Properties

Label 252.2.j.a.85.1
Level $252$
Weight $2$
Character 252.85
Analytic conductor $2.012$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,2,Mod(85,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.85");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.01223013094\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 85.1
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 252.85
Dual form 252.2.j.a.169.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71053 - 0.272169i) q^{3} +(-0.119562 + 0.207087i) q^{5} +(0.500000 + 0.866025i) q^{7} +(2.85185 + 0.931107i) q^{9} +O(q^{10})\) \(q+(-1.71053 - 0.272169i) q^{3} +(-0.119562 + 0.207087i) q^{5} +(0.500000 + 0.866025i) q^{7} +(2.85185 + 0.931107i) q^{9} +(2.56238 + 4.43818i) q^{11} +(2.44282 - 4.23109i) q^{13} +(0.260877 - 0.321688i) q^{15} +3.70370 q^{17} +3.66019 q^{19} +(-0.619562 - 1.61745i) q^{21} +(-3.71053 + 6.42683i) q^{23} +(2.47141 + 4.28061i) q^{25} +(-4.62476 - 2.36887i) q^{27} +(-1.73229 - 3.00041i) q^{29} +(0.358685 - 0.621261i) q^{31} +(-3.17511 - 8.28905i) q^{33} -0.239123 q^{35} +4.60301 q^{37} +(-5.33009 + 6.57256i) q^{39} +(-2.80150 + 4.85235i) q^{41} +(-6.24433 - 10.8155i) q^{43} +(-0.533792 + 0.479256i) q^{45} +(-2.16991 - 3.75839i) q^{47} +(-0.500000 + 0.866025i) q^{49} +(-6.33530 - 1.00803i) q^{51} -0.942820 q^{53} -1.22545 q^{55} +(-6.26088 - 0.996189i) q^{57} +(-3.78947 + 6.56355i) q^{59} +(-2.75404 - 4.77014i) q^{61} +(0.619562 + 2.93533i) q^{63} +(0.584135 + 1.01175i) q^{65} +(0.330095 - 0.571741i) q^{67} +(8.09617 - 9.98342i) q^{69} +13.7414 q^{71} -3.66019 q^{73} +(-3.06238 - 7.99476i) q^{75} +(-2.56238 + 4.43818i) q^{77} +(3.11273 + 5.39140i) q^{79} +(7.26608 + 5.31075i) q^{81} +(-4.85185 - 8.40365i) q^{83} +(-0.442820 + 0.766987i) q^{85} +(2.14652 + 5.60377i) q^{87} -7.48865 q^{89} +4.88564 q^{91} +(-0.782630 + 0.965064i) q^{93} +(-0.437618 + 0.757977i) q^{95} +(8.57442 + 14.8513i) q^{97} +(3.17511 + 15.0429i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - q^{5} + 3 q^{7} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 2 q^{3} - q^{5} + 3 q^{7} + 8 q^{9} - 2 q^{11} - 3 q^{13} + q^{15} + 4 q^{17} + 6 q^{19} - 4 q^{21} - 14 q^{23} + 6 q^{25} + 7 q^{27} - q^{29} + 3 q^{31} + 8 q^{33} - 2 q^{35} - 6 q^{37} - 24 q^{39} - 3 q^{43} + 23 q^{45} - 21 q^{47} - 3 q^{49} + 5 q^{51} + 12 q^{53} + 12 q^{55} - 37 q^{57} - 31 q^{59} - 6 q^{61} + 4 q^{63} - 15 q^{65} - 6 q^{67} + 5 q^{69} + 34 q^{71} - 6 q^{73} - q^{75} + 2 q^{77} + 9 q^{79} + 8 q^{81} - 20 q^{83} + 15 q^{85} - 23 q^{87} + 24 q^{89} - 6 q^{91} - 3 q^{93} - 20 q^{95} + 9 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.71053 0.272169i −0.987577 0.157137i
\(4\) 0 0
