + 19.7205i 0.752384 + 1.30317i 0.946664 + 0.322222i \(0.104430\pi\)
−0.194280 + 0.980946i \(0.562237\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.8908 22.3276i 0.844507 1.46273i −0.0415414 0.999137i \(-0.513227\pi\)
0.886049 0.463592i \(-0.153440\pi\)
\(234\) 0 0
\(235\) −0.518875 0.898718i −0.0338477 0.0586259i
\(236\) 0 0
\(237\) 3.85705 + 10.0694i 0.250542 + 0.654075i
\(238\) 0 0
\(239\) 13.6488 23.6405i 0.882870 1.52918i 0.0347345 0.999397i \(-0.488941\pi\)
0.848136 0.529779i \(-0.177725\pi\)
\(240\) 0 0
\(241\) 5.01724 8.69011i 0.323189 0.559779i −0.657955 0.753057i \(-0.728578\pi\)
0.981144 + 0.193277i \(0.0619118\pi\)
\(242\) 0 0
\(243\) −15.0715 + 3.98104i −0.966840 + 0.255384i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.94119 + 15.4866i 0.568914 + 0.985388i
\(248\) 0 0
\(249\) 10.5865 13.0542i 0.670890 0.827276i
\(250\) 0 0
\(251\) 28.3171 1.78736 0.893680 0.448705i \(-0.148115\pi\)
0.893680 + 0.448705i \(0.148115\pi\)
\(252\) 0 0
\(253\) −38.0312 −2.39100
\(254\) 0 0
\(255\) 1.51492 + 0.241044i 0.0948678 + 0.0150947i
\(256\) 0 0
\(257\) 14.4315 + 24.9960i 0.900210 + 1.55921i 0.827221 + 0.561877i \(0.189921\pi\)
0.0729899 + 0.997333i \(0.476746\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 9.88044 + 3.22589i 0.611584 + 0.199678i
\(262\) 0 0
\(263\) 0.604645 1.04728i 0.0372840 0.0645778i −0.846781 0.531941i \(-0.821463\pi\)
0.884065 + 0.467363i \(0.154796\pi\)
\(264\) 0 0
\(265\) −0.112725 + 0.195246i −0.00692465 + 0.0119938i
\(266\) 0 0
\(267\) 12.8096 + 2.03818i 0.783934 + 0.124734i
\(268\) 0 0
\(269\) 4.50684 + 7.80607i 0.274787 + 0.475944i 0.970081 0.242780i \(-0.0780594\pi\)
−0.695295 + 0.718725i \(0.744726\pi\)
\(270\) 0 0
\(271\) 8.80150 15.2447i 0.534653 0.926047i −0.464527 0.885559i \(-0.653776\pi\)
0.999180 0.0404876i \(-0.0128911\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.6654 21.9371i −0.763752 1.32286i
\(276\) 0 0
\(277\) −0.727085 + 1.25935i −0.0436863 + 0.0756669i −0.887042 0.461689i \(-0.847244\pi\)
0.843355 + 0.537356i \(0.180577\pi\)
\(278\) 0 0
\(279\) −1.60138 + 1.43777i −0.0958718 + 0.0860768i
\(280\) 0 0
\(281\) 10.1482 + 17.5771i 0.605388 + 1.04856i 0.991990 + 0.126316i \(0.0403154\pi\)
−0.386602 + 0.922247i \(0.626351\pi\)
\(282\) 0 0
\(283\) 4.60301 0.273621 0.136810 0.990597i \(-0.456315\pi\)
0.136810 + 0.990597i \(0.456315\pi\)
\(284\) 0 0
\(285\) −0.542263 1.41565i −0.0321209 0.0838559i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.64132 2.84284i 0.0965479 0.167226i
\(290\) 0 0
\(291\) −18.7089 + 23.0700i −1.09674 + 1.35239i
\(292\) 0 0
\(293\) −3.53667 + 6.12569i −0.206614 + 0.357867i −0.950646 0.310278i \(-0.899578\pi\)
0.744031 + 0.668145i \(0.232911\pi\)
\(294\) 0 0
\(295\) −0.906150 1.56950i −0.0527581 0.0913797i
\(296\) 0 0
\(297\) 22.3639 14.4556i 1.29768 0.838796i
\(298\) 0 0
\(299\) 36.2567 2.09678
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −12.2850 1.95470i −0.705752 0.112295i
\(304\) 0 0
\(305\) −0.658555 1.14065i −0.0377088 0.0653135i
\(306\) 0 0
\(307\) −15.7518 −0.899006 −0.449503 0.893279i \(-0.648399\pi\)
−0.449503 + 0.893279i \(0.648399\pi\)
\(308\) 0 0
\(309\) −13.9955 + 17.2579i −0.796175 + 0.981767i
\(310\) 0 0
\(311\) 19.6238 1.11276 0.556382 0.830926i \(-0.312189\pi\)
0.556382 + 0.830926i \(0.312189\pi\)
\(312\) 0 0
\(313\) 25.4854 1.44052 0.720259 0.693705i \(-0.244023\pi\)
0.720259 + 0.693705i \(0.244023\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.28263 0.465199 0.232599 0.972573i \(-0.425277\pi\)
0.232599 + 0.972573i \(0.425277\pi\)
\(318\) 0 0
\(319\) −17.7551 −0.994096
\(320\) 0 0
\(321\) 12.9406 + 2.05903i 0.722276 + 0.114924i
\(322\) 0 0
\(323\) 13.5562 0.754289
\(324\) 0 0
\(325\) 12.0744 + 20.9135i 0.669768 + 1.16007i
\(326\) 0 0
\(327\) 7.61560 9.39083i 0.421144 0.519314i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −11.9806 −0.658512 −0.329256 0.944241i \(-0.606798\pi\)