\(5\) −0.119562 + 0.207087i −0.0534696 + 0.0926120i −0.891521 0.452979i \(-0.850361\pi\)
0.838052 + 0.545591i \(0.183695\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 0 0
\(9\) 2.85185 + 0.931107i 0.950616 + 0.310369i
\(10\) 0 0
\(11\) 2.56238 + 4.43818i 0.772587 + 1.33816i 0.936141 + 0.351626i \(0.114371\pi\)
−0.163554 + 0.986534i \(0.552296\pi\)
\(12\) 0 0
\(13\) 2.44282 4.23109i 0.677516 1.17349i −0.298210 0.954500i \(-0.596390\pi\)
0.975727 0.218993i \(-0.0702770\pi\)
\(14\) 0 0
\(15\) 0.260877 0.321688i 0.0673581 0.0830595i
\(16\) 0 0
\(17\) 3.70370 0.898278 0.449139 0.893462i \(-0.351731\pi\)
0.449139 + 0.893462i \(0.351731\pi\)
\(18\) 0 0
\(19\) 3.66019 0.839705 0.419853 0.907592i \(-0.362082\pi\)
0.419853 + 0.907592i \(0.362082\pi\)
\(20\) 0 0
\(21\) −0.619562 1.61745i −0.135199 0.352956i
\(22\) 0 0
\(23\) −3.71053 + 6.42683i −0.773700 + 1.34009i 0.161823 + 0.986820i \(0.448263\pi\)
−0.935522 + 0.353267i \(0.885071\pi\)
\(24\) 0 0
\(25\) 2.47141 + 4.28061i 0.494282 + 0.856122i
\(26\) 0 0
\(27\) −4.62476 2.36887i −0.890036 0.455890i
\(28\) 0 0
\(29\) −1.73229 3.00041i −0.321678 0.557162i 0.659157 0.752006i \(-0.270913\pi\)
−0.980834 + 0.194844i \(0.937580\pi\)
\(30\) 0 0
\(31\) 0.358685 0.621261i 0.0644217 0.111582i −0.832016 0.554752i \(-0.812813\pi\)
0.896437 + 0.443171i \(0.146146\pi\)
\(32\) 0 0
\(33\) −3.17511 8.28905i −0.552715 1.44294i
\(34\) 0 0
\(35\) −0.239123 −0.0404192
\(36\) 0 0
\(37\) 4.60301 0.756730 0.378365 0.925656i \(-0.376486\pi\)
0.378365 + 0.925656i \(0.376486\pi\)
\(38\) 0 0
\(39\) −5.33009 + 6.57256i −0.853498 + 1.05245i
\(40\) 0 0
\(41\) −2.80150 + 4.85235i −0.437522 + 0.757810i −0.997498 0.0706992i \(-0.977477\pi\)
0.559976 + 0.828509i \(0.310810\pi\)
\(42\) 0 0
\(43\) −6.24433 10.8155i −0.952251 1.64935i −0.740538 0.672015i \(-0.765429\pi\)
−0.211713 0.977332i \(-0.567904\pi\)
\(44\) 0 0
\(45\) −0.533792 + 0.479256i −0.0795730 + 0.0714432i
\(46\) 0 0
\(47\) −2.16991 3.75839i −0.316513 0.548217i 0.663245 0.748403i \(-0.269179\pi\)
−0.979758 + 0.200186i \(0.935845\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 0 0
\(51\) −6.33530 1.00803i −0.887119 0.141152i
\(52\) 0 0
\(53\) −0.942820 −0.129506 −0.0647531 0.997901i \(-0.520626\pi\)
−0.0647531 + 0.997901i \(0.520626\pi\)
\(54\) 0 0
\(55\) −1.22545 −0.165240
\(56\) 0 0
\(57\) −6.26088 0.996189i −0.829273 0.131948i
\(58\) 0 0
\(59\) −3.78947 + 6.56355i −0.493347 + 0.854501i −0.999971 0.00766579i \(-0.997560\pi\)
0.506624 + 0.862167i \(0.330893\pi\)
\(60\) 0 0
\(61\) −2.75404 4.77014i −0.352619 0.610754i 0.634089 0.773260i \(-0.281375\pi\)
−0.986707 + 0.162507i \(0.948042\pi\)
\(62\) 0 0
\(63\) 0.619562 + 2.93533i 0.0780574 + 0.369816i
\(64\) 0 0
\(65\) 0.584135 + 1.01175i 0.0724530 + 0.125492i
\(66\) 0 0
\(67\) 0.330095 0.571741i 0.0403275 0.0698493i −0.845157 0.534518i \(-0.820493\pi\)
0.885485 + 0.464669i \(0.153827\pi\)
\(68\) 0 0
\(69\) 8.09617 9.98342i 0.974665 1.20186i
\(70\) 0 0
\(71\) 13.7414 1.63081 0.815405 0.578891i \(-0.196514\pi\)
0.815405 + 0.578891i \(0.196514\pi\)
\(72\) 0 0
\(73\) −3.66019 −0.428393 −0.214196 0.976791i \(-0.568713\pi\)
−0.214196 + 0.976791i \(0.568713\pi\)
\(74\) 0 0
\(75\) −3.06238 7.99476i −0.353613 0.923156i
\(76\) 0 0
\(77\) −2.56238 + 4.43818i −0.292010 + 0.505777i
\(78\) 0 0
\(79\) 3.11273 + 5.39140i 0.350209 + 0.606580i 0.986286 0.165046i \(-0.0527772\pi\)
−0.636077 + 0.771626i \(0.719444\pi\)
\(80\) 0 0
\(81\) 7.26608 + 5.31075i 0.807342 + 0.590084i
\(82\) 0 0
\(83\) −4.85185 8.40365i −0.532560 0.922420i −0.999277 0.0380138i \(-0.987897\pi\)
0.466718 0.884406i \(-0.345436\pi\)
\(84\) 0 0
\(85\) −0.442820 + 0.766987i −0.0480306 + 0.0831914i
\(86\) 0 0
\(87\) 2.14652 + 5.60377i 0.230131 + 0.600788i
\(88\) 0 0
\(89\) −7.48865 −0.793795 −0.396898 0.917863i \(-0.629913\pi\)
−0.396898 + 0.917863i \(0.629913\pi\)
\(90\) 0 0
\(91\) 4.88564 0.512154
\(92\) 0 0
\(93\) −0.782630 + 0.965064i −0.0811550 + 0.100072i
\(94\) 0 0
\(95\) −0.437618 + 0.757977i −0.0448987 + 0.0777668i
\(96\) 0 0
\(97\) 8.57442 + 14.8513i 0.870600 + 1.50792i 0.861377 + 0.507967i \(0.169603\pi\)
0.00922376 + 0.999957i \(0.497064\pi\)
\(98\) 0 0
\(99\) 3.17511 + 15.0429i 0.319110 + 1.51186i
\(100\) 0 0
\(101\) −3.59097 6.21975i −0.357315 0.618888i 0.630196 0.776436i \(-0.282974\pi\)
−0.987511 + 0.157548i \(0.949641\pi\)
\(102\) 0 0
\(103\) 6.41423 11.1098i 0.632013 1.09468i −0.355127 0.934818i \(-0.615562\pi\)
0.987140 0.159860i \(-0.0511044\pi\)
\(104\) 0 0
\(105\) 0.409028 + 0.0650819i 0.0399171 + 0.00635134i
\(106\) 0 0
\(107\) 7.56526 0.731361 0.365681 0.930740i \(-0.380836\pi\)
0.365681 + 0.930740i \(0.380836\pi\)
\(108\) 0 0
\(109\) −6.98057 −0.668617 −0.334309 0.942464i \(-0.608503\pi\)
−0.334309 + 0.942464i \(0.608503\pi\)
\(110\) 0 0
\(111\) −7.87360 1.25280i −0.747329 0.118910i
\(112\) 0 0
\(113\) 9.78495 16.9480i 0.920491 1.59434i 0.121834 0.992550i \(-0.461122\pi\)
0.798657 0.601787i \(-0.205544\pi\)
\(114\) 0 0
\(115\) −0.887275 1.53681i −0.0827388 0.143308i
\(116\) 0 0
\(117\) 10.9061 9.79190i 1.00827 0.905261i
\(118\) 0 0
\(119\) 1.85185 + 3.20750i 0.169759 + 0.294031i
\(120\) 0 0
\(121\) −7.63160 + 13.2183i −0.693782 + 1.20167i
\(122\) 0 0
\(123\) 6.11273 7.53762i 0.551166 0.679645i
\(124\) 0 0
\(125\) −2.37756 −0.212655
\(126\) 0 0
\(127\) −16.8090 −1.49156 −0.745780 0.666192i \(-0.767923\pi\)
−0.745780 + 0.666192i \(0.767923\pi\)
\(128\) 0 0
\(129\) 7.73749 + 20.1998i 0.681248 + 1.77849i
\(130\) 0 0