−0.329256 + 0.944241i \(0.606798\pi\)
\(332\) 0 0
\(333\) −2.85185 13.5113i −0.156280 0.740417i
\(334\) 0 0
\(335\) −0.0789334 0.136717i −0.00431259 0.00746963i
\(336\) 0 0
\(337\) 6.46006 11.1892i 0.351902 0.609512i −0.634681 0.772774i \(-0.718868\pi\)
0.986583 + 0.163262i \(0.0522017\pi\)
\(338\) 0 0
\(339\) −33.4750 5.32632i −1.81811 0.289286i
\(340\) 0 0
\(341\) 1.83818 3.18381i 0.0995428 0.172413i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −3.03543 0.482977i −0.163422 0.0260026i
\(346\) 0 0
\(347\) 16.1866 0.868942 0.434471 0.900686i \(-0.356935\pi\)
0.434471 + 0.900686i \(0.356935\pi\)
\(348\) 0 0
\(349\) −9.05718 15.6875i −0.484820 0.839732i 0.515028 0.857173i \(-0.327781\pi\)
−0.999848 + 0.0174409i \(0.994448\pi\)
\(350\) 0 0
\(351\) −21.3204 + 13.7811i −1.13800 + 0.735578i
\(352\) 0 0
\(353\) −5.84897 + 10.1307i −0.311309 + 0.539203i −0.978646 0.205553i \(-0.934101\pi\)
0.667337 + 0.744756i \(0.267434\pi\)
\(354\) 0 0
\(355\) 1.64295 + 2.84567i 0.0871987 + 0.151033i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −17.8623 + 30.9383i −0.942734 + 1.63286i −0.182507 + 0.983205i \(0.558421\pi\)
−0.760227 + 0.649658i \(0.774912\pi\)
\(360\) 0 0
\(361\) 2.80150 + 4.85235i 0.147448 + 0.255387i
\(362\) 0 0
\(363\) −16.6517 + 20.5333i −0.873989 + 1.07772i
\(364\) 0 0
\(365\) 0.437618 0.757977i 0.0229060 0.0396743i
\(366\) 0 0
\(367\) 8.52696 14.7691i 0.445103 0.770942i −0.552956 0.833210i \(-0.686500\pi\)
0.998059 + 0.0622687i \(0.0198336\pi\)
\(368\) 0 0
\(369\) 3.47141 + 16.4467i 0.180714 + 0.856179i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 12.9617 + 22.4503i 0.671131 + 1.16243i 0.977584 + 0.210547i \(0.0675246\pi\)
−0.306453 + 0.951886i \(0.599142\pi\)
\(374\) 0 0
\(375\) −1.47304 3.84558i −0.0760677 0.198585i
\(376\) 0 0
\(377\) 16.9267 0.871767
\(378\) 0 0
\(379\) 26.8446 1.37892 0.689458 0.724326i \(-0.257849\pi\)
0.689458 + 0.724326i \(0.257849\pi\)
\(380\) 0 0
\(381\) 10.4142 + 27.1878i 0.533537 + 1.39287i
\(382\) 0 0
\(383\) 12.4263 + 21.5229i 0.634953 + 1.09977i 0.986525 + 0.163610i \(0.0523137\pi\)
−0.351573 + 0.936161i \(0.614353\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 35.6157 + 11.6283i 1.81045 + 0.591098i
\(388\) 0 0
\(389\) 9.12640 15.8074i 0.462727 0.801466i −0.536369 0.843984i \(-0.680204\pi\)
0.999096 + 0.0425174i \(0.0135378\pi\)
\(390\) 0 0
\(391\) 13.7427 23.8030i 0.694998 1.20377i
\(392\) 0 0
\(393\) 5.34501 6.59095i 0.269620 0.332470i
\(394\) 0 0
\(395\) −0.744325 1.28921i −0.0374511 0.0648671i
\(396\) 0 0
\(397\) 6.18715 10.7164i 0.310524 0.537843i −0.667952 0.744204i \(-0.732829\pi\)
0.978476 + 0.206361i \(0.0661622\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.48113 + 9.49359i 0.273714 + 0.474087i 0.969810 0.243862i \(-0.0784144\pi\)
−0.696096 + 0.717949i \(0.745081\pi\)
\(402\) 0 0
\(403\) −1.75241 + 3.03526i −0.0872935 + 0.151197i
\(404\) 0 0
\(405\) 1.96853 0.869747i 0.0978171 0.0432181i
\(406\) 0 0
\(407\) 11.7947 + 20.4290i 0.584640 + 1.01263i
\(408\) 0 0
\(409\) 13.3204 0.658650 0.329325 0.944217i \(-0.393179\pi\)
0.329325 + 0.944217i \(0.393179\pi\)
\(410\) 0 0
\(411\) 9.31410 + 1.48200i 0.459431 + 0.0731015i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.16019 + 2.00951i −0.0569515 + 0.0986429i
\(416\) 0 0
\(417\) −9.68194 1.54053i −0.474127 0.0754399i
\(418\) 0 0
\(419\) 2.35705 4.08253i 0.115149 0.199445i −0.802690 0.596396i \(-0.796599\pi\)
0.917839 + 0.396952i \(0.129932\pi\)
\(420\) 0 0
\(421\) −9.65856 16.7291i −0.470729 0.815327i 0.528710 0.848802i \(-0.322676\pi\)
−0.999440 + 0.0334755i \(0.989342\pi\)
\(422\) 0 0
\(423\) 9.68770 8.69793i 0.471032 0.422908i
\(424\) 0 0
\(425\) 18.3067 0.888006
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 27.3155 33.6828i 1.31880 1.62622i
\(430\) 0 0