\(131\) −2.44966 + 4.24293i −0.214027 + 0.370706i −0.952971 0.303061i \(-0.901992\pi\)
0.738944 + 0.673767i \(0.235325\pi\)
\(132\) 0 0
\(133\) 1.83009 + 3.16982i 0.158689 + 0.274858i
\(134\) 0 0
\(135\) 1.04351 0.674501i 0.0898108 0.0580518i
\(136\) 0 0
\(137\) −2.72257 4.71563i −0.232605 0.402884i 0.725969 0.687727i \(-0.241392\pi\)
−0.958574 + 0.284844i \(0.908058\pi\)
\(138\) 0 0
\(139\) −2.83009 + 4.90187i −0.240046 + 0.415771i −0.960727 0.277495i \(-0.910496\pi\)
0.720681 + 0.693266i \(0.243829\pi\)
\(140\) 0 0
\(141\) 2.68878 + 7.01942i 0.226436 + 0.591142i
\(142\) 0 0
\(143\) 25.0377 2.09376
\(144\) 0 0
\(145\) 0.828460 0.0687999
\(146\) 0 0
\(147\) 1.09097 1.34528i 0.0899818 0.110957i
\(148\) 0 0
\(149\) −1.14132 + 1.97682i −0.0935002 + 0.161947i −0.908982 0.416836i \(-0.863139\pi\)
0.815481 + 0.578783i \(0.196472\pi\)
\(150\) 0 0
\(151\) −5.63160 9.75422i −0.458293 0.793787i 0.540578 0.841294i \(-0.318206\pi\)
−0.998871 + 0.0475071i \(0.984872\pi\)
\(152\) 0 0
\(153\) 10.5624 + 3.44854i 0.853918 + 0.278798i
\(154\) 0 0
\(155\) 0.0857699 + 0.148558i 0.00688921 + 0.0119325i
\(156\) 0 0
\(157\) −2.77292 + 4.80283i −0.221303 + 0.383308i −0.955204 0.295949i \(-0.904364\pi\)
0.733901 + 0.679256i \(0.237698\pi\)
\(158\) 0 0
\(159\) 1.61273 + 0.256606i 0.127897 + 0.0203502i
\(160\) 0 0
\(161\) −7.42107 −0.584862
\(162\) 0 0
\(163\) 6.66019 0.521666 0.260833 0.965384i \(-0.416003\pi\)
0.260833 + 0.965384i \(0.416003\pi\)
\(164\) 0 0
\(165\) 2.09617 + 0.333529i 0.163187 + 0.0259652i
\(166\) 0 0
\(167\) −2.20370 + 3.81691i −0.170527 + 0.295362i −0.938604 0.344996i \(-0.887880\pi\)
0.768077 + 0.640357i \(0.221214\pi\)
\(168\) 0 0
\(169\) −5.43474 9.41325i −0.418057 0.724096i
\(170\) 0 0
\(171\) 10.4383 + 3.40803i 0.798237 + 0.260619i
\(172\) 0 0
\(173\) −12.6654 21.9371i −0.962932 1.66785i −0.715072 0.699051i \(-0.753606\pi\)
−0.247860 0.968796i \(-0.579727\pi\)
\(174\) 0 0
\(175\) −2.47141 + 4.28061i −0.186821 + 0.323584i
\(176\) 0 0
\(177\) 8.26840 10.1958i 0.621491 0.766363i
\(178\) 0 0
\(179\) 9.54583 0.713489 0.356744 0.934202i \(-0.383887\pi\)
0.356744 + 0.934202i \(0.383887\pi\)
\(180\) 0 0
\(181\) 12.3743 0.919774 0.459887 0.887978i \(-0.347890\pi\)
0.459887 + 0.887978i \(0.347890\pi\)
\(182\) 0 0
\(183\) 3.41260 + 8.90904i 0.252266 + 0.658575i
\(184\) 0 0
\(185\) −0.550343 + 0.953223i −0.0404621 + 0.0700823i
\(186\) 0 0
\(187\) 9.49028 + 16.4377i 0.693998 + 1.20204i
\(188\) 0 0
\(189\) −0.260877 5.18960i −0.0189760 0.377488i
\(190\) 0 0
\(191\) −6.58414 11.4041i −0.476411 0.825169i 0.523223 0.852196i \(-0.324729\pi\)
−0.999635 + 0.0270270i \(0.991396\pi\)
\(192\) 0 0
\(193\) −5.57442 + 9.65518i −0.401256 + 0.694995i −0.993878 0.110486i \(-0.964759\pi\)