\(431\) 15.1397 + 26.2227i 0.729253 + 1.26310i 0.957199 + 0.289429i \(0.0934655\pi\)
−0.227947 + 0.973674i \(0.573201\pi\)
\(432\) 0 0
\(433\) −34.2060 −1.64384 −0.821918 0.569606i \(-0.807096\pi\)
−0.821918 + 0.569606i \(0.807096\pi\)
\(434\) 0 0
\(435\) −1.41711 0.225481i −0.0679452 0.0108110i
\(436\) 0 0
\(437\) −27.1625 −1.29936
\(438\) 0 0
\(439\) 0.622440 0.0297075 0.0148537 0.999890i \(-0.495272\pi\)
0.0148537 + 0.999890i \(0.495272\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.17867 −0.246046 −0.123023 0.992404i \(-0.539259\pi\)
−0.123023 + 0.992404i \(0.539259\pi\)
\(444\) 0 0
\(445\) −1.79071 −0.0848878
\(446\) 0 0
\(447\) −2.49028 + 3.07078i −0.117786 + 0.145243i
\(448\) 0 0
\(449\) −10.4977 −0.495416 −0.247708 0.968835i \(-0.579677\pi\)
−0.247708 + 0.968835i \(0.579677\pi\)
\(450\) 0 0
\(451\) −14.3571 24.8671i −0.676047 1.17095i
\(452\) 0 0
\(453\) 19.2661 + 3.06549i 0.905199 + 0.144029i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.20929 −0.150124 −0.0750621 0.997179i \(-0.523916\pi\)
−0.0750621 + 0.997179i \(0.523916\pi\)
\(458\) 0 0
\(459\) 0.966208 + 19.2207i 0.0450987 + 0.897146i
\(460\) 0 0
\(461\) −18.1150 31.3762i −0.843702 1.46133i −0.886744 0.462261i \(-0.847038\pi\)
0.0430418 0.999073i \(-0.486295\pi\)
\(462\) 0 0
\(463\) −14.5253 + 25.1586i −0.675049 + 1.16922i 0.301406 + 0.953496i \(0.402544\pi\)
−0.976455 + 0.215723i \(0.930789\pi\)
\(464\) 0 0
\(465\) 0.187145 0.230769i 0.00867865 0.0107017i
\(466\) 0 0
\(467\) −18.7466 + 32.4701i −0.867491 + 1.50254i −0.00293952 + 0.999996i \(0.500936\pi\)
−0.864552 + 0.502544i \(0.832398\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.43598 + 8.97010i 0.158322 + 0.413320i
\(472\) 0 0
\(473\) −64.0014 −2.94279
\(474\) 0 0
\(475\) −9.04583 15.6678i −0.415051 0.718890i
\(476\) 0 0
\(477\) −2.68878 0.877867i −0.123111 0.0401948i
\(478\) 0 0
\(479\) 14.9549 25.9026i 0.683305 1.18352i −0.290661 0.956826i \(-0.593875\pi\)
0.973966 0.226693i \(-0.0727914\pi\)
\(480\) 0 0
\(481\) −11.2443 19.4757i −0.512697 0.888017i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.05034 3.55130i 0.0931013 0.161256i
\(486\) 0 0
\(487\) −10.6316 18.4145i −0.481764 0.834439i 0.518017 0.855370i \(-0.326670\pi\)
−0.999781 + 0.0209309i \(0.993337\pi\)
\(488\) 0 0
\(489\) 11.3925 + 1.81270i 0.515186 + 0.0819729i
\(490\) 0 0
\(491\) 10.6985 18.5303i 0.482816 0.836262i −0.516989 0.855992i \(-0.672947\pi\)
0.999805 + 0.0197296i \(0.00628054\pi\)
\(492\) 0 0
\(493\) 6.41586 11.1126i 0.288956 0.500487i
\(494\) 0 0
\(495\) −2.73556 + 2.45607i −0.122954 + 0.110392i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −7.28263 12.6139i −0.326015 0.564675i 0.655702 0.755020i \(-0.272373\pi\)
−0.981717 + 0.190345i \(0.939039\pi\)
\(500\) 0 0
\(501\) −7.53899 1.19955i −0.336817 0.0535921i
\(502\) 0 0
\(503\) −2.92339 −0.130348 −0.0651738 0.997874i \(-0.520760\pi\)
−0.0651738 + 0.997874i \(0.520760\pi\)
\(504\) 0 0
\(505\) 1.71737 0.0764220
\(506\) 0 0
\(507\) −11.8583 + 14.6225i −0.526645 + 0.649408i
\(508\) 0 0
\(509\) −9.62025 16.6628i −0.426410 0.738564i 0.570141 0.821547i \(-0.306889\pi\)
−0.996551 + 0.0829830i \(0.973555\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 15.9727 10.3244i 0.705210 0.455833i
\(514\) 0 0
\(515\) 1.53379 2.65661i 0.0675869 0.117064i
\(516\) 0 0
\(517\) −11.1202 + 19.2608i −0.489068 + 0.847091i
\(518\) 0 0
\(519\) 15.6940 + 40.9713i 0.688889 + 1.79844i
\(520\) 0 0
\(521\) 13.8743 + 24.0310i 0.607844 + 1.05282i 0.991595 + 0.129380i \(0.0412986\pi\)
−0.383751 + 0.923436i \(0.625368\pi\)
\(522\) 0 0
\(523\) −1.36840 + 2.37014i −0.0598360 + 0.103639i −0.894392 0.447285i \(-0.852391\pi\)
0.834556 + 0.550924i \(0.185724\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.32846 + 2.30096i 0.0578686 + 0.100231i
\(528\) 0 0
\(529\) −16.0361 + 27.7754i −0.697222 + 1.20762i
\(530\) 0 0
\(531\) 16.9184 15.1898i 0.734194 0.659183i
\(532\) 0 0
\(533\) 13.6871 + 23.7068i 0.592856 + 1.02686i
\(534\) 0 0
\(535\) −1.80903 −0.0782112
\(536\) 0 0
\(537\) −10.4142 + 12.8418i −0.449407 + 0.554166i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 5.98865 10.3726i 0.257472 0.445955i −0.708092 0.706120i \(-0.750444\pi\)
0.965564 + 0.260165i \(0.0837771\pi\)
\(542\) 0 0
\(543\) 7.66664 + 20.0148i 0.329007 + 0.858917i
\(544\) 0 0
\(545\) −0.834608 + 1.44558i −0.0357507 + 0.0619220i
\(546\) 0 0
\(547\) 10.7346 + 18.5929i 0.458979 + 0.794975i 0.998907 0.0467363i \(-0.0148821\pi\)
−0.539928 + 0.841711i \(0.681549\pi\)
\(548\) 0 0
\(549\) 12.2956 11.0394i 0.524764 0.471150i
\(550\) 0 0
\(551\) −12.6810 −0.540229
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.681943 + 1.78031i 0.0289469 + 0.0755698i
\(556\) 0 0
\(557\) 15.9246 + 27.5823i 0.674748 + 1.16870i 0.976542 + 0.215325i \(0.0690812\pi\)
−0.301794 + 0.953373i \(0.597585\pi\)
\(558\) 0 0
\(559\) 61.0150 2.58066
\(560\) 0 0
\(561\) −11.7596 30.7001i −0.496492 1.29616i
\(562\) 0 0
\(563\) −35.5483 −1.49818 −0.749091 0.662467i \(-0.769510\pi\)
−0.749091 + 0.662467i \(0.769510\pi\)
\(564\) 0 0
\(565\) 4.67962 0.196873
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 21.7486 0.911748 0.455874 0.890044i \(-0.349327\pi\)
0.455874 + 0.890044i \(0.349327\pi\)
\(570\) 0 0
\(571\) −9.59974 −0.401737 −0.200868 0.979618i \(-0.564376\pi\)
−0.200868 + 0.979618i \(0.564376\pi\)
\(572\) 0 0
\(573\) −8.15856 21.2990i −0.340829 0.889779i
\(574\) 0 0
\(575\) −36.6810 −1.52970
\(576\) 0 0
\(577\) 6.50916 + 11.2742i 0.270980 + 0.469351i 0.969113 0.246617i \(-0.0793190\pi\)
−0.698133 + 0.715968i \(0.745986\pi\)
\(578\) 0 0
\(579\) −6.90739 18.0327i −0.287061 0.749413i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.83173 0.200110
\(584\) 0 0
\(585\) 2.60791 2.34147i 0.107824 0.0968079i
\(586\) 0 0
\(587\) 8.64364 + 14.9712i 0.356761 + 0.617928i 0.987418 0.158134i \(-0.0505477\pi\)
−0.630657 + 0.776062i \(0.717214\pi\)
\(588\) 0 0
\(589\) 1.31285 2.27393i 0.0540952 0.0936957i
\(590\) 0 0
\(591\) 0.0893369 + 0.233226i 0.00367483 + 0.00959364i
\(592\) 0 0
\(593\) 6.20765 10.7520i 0.254918 0.441531i −0.709955 0.704247i \(-0.751285\pi\)
0.964873 + 0.262716i \(0.0846182\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −21.2404 + 26.1916i −0.869310 + 1.07195i
\(598\) 0 0
\(599\) −7.88564 −0.322199 −0.161099 0.986938i \(-0.551504\pi\)
−0.161099 + 0.986938i \(0.551504\pi\)
\(600\) 0 0
\(601\) 11.1413 + 19.2973i 0.454464 + 0.787154i 0.998657 0.0518055i \(-0.0164976\pi\)
−0.544193 + 0.838960i \(0.683164\pi\)
\(602\) 0 0
\(603\) 1.47373 1.32317i 0.0600151 0.0538835i
\(604\) 0 0
\(605\) 1.82489 3.16081i 0.0741925 0.128505i
\(606\) 0 0
\(607\) 11.0458 + 19.1319i 0.448336 + 0.776541i 0.998278 0.0586617i \(-0.0186833\pi\)
−0.549942 + 0.835203i \(0.685350\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.6014 18.3621i 0.428886 0.742852i
\(612\) 0 0
\(613\) 14.7632 + 25.5706i 0.596280 + 1.03279i 0.993365 + 0.115005i \(0.0366885\pi\)
−0.397085 + 0.917782i \(0.629978\pi\)
\(614\) 0 0
\(615\) −0.830095 2.16708i −0.0334727 0.0873849i
\(616\) 0 0
\(617\) 5.01655 8.68892i 0.201959 0.349803i −0.747201 0.664598i \(-0.768603\pi\)
0.949159 + 0.314796i \(0.101936\pi\)
\(618\) 0 0
\(619\) −19.1283 + 33.1312i −0.768833 + 1.33166i 0.169364 + 0.985554i \(0.445829\pi\)
−0.938196 + 0.346103i \(0.887505\pi\)
\(620\) 0 0
\(621\) −1.93598 38.5124i −0.0776883 1.54545i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.0728 20.9107i −0.482911 0.836427i
\(626\) 0 0
\(627\) −20.4640 + 25.2343i −0.817254 + 1.00776i
\(628\) 0 0
\(629\) −17.0482 −0.679754
\(630\) 0 0
\(631\) −23.0377 −0.917118 −0.458559 0.888664i \(-0.651634\pi\)
−0.458559 + 0.888664i \(0.651634\pi\)
\(632\) 0 0
\(633\) −5.52283 0.878756i −0.219513 0.0349274i
\(634\) 0 0