0.592622 + 0.805481i \(0.298093\pi\)
\(194\) 0 0
\(195\) −0.723815 1.88962i −0.0518335 0.135318i
\(196\) 0 0
\(197\) −0.144194 −0.0102734 −0.00513669 0.999987i \(-0.501635\pi\)
−0.00513669 + 0.999987i \(0.501635\pi\)
\(198\) 0 0
\(199\) −19.4692 −1.38014 −0.690068 0.723744i \(-0.742419\pi\)
−0.690068 + 0.723744i \(0.742419\pi\)
\(200\) 0 0
\(201\) −0.720248 + 0.888141i −0.0508024 + 0.0626446i
\(202\) 0 0
\(203\) 1.73229 3.00041i 0.121583 0.210587i
\(204\) 0 0
\(205\) −0.669905 1.16031i −0.0467882 0.0810395i
\(206\) 0 0
\(207\) −16.5659 + 14.8734i −1.15141 + 1.03378i
\(208\) 0 0
\(209\) 9.37880 + 16.2446i 0.648745 + 1.12366i
\(210\) 0 0
\(211\) 1.61436 2.79615i 0.111137 0.192495i −0.805092 0.593150i \(-0.797884\pi\)
0.916229 + 0.400655i \(0.131217\pi\)
\(212\) 0 0
\(213\) −23.5052 3.73999i −1.61055 0.256260i
\(214\) 0 0
\(215\) 2.98633 0.203666
\(216\) 0 0
\(217\) 0.717370 0.0486982
\(218\) 0 0
\(219\) 6.26088 + 0.996189i 0.423071 + 0.0673162i
\(220\) 0 0
\(221\) 9.04746 15.6707i 0.608598 1.05412i
\(222\) 0 0
\(223\) −10.3856 17.9885i −0.695474 1.20460i −0.970021 0.243022i \(-0.921861\pi\)
0.274547 0.961574i \(-0.411472\pi\)
\(224\) 0 0
\(225\) 3.06238 + 14.5088i 0.204159 + 0.967253i
\(226\) 0 0
\(227\) −10.9714 19.0030i −0.728198 1.26128i −0.957644 0.287955i \(-0.907025\pi\)
0.229446 0.973321i \(-0.426309\pi\)
\(228\) 0 0
\(229\) −11.3856 + 19.7205i −0.752384 + 1.30317i 0.194280 + 0.980946i \(0.437763\pi\)
−0.946664 + 0.322222i \(0.895570\pi\)
\(230\) 0 0
\(231\) 5.59097 6.89425i 0.367859 0.453608i
\(232\) 0 0
\(233\) −25.7817 −1.68901 −0.844507 0.535544i \(-0.820106\pi\)
−0.844507 + 0.535544i \(0.820106\pi\)
\(234\) 0 0
\(235\) 1.03775 0.0676953
\(236\) 0 0
\(237\) −3.85705 10.0694i −0.250542 0.654075i
\(238\) 0 0
\(239\) 13.6488 23.6405i 0.882870 1.52918i 0.0347345 0.999397i \(-0.488941\pi\)
0.848136 0.529779i \(-0.177725\pi\)
\(240\) 0 0
\(241\) −5.01724 8.69011i −0.323189 0.559779i 0.657955 0.753057i \(-0.271422\pi\)
−0.981144 + 0.193277i \(0.938088\pi\)
\(242\) 0 0
\(243\) −10.9834 11.0618i −0.704589 0.709616i
\(244\) 0 0
\(245\) −0.119562 0.207087i −0.00763851 0.0132303i
\(246\) 0 0
\(247\) 8.94119 15.4866i 0.568914 0.985388i
\(248\) 0 0
\(249\) 6.01204 + 15.6952i 0.380997 + 0.994645i
\(250\) 0 0
\(251\) −28.3171 −1.78736 −0.893680 0.448705i \(-0.851885\pi\)
−0.893680 + 0.448705i \(0.851885\pi\)
\(252\) 0 0
\(253\) −38.0312 −2.39100
\(254\) 0 0
\(255\) 0.966208 1.19143i 0.0605063 0.0746105i
\(256\) 0 0
\(257\) −14.4315 + 24.9960i −0.900210 + 1.55921i −0.0729899 + 0.997333i \(0.523254\pi\)
−0.827221 + 0.561877i \(0.810079\pi\)
\(258\) 0 0
\(259\) 2.30150 + 3.98632i 0.143009 + 0.247698i
\(260\) 0 0
\(261\) −2.14652 10.1697i −0.132866 0.629486i
\(262\) 0 0
\(263\) 0.604645 + 1.04728i 0.0372840 + 0.0645778i 0.884065 0.467363i \(-0.154796\pi\)
−0.846781 + 0.531941i \(0.821463\pi\)
\(264\) 0 0
\(265\) 0.112725 0.195246i 0.00692465 0.0119938i
\(266\) 0 0
\(267\) 12.8096 + 2.03818i 0.783934 + 0.124734i
\(268\) 0 0
\(269\) 9.01367 0.549573 0.274787 0.961505i \(-0.411393\pi\)
0.274787 + 0.961505i \(0.411393\pi\)
\(270\) 0 0
\(271\) 17.6030 1.06931 0.534653 0.845071i \(-0.320442\pi\)
0.534653 + 0.845071i \(0.320442\pi\)
\(272\) 0 0
\(273\) −8.35705 1.32972i −0.505792 0.0804782i
\(274\) 0 0
\(275\) −12.6654 + 21.9371i −0.763752 + 1.32286i
\(276\) 0 0
\(277\) −0.727085 1.25935i −0.0436863 0.0756669i 0.843355 0.537356i \(-0.180577\pi\)
−0.887042 + 0.461689i \(0.847244\pi\)
\(278\) 0 0
\(279\) 1.60138 1.43777i 0.0958718 0.0860768i
\(280\) 0 0
\(281\) 10.1482 + 17.5771i 0.605388 + 1.04856i 0.991990 + 0.126316i \(0.0403154\pi\)
−0.386602 + 0.922247i \(0.626351\pi\)
\(282\) 0 0
\(283\) 2.30150 3.98632i 0.136810 0.236962i −0.789477 0.613780i \(-0.789648\pi\)
0.926288 + 0.376817i \(0.122982\pi\)
\(284\) 0 0
\(285\) 0.954858 1.17744i 0.0565609 0.0697455i
\(286\) 0 0
\(287\) −5.60301 −0.330735
\(288\) 0 0
\(289\) −3.28263 −0.193096
\(290\) 0 0
\(291\) −10.6248 27.7374i −0.622835 1.62599i
\(292\) 0 0
\(293\) 3.53667 6.12569i 0.206614 0.357867i −0.744031 0.668145i \(-0.767089\pi\)
0.950646 + 0.310278i \(0.100422\pi\)
\(294\) 0 0
\(295\) −0.906150 1.56950i −0.0527581 0.0913797i
\(296\) 0 0
\(297\) −1.33693 26.5955i −0.0775766 1.54323i
\(298\) 0 0
\(299\) 18.1283 + 31.3992i 1.04839 + 1.81586i
\(300\) 0 0
\(301\) 6.24433 10.8155i 0.359917 0.623394i
\(302\) 0 0
\(303\) 4.44966 + 11.6164i 0.255626 + 0.667347i
\(304\) 0 0
\(305\) 1.31711 0.0754175
\(306\) 0 0
\(307\) 15.7518 0.899006 0.449503 0.893279i \(-0.351601\pi\)
0.449503 + 0.893279i \(0.351601\pi\)
\(308\) 0 0
\(309\) −13.9955 + 17.2579i −0.796175 + 0.981767i
\(310\) 0 0
\(311\) 9.81191 16.9947i 0.556382 0.963682i −0.441412 0.897304i \(-0.645522\pi\)
0.997795 0.0663780i \(-0.0211443\pi\)
\(312\) 0 0
\(313\) 12.7427 + 22.0710i 0.720259 + 1.24753i 0.960896 + 0.276911i \(0.0893106\pi\)
−0.240636 + 0.970615i \(0.577356\pi\)
\(314\) 0 0
\(315\) −0.681943 0.222649i −0.0384232 0.0125449i
\(316\) 0 0
\(317\) −4.14132 7.17297i −0.232599 0.402874i 0.725973 0.687723i \(-0.241390\pi\)
−0.958572 + 0.284849i \(0.908056\pi\)
\(318\) 0 0
\(319\) 8.87756 15.3764i 0.497048 0.860912i
\(320\) 0 0
\(321\) −12.9406 2.05903i −0.722276 0.114924i
\(322\) 0 0
\(323\) 13.5562 0.754289
\(324\) 0 0
\(325\) 24.1488 1.33954
\(326\) 0 0
\(327\) 11.9405 + 1.89989i 0.660311 + 0.105064i
\(328\) 0 0
\(329\) 2.16991 3.75839i 0.119631 0.207207i
\(330\) 0 0
\(331\) 5.99028 + 10.3755i 0.329256 + 0.570288i 0.982364 0.186976i \(-0.0598688\pi\)