\(635\) −2.00972 3.48093i −0.0797531 0.138136i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −30.6748 + 27.5409i −1.21348 + 1.08950i
\(640\) 0 0
\(641\) 8.68646 15.0454i 0.343094 0.594257i −0.641911 0.766779i \(-0.721858\pi\)
0.985006 + 0.172522i \(0.0551916\pi\)
\(642\) 0 0
\(643\) −9.47949 + 16.4190i −0.373835 + 0.647501i −0.990152 0.139997i \(-0.955291\pi\)
0.616317 + 0.787498i \(0.288624\pi\)
\(644\) 0 0
\(645\) −5.10821 0.812785i −0.201136 0.0320034i
\(646\) 0 0
\(647\) 9.50972 + 16.4713i 0.373865 + 0.647554i 0.990157 0.139964i \(-0.0446988\pi\)
−0.616291 + 0.787518i \(0.711366\pi\)
\(648\) 0 0
\(649\) −19.4201 + 33.6366i −0.762306 + 1.32035i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.59329 + 6.22377i 0.140616 + 0.243555i 0.927729 0.373255i \(-0.121758\pi\)
−0.787112 + 0.616810i \(0.788425\pi\)
\(654\) 0 0
\(655\) −0.585770 + 1.01458i −0.0228879 + 0.0396430i
\(656\) 0 0
\(657\) 10.4383 + 3.40803i 0.407237 + 0.132960i
\(658\) 0 0
\(659\) −12.7261 22.0423i −0.495740 0.858647i 0.504248 0.863559i \(-0.331770\pi\)
−0.999988 + 0.00491209i \(0.998436\pi\)
\(660\) 0 0
\(661\) −8.28590 −0.322284 −0.161142 0.986931i \(-0.551518\pi\)
−0.161142 + 0.986931i \(0.551518\pi\)
\(662\) 0 0
\(663\) 11.2109 + 29.2676i 0.435396 + 1.13666i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −12.8554 + 22.2662i −0.497764 + 0.862152i
\(668\) 0 0
\(669\) 22.6609 27.9432i 0.876120 1.08035i
\(670\) 0 0
\(671\) −14.1138 + 24.4458i −0.544857 + 0.943721i
\(672\) 0 0
\(673\) 5.91586 + 10.2466i 0.228040 + 0.394977i 0.957227 0.289338i \(-0.0934350\pi\)
−0.729187 + 0.684314i \(0.760102\pi\)
\(674\) 0 0
\(675\) 21.5699 13.9423i 0.830226 0.536641i
\(676\) 0 0
\(677\) −13.6063 −0.522932 −0.261466 0.965213i \(-0.584206\pi\)
−0.261466 + 0.965213i \(0.584206\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −37.5339 5.97215i −1.43830 0.228853i
\(682\) 0 0
\(683\) −1.79071 3.10160i −0.0685196 0.118679i 0.829730 0.558165i \(-0.188494\pi\)
−0.898250 + 0.439485i \(0.855161\pi\)
\(684\) 0 0
\(685\) −1.30206 −0.0497492
\(686\) 0 0
\(687\) 24.8428 30.6338i 0.947813 1.16875i
\(688\) 0 0
\(689\) −4.60628 −0.175485
\(690\) 0 0
\(691\) −11.7174 −0.445750 −0.222875 0.974847i \(-0.571544\pi\)
−0.222875 + 0.974847i \(0.571544\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.35348 0.0513405
\(696\) 0 0
\(697\) 20.7518 0.786032
\(698\) 0 0
\(699\) −44.1004 7.01697i −1.66803 0.265406i
\(700\) 0 0
\(701\) −10.5926 −0.400077 −0.200039 0.979788i \(-0.564107\pi\)
−0.200039 + 0.979788i \(0.564107\pi\)
\(702\) 0 0
\(703\) 8.42395 + 14.5907i 0.317715 + 0.550299i
\(704\) 0 0
\(705\) −1.13216 + 1.39606i −0.0426394 + 0.0525788i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 38.2977 1.43830 0.719150 0.694855i \(-0.244532\pi\)
0.719150 + 0.694855i \(0.244532\pi\)
\(710\) 0 0
\(711\) 13.8970 12.4772i 0.521178 0.467930i
\(712\) 0 0
\(713\) −2.66182 4.61042i −0.0996861 0.172661i
\(714\) 0 0
\(715\) −2.99355 + 5.18499i −0.111953 + 0.193908i
\(716\) 0 0
\(717\) −46.6936 7.42957i −1.74380 0.277463i
\(718\) 0 0
\(719\) 20.8376 36.0918i 0.777112 1.34600i −0.156488 0.987680i \(-0.550017\pi\)
0.933600 0.358318i \(-0.116650\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −17.1643 2.73107i −0.638348 0.101570i
\(724\) 0 0
\(725\) −17.1248 −0.635998
\(726\) 0 0
\(727\) −16.4126 28.4274i −0.608709 1.05432i −0.991453 0.130461i \(-0.958354\pi\)
0.382744 0.923854i \(-0.374979\pi\)
\(728\) 0 0
\(729\) 15.7769 + 21.9110i 0.584329 + 0.811517i
\(730\) 0 0
\(731\) 23.1271 40.0573i 0.855386 1.48157i
\(732\) 0 0
\(733\) 4.64884 + 8.05203i 0.171709 + 0.297408i 0.939017 0.343870i \(-0.111738\pi\)
−0.767309 + 0.641278i \(0.778405\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.69166 + 2.93004i −0.0623130 + 0.107929i
\(738\) 0 0
\(739\) −5.68878 9.85326i −0.209265 0.362458i 0.742218 0.670158i \(-0.233774\pi\)
−0.951483 + 0.307701i \(0.900441\pi\)