−0.653109 + 0.757264i \(0.726535\pi\)
\(332\) 0 0
\(333\) 13.1271 + 4.28590i 0.719360 + 0.234866i
\(334\) 0 0
\(335\) 0.0789334 + 0.136717i 0.00431259 + 0.00746963i
\(336\) 0 0
\(337\) 6.46006 11.1892i 0.351902 0.609512i −0.634681 0.772774i \(-0.718868\pi\)
0.986583 + 0.163262i \(0.0522017\pi\)
\(338\) 0 0
\(339\) −21.3502 + 26.3270i −1.15958 + 1.42989i
\(340\) 0 0
\(341\) 3.67635 0.199086
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 1.09944 + 2.87024i 0.0591920 + 0.154529i
\(346\) 0 0
\(347\) −8.09329 + 14.0180i −0.434471 + 0.752526i −0.997252 0.0740802i \(-0.976398\pi\)
0.562781 + 0.826606i \(0.309731\pi\)
\(348\) 0 0
\(349\) 9.05718 + 15.6875i 0.484820 + 0.839732i 0.999848 0.0174409i \(-0.00555188\pi\)
−0.515028 + 0.857173i \(0.672219\pi\)
\(350\) 0 0
\(351\) −21.3204 + 13.7811i −1.13800 + 0.735578i
\(352\) 0 0
\(353\) 5.84897 + 10.1307i 0.311309 + 0.539203i 0.978646 0.205553i \(-0.0658992\pi\)
−0.667337 + 0.744756i \(0.732566\pi\)
\(354\) 0 0
\(355\) −1.64295 + 2.84567i −0.0871987 + 0.151033i
\(356\) 0 0
\(357\) −2.29467 5.99054i −0.121447 0.317053i
\(358\) 0 0
\(359\) 35.7245 1.88547 0.942734 0.333547i \(-0.108245\pi\)
0.942734 + 0.333547i \(0.108245\pi\)
\(360\) 0 0
\(361\) −5.60301 −0.294895
\(362\) 0 0
\(363\) 16.6517 20.5333i 0.873989 1.07772i
\(364\) 0 0
\(365\) 0.437618 0.757977i 0.0229060 0.0396743i
\(366\) 0 0
\(367\) −8.52696 14.7691i −0.445103 0.770942i 0.552956 0.833210i \(-0.313500\pi\)
−0.998059 + 0.0622687i \(0.980166\pi\)
\(368\) 0 0
\(369\) −12.5075 + 11.2297i −0.651116 + 0.584593i
\(370\) 0 0
\(371\) −0.471410 0.816506i −0.0244744 0.0423909i
\(372\) 0 0
\(373\) 12.9617 22.4503i 0.671131 1.16243i −0.306453 0.951886i \(-0.599142\pi\)
0.977584 0.210547i \(-0.0675246\pi\)
\(374\) 0 0
\(375\) 4.06690 + 0.647097i 0.210014 + 0.0334160i
\(376\) 0 0
\(377\) −16.9267 −0.871767
\(378\) 0 0
\(379\) 26.8446 1.37892 0.689458 0.724326i \(-0.257849\pi\)
0.689458 + 0.724326i \(0.257849\pi\)
\(380\) 0 0
\(381\) 28.7524 + 4.57489i 1.47303 + 0.234379i
\(382\) 0 0
\(383\) −12.4263 + 21.5229i −0.634953 + 1.09977i 0.351573 + 0.936161i \(0.385647\pi\)
−0.986525 + 0.163610i \(0.947686\pi\)
\(384\) 0 0
\(385\) −0.612725 1.06127i −0.0312274 0.0540874i
\(386\) 0 0
\(387\) −7.73749 36.6583i −0.393319 1.86344i
\(388\) 0 0
\(389\) 9.12640 + 15.8074i 0.462727 + 0.801466i 0.999096 0.0425174i \(-0.0135378\pi\)
−0.536369 + 0.843984i \(0.680204\pi\)
\(390\) 0 0
\(391\) −13.7427 + 23.8030i −0.694998 + 1.20377i
\(392\) 0 0
\(393\) 5.34501 6.59095i 0.269620 0.332470i
\(394\) 0 0
\(395\) −1.48865 −0.0749021
\(396\) 0 0
\(397\) 12.3743 0.621048 0.310524 0.950566i \(-0.399496\pi\)
0.310524 + 0.950566i \(0.399496\pi\)
\(398\) 0 0