\(740\) 0 0
\(741\) 19.5092 24.0568i 0.716687 0.883749i
\(742\) 0 0
\(743\) 1.16182 2.01234i 0.0426232 0.0738256i −0.843927 0.536458i \(-0.819762\pi\)
0.886550 + 0.462633i \(0.153095\pi\)
\(744\) 0 0
\(745\) 0.272915 0.472703i 0.00999883 0.0173185i
\(746\) 0 0
\(747\) −27.6735 9.03518i −1.01252 0.330580i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 5.56690 + 9.64215i 0.203139 + 0.351847i 0.949538 0.313652i \(-0.101552\pi\)
−0.746399 + 0.665498i \(0.768219\pi\)
\(752\) 0 0
\(753\) −17.5442 45.8015i −0.639346 1.66910i
\(754\) 0 0
\(755\) −2.69329 −0.0980190
\(756\) 0 0
\(757\) 52.1639 1.89593 0.947964 0.318376i \(-0.103138\pi\)
0.947964 + 0.318376i \(0.103138\pi\)
\(758\) 0 0
\(759\) 23.5627 + 61.5136i 0.855271 + 2.23280i
\(760\) 0 0
\(761\) −23.5127 40.7252i −0.852336 1.47629i −0.879095 0.476647i \(-0.841852\pi\)
0.0267592 0.999642i \(-0.491481\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −0.548709 2.59964i −0.0198386 0.0939903i
\(766\) 0 0
\(767\) 18.5140 32.0671i 0.668501 1.15788i
\(768\) 0 0
\(769\) −3.30314 + 5.72121i −0.119114 + 0.206312i −0.919417 0.393284i \(-0.871339\pi\)
0.800303 + 0.599596i \(0.204672\pi\)
\(770\) 0 0
\(771\) 31.4887 38.8288i 1.13404 1.39838i
\(772\) 0 0
\(773\) 9.54351 + 16.5298i 0.343256 + 0.594537i 0.985035 0.172352i \(-0.0551368\pi\)
−0.641779 + 0.766889i \(0.721803\pi\)
\(774\) 0 0
\(775\) 1.77292 3.07078i 0.0636850 0.110306i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −10.2540 17.7605i −0.367389 0.636337i
\(780\) 0 0
\(781\) 35.2108 60.9869i 1.25994 2.18228i
\(782\) 0 0
\(783\) −0.903827 17.9797i −0.0323001 0.642544i
\(784\) 0 0
\(785\) −0.663069 1.14847i −0.0236659 0.0409906i
\(786\) 0 0
\(787\) −50.9007 −1.81441 −0.907207 0.420685i \(-0.861790\pi\)
−0.907207 + 0.420685i \(0.861790\pi\)
\(788\) 0 0
\(789\) −2.06853 0.329131i −0.0736416 0.0117174i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 13.4552 23.3052i 0.477810 0.827591i
\(794\) 0 0
\(795\) 0.385640 + 0.0613605i 0.0136772 + 0.00217623i
\(796\) 0 0
\(797\) 4.38727 7.59898i 0.155405 0.269170i −0.777801 0.628510i \(-0.783665\pi\)
0.933207 + 0.359341i \(0.116998\pi\)
\(798\) 0 0
\(799\) −8.03667 13.9199i −0.284317 0.492451i
\(800\) 0 0
\(801\) −4.63968 21.9816i −0.163935 0.776683i
\(802\) 0 0
\(803\) −18.7576 −0.661942
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 9.83366 12.1259i 0.346161 0.426853i
\(808\) 0 0
\(809\) 4.75692 + 8.23923i 0.167244 + 0.289676i 0.937450 0.348120i \(-0.113180\pi\)
−0.770206 + 0.637796i \(0.779846\pi\)
\(810\) 0 0
\(811\) 25.0118 0.878282 0.439141 0.898418i \(-0.355283\pi\)
0.439141 + 0.898418i \(0.355283\pi\)
\(812\) 0 0
\(813\) −30.1105 4.79099i −1.05602 0.168027i
\(814\) 0 0
\(815\) −1.59261 −0.0557866
\(816\) 0 0
\(817\) −45.7108 −1.59922
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −35.5940 −1.24224 −0.621119 0.783716i \(-0.713322\pi\)
−0.621119 + 0.783716i \(0.713322\pi\)
\(822\) 0 0
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) 0 0
\(825\) −27.6352 + 34.0770i −0.962133 + 1.18641i
\(826\) 0 0
\(827\) −25.4531 −0.885090 −0.442545 0.896746i \(-0.645924\pi\)
−0.442545 + 0.896746i \(0.645924\pi\)
\(828\) 0 0
\(829\) −8.77292 15.1951i −0.304696 0.527749i 0.672498 0.740099i \(-0.265222\pi\)
−0.977194 + 0.212350i \(0.931888\pi\)
\(830\) 0 0
\(831\) 2.48741 + 0.395780i 0.0862872 + 0.0137294i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.05391 0.0364721
\(836\) 0 0
\(837\) 3.31767 + 1.69936i 0.114675 + 0.0587384i
\(838\) 0 0
\(839\) 12.0562 + 20.8820i 0.416227 + 0.720927i 0.995556 0.0941668i \(-0.0300187\pi\)
−0.579329 + 0.815094i \(0.696685\pi\)
\(840\) 0 0
\(841\) 8.49837 14.7196i 0.293047 0.507572i
\(842\) 0 0
\(843\) 22.1427 27.3042i 0.762635 0.940408i
\(844\) 0 0
\(845\) 1.29957 2.25093i 0.0447067 0.0774342i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2.85185 7.44514i −0.0978752 0.255516i
\(850\) 0 0
\(851\) 34.1592 1.17096
\(852\) 0 0
\(853\) 16.2616 + 28.1659i 0.556785 + 0.964381i 0.997762 + 0.0668621i \(0.0212988\pi\)
−0.440977 + 0.897518i \(0.645368\pi\)
\(854\) 0 0
\(855\) −1.95378 + 1.75417i −0.0668178 + 0.0599912i
\(856\) 0 0
\(857\) −0.299870 + 0.519390i −0.0102434 + 0.0177420i −0.871102 0.491103i \(-0.836594\pi\)
0.860858 + 0.508845i \(0.169927\pi\)
\(858\) 0 0
\(859\) −13.2174 22.8932i −0.450971 0.781104i 0.547476 0.836822i \(-0.315589\pi\)
−0.998447 + 0.0557171i \(0.982255\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.92270 + 17.1866i −0.337773 + 0.585039i −0.984013 0.178094i \(-0.943007\pi\)
0.646241 + 0.763134i \(0.276340\pi\)
\(864\) 0 0
\(865\) −3.02859 5.24567i −0.102975 0.178358i
\(866\) 0 0
\(867\) −5.61505 0.893429i −0.190697 0.0303424i
\(868\) 0 0
\(869\) −15.9520 + 27.6296i −0.541134 + 0.937271i
\(870\) 0 0
\(871\) 1.61273 2.79332i 0.0546451 0.0946481i
\(872\) 0 0
\(873\) 48.9059 + 15.9674i 1.65521 + 0.540415i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −10.2352 17.7278i −0.345617 0.598626i 0.639849 0.768501i \(-0.278997\pi\)
−0.985466 + 0.169875i \(0.945664\pi\)
\(878\) 0 0
\(879\) 12.0992 + 1.92514i 0.408095 + 0.0649334i
\(880\) 0 0
\(881\) 31.1683 1.05009 0.525043 0.851076i \(-0.324049\pi\)
0.525043 + 0.851076i \(0.324049\pi\)
\(882\) 0 0
\(883\) −2.64187 −0.0889060 −0.0444530 0.999011i \(-0.514154\pi\)
−0.0444530 + 0.999011i \(0.514154\pi\)
\(884\) 0 0
\(885\) −1.97717 + 2.43805i −0.0664618 + 0.0819542i
\(886\) 0 0
\(887\) −11.5825 20.0615i −0.388902 0.673599i 0.603400 0.797439i \(-0.293812\pi\)
−0.992302 + 0.123840i \(0.960479\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −37.2369 27.2164i −1.24748 0.911782i
\(892\) 0 0
\(893\) −7.94226 + 13.7564i −0.265778 + 0.460341i
\(894\) 0 0
\(895\) 1.14132 1.97682i 0.0381500 0.0660777i
\(896\) 0 0
\(897\) −22.4632 58.6433i −0.750026 1.95804i
\(898\) 0 0
\(899\) −1.24269 2.15240i −0.0414460 0.0717866i
\(900\) 0 0
\(901\) −1.74596 + 3.02409i −0.0581664 + 0.100747i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.47949 2.56255i −0.0491799 0.0851821i
\(906\) 0 0
\(907\) 25.0264 43.3470i 0.830988 1.43931i −0.0662676 0.997802i \(-0.521109\pi\)
0.897256 0.441511i \(-0.145558\pi\)
\(908\) 0 0
\(909\) 4.44966 + 21.0814i 0.147586 + 0.699224i
\(910\) 0 0
\(911\) 5.42231 + 9.39172i 0.179649 + 0.311161i 0.941760 0.336285i \(-0.109170\pi\)
−0.762111 + 0.647446i \(0.775837\pi\)
\(912\) 0 0
\(913\) 49.7292 1.64579
\(914\) 0 0
\(915\) −1.43693 + 1.77188i −0.0475034 + 0.0585767i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −5.59549 + 9.69166i −0.184578 + 0.319699i −0.943434 0.331560i \(-0.892425\pi\)
0.758856 + 0.651258i \(0.225759\pi\)
\(920\) 0 0
\(921\) 9.75924 + 25.4778i 0.321578 + 0.839523i
\(922\) 0 0
\(923\) −33.5679 + 58.1413i −1.10490 + 1.91374i
\(924\) 0 0
\(925\) 11.3759 + 19.7037i 0.374038 + 0.647853i
\(926\) 0 0
\(927\) 36.5848 + 11.9447i 1.20160 + 0.392315i
\(928\) 0 0
\(929\) −41.2955 −1.35486 −0.677431 0.735586i \(-0.736907\pi\)
−0.677431 + 0.735586i \(0.736907\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −12.1582 31.7405i −0.398040 1.03914i
\(934\) 0 0
\(935\) 2.26935 + 3.93063i 0.0742156 + 0.128545i
\(936\) 0 0
\(937\) 33.5620 1.09642 0.548211 0.836340i \(-0.315309\pi\)
0.548211 + 0.836340i \(0.315309\pi\)
\(938\) 0 0
\(939\) −15.7898 41.2213i −0.515279 1.34521i
\(940\) 0 0
\(941\) −50.4224 −1.64372 −0.821862 0.569686i \(-0.807065\pi\)
−0.821862 + 0.569686i \(0.807065\pi\)
\(942\) 0 0
\(943\) −41.5803 −1.35404
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.2424 0.657789 0.328895 0.944367i \(-0.393324\pi\)
0.328895 + 0.944367i \(0.393324\pi\)
\(948\) 0 0
\(949\) 17.8824 0.580486
\(950\) 0 0
\(951\) −5.13160 13.3967i −0.166404 0.434419i
\(952\) 0 0
\(953\) −29.3685 −0.951340 −0.475670 0.879624i \(-0.657794\pi\)
−0.475670 + 0.879624i \(0.657794\pi\)
\(954\) 0 0
\(955\) 1.57442 + 2.72698i 0.0509470 + 0.0882429i
\(956\) 0 0
\(957\) 11.0004 + 28.7180i 0.355592 + 0.928321i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −30.4854 −0.983399
\(962\) 0 0
\(963\) −4.68715 22.2065i −0.151041 0.715595i
\(964\) 0 0
\(965\) 1.33297 + 2.30878i 0.0429099 + 0.0743222i
\(966\) 0 0
\(967\) 15.2157 26.3544i 0.489305 0.847501i −0.510619 0.859807i \(-0.670584\pi\)
0.999924 + 0.0123057i \(0.00391714\pi\)
\(968\) 0 0
\(969\) −8.39892 21.9265i −0.269812 0.704381i
\(970\) 0 0
\(971\) 3.59329 6.22377i 0.115314 0.199730i −0.802591 0.596530i \(-0.796546\pi\)
0.917905 + 0.396799i \(0.129879\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 26.3457 32.4870i 0.843738 1.04042i
\(976\) 0 0
\(977\) 28.5426 0.913157 0.456579 0.889683i \(-0.349075\pi\)
0.456579 + 0.889683i \(0.349075\pi\)
\(978\) 0 0
\(979\) 19.1888 + 33.2359i 0.613276 + 1.06223i
\(980\) 0 0
\(981\) −19.9075 6.49966i −0.635598 0.207518i
\(982\) 0 0
\(983\) 2.20821 3.82473i 0.0704310 0.121990i −0.828659 0.559753i \(-0.810896\pi\)
0.899090 + 0.437763i \(0.144229\pi\)
\(984\) 0 0
\(985\) −0.0172400 0.0298606i −0.000549313 0.000951438i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −46.3396 + 80.2625i −1.47351 + 2.55220i
\(990\) 0 0
\(991\) 2.90671 + 5.03456i 0.0923345 + 0.159928i 0.908493 0.417900i \(-0.137234\pi\)
−0.816159 + 0.577828i \(0.803900\pi\)
\(992\) 0 0
\(993\) 7.42270 + 19.3780i 0.235552 + 0.614941i
\(994\) 0 0
\(995\) 2.32777 4.03182i 0.0737953 0.127817i
\(996\) 0 0
\(997\) −26.3204 + 45.5882i −0.833575 + 1.44379i 0.0616108 + 0.998100i \(0.480376\pi\)
−0.895186 + 0.445694i \(0.852957\pi\)
\(998\) 0 0
\(999\) −20.0870 + 12.9838i −0.635525 + 0.410790i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.i.d.373.2 6
3.2 odd 2 5292.2.i.e.1549.2 6
7.2 even 3 1764.2.j.e.589.3 6
7.3 odd 6 1764.2.l.e.949.3 6
7.4 even 3 1764.2.l.f.949.1 6
7.5 odd 6 252.2.j.a.85.1 6
7.6 odd 2 1764.2.i.g.373.2 6
9.2 odd 6 5292.2.l.f.3313.2 6
9.7 even 3 1764.2.l.f.961.1 6
21.2 odd 6 5292.2.j.d.1765.2 6
21.5 even 6 756.2.j.b.253.2 6
21.11 odd 6 5292.2.l.f.361.2 6
21.17 even 6 5292.2.l.e.361.2 6
21.20 even 2 5292.2.i.f.1549.2 6
28.19 even 6 1008.2.r.j.337.3 6
63.2 odd 6 5292.2.j.d.3529.2 6
63.5 even 6 2268.2.a.h.1.2 3
63.11 odd 6 5292.2.i.e.2125.2 6
63.16 even 3 1764.2.j.e.1177.3 6
63.20 even 6 5292.2.l.e.3313.2 6
63.25 even 3 inner 1764.2.i.d.1537.2 6
63.34 odd 6 1764.2.l.e.961.3 6
63.38 even 6 5292.2.i.f.2125.2 6
63.40 odd 6 2268.2.a.i.1.2 3
63.47 even 6 756.2.j.b.505.2 6
63.52 odd 6 1764.2.i.g.1537.2 6
63.61 odd 6 252.2.j.a.169.1 yes 6
84.47 odd 6 3024.2.r.j.1009.2 6
252.47 odd 6 3024.2.r.j.2017.2 6
252.103 even 6 9072.2.a.by.1.2 3
252.131 odd 6 9072.2.a.bv.1.2 3
252.187 even 6 1008.2.r.j.673.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.a.85.1 6 7.5 odd 6
252.2.j.a.169.1 yes 6 63.61 odd 6
756.2.j.b.253.2 6 21.5 even 6
756.2.j.b.505.2 6 63.47 even 6
1008.2.r.j.337.3 6 28.19 even 6
1008.2.r.j.673.3 6 252.187 even 6
1764.2.i.d.373.2 6 1.1 even 1 trivial
1764.2.i.d.1537.2 6 63.25 even 3 inner
1764.2.i.g.373.2 6 7.6 odd 2
1764.2.i.g.1537.2 6 63.52 odd 6
1764.2.j.e.589.3 6 7.2 even 3
1764.2.j.e.1177.3 6 63.16 even 3
1764.2.l.e.949.3 6 7.3 odd 6
1764.2.l.e.961.3 6 63.34 odd 6
1764.2.l.f.949.1 6 7.4 even 3
1764.2.l.f.961.1 6 9.7 even 3
2268.2.a.h.1.2 3 63.5 even 6
2268.2.a.i.1.2 3 63.40 odd 6
3024.2.r.j.1009.2 6 84.47 odd 6
3024.2.r.j.2017.2 6 252.47 odd 6
5292.2.i.e.1549.2 6 3.2 odd 2
5292.2.i.e.2125.2 6 63.11 odd 6
5292.2.i.f.1549.2 6 21.20 even 2
5292.2.i.f.2125.2 6 63.38 even 6
5292.2.j.d.1765.2 6 21.2 odd 6
5292.2.j.d.3529.2 6 63.2 odd 6
5292.2.l.e.361.2 6 21.17 even 6
5292.2.l.e.3313.2 6 63.20 even 6
5292.2.l.f.361.2 6 21.11 odd 6
5292.2.l.f.3313.2 6 9.2 odd 6
9072.2.a.bv.1.2 3 252.131 odd 6
9072.2.a.by.1.2 3 252.103 even 6