\(399\) −2.26771 5.92017i −0.113528 0.296379i
\(400\) 0 0
\(401\) 5.48113 9.49359i 0.273714 0.474087i −0.696096 0.717949i \(-0.745081\pi\)
0.969810 + 0.243862i \(0.0784144\pi\)
\(402\) 0 0
\(403\) −1.75241 3.03526i −0.0872935 0.151197i
\(404\) 0 0
\(405\) −1.96853 + 0.869747i −0.0978171 + 0.0432181i
\(406\) 0 0
\(407\) 11.7947 + 20.4290i 0.584640 + 1.01263i
\(408\) 0 0
\(409\) 6.66019 11.5358i 0.329325 0.570408i −0.653053 0.757312i \(-0.726512\pi\)
0.982378 + 0.186904i \(0.0598454\pi\)
\(410\) 0 0
\(411\) 3.37360 + 8.80724i 0.166408 + 0.434429i
\(412\) 0 0
\(413\) −7.57893 −0.372935
\(414\) 0 0
\(415\) 2.32038 0.113903
\(416\) 0 0
\(417\) 6.17511 7.61455i 0.302396 0.372886i
\(418\) 0 0
\(419\) −2.35705 + 4.08253i −0.115149 + 0.199445i −0.917839 0.396952i \(-0.870068\pi\)
0.802690 + 0.596396i \(0.203401\pi\)
\(420\) 0 0
\(421\) −9.65856 16.7291i −0.470729 0.815327i 0.528710 0.848802i \(-0.322676\pi\)
−0.999440 + 0.0334755i \(0.989342\pi\)
\(422\) 0 0
\(423\) −2.68878 12.7388i −0.130733 0.619380i
\(424\) 0 0
\(425\) 9.15335 + 15.8541i 0.444003 + 0.769036i
\(426\) 0 0
\(427\) 2.75404 4.77014i 0.133277 0.230843i
\(428\) 0 0
\(429\) −42.8279 6.81449i −2.06775 0.329007i
\(430\) 0 0
\(431\) −30.2794 −1.45851 −0.729253 0.684244i \(-0.760132\pi\)
−0.729253 + 0.684244i \(0.760132\pi\)
\(432\) 0 0
\(433\) 34.2060 1.64384 0.821918 0.569606i \(-0.192904\pi\)
0.821918 + 0.569606i \(0.192904\pi\)
\(434\) 0 0
\(435\) −1.41711 0.225481i −0.0679452 0.0108110i
\(436\) 0 0
\(437\) −13.5813 + 23.5234i −0.649680 + 1.12528i
\(438\) 0 0
\(439\) 0.311220 + 0.539049i 0.0148537 + 0.0257274i 0.873357 0.487081i \(-0.161938\pi\)
−0.858503 + 0.512809i \(0.828605\pi\)
\(440\) 0 0
\(441\) −2.23229 + 2.00422i −0.106299 + 0.0954390i
\(442\) 0 0
\(443\) 2.58934 + 4.48486i 0.123023 + 0.213082i 0.920958 0.389661i \(-0.127408\pi\)
−0.797935 + 0.602743i \(0.794074\pi\)
\(444\) 0 0
\(445\) 0.895355 1.55080i 0.0424439 0.0735150i
\(446\) 0 0
\(447\) 2.49028 3.07078i 0.117786 0.145243i
\(448\) 0 0
\(449\) −10.4977 −0.495416 −0.247708 0.968835i \(-0.579677\pi\)
−0.247708 + 0.968835i \(0.579677\pi\)
\(450\) 0 0
\(451\) −28.7141 −1.35209
\(452\) 0 0
\(453\) 6.97825 + 18.2177i 0.327867 + 0.855940i
\(454\) 0 0
\(455\) −0.584135 + 1.01175i −0.0273847 + 0.0474317i
\(456\) 0 0
\(457\) 1.60464 + 2.77933i 0.0750621 + 0.130011i 0.901113 0.433584i \(-0.142751\pi\)
−0.826051 + 0.563595i \(0.809418\pi\)
\(458\) 0 0
\(459\) −17.1287 8.77359i −0.799500 0.409516i
\(460\) 0 0
\(461\) 18.1150 + 31.3762i 0.843702 + 1.46133i 0.886744 + 0.462261i \(0.152962\pi\)
−0.0430418 + 0.999073i \(0.513705\pi\)
\(462\) 0 0
\(463\) −14.5253 + 25.1586i −0.675049 + 1.16922i 0.301406 + 0.953496i \(0.402544\pi\)
−0.976455 + 0.215723i \(0.930789\pi\)
\(464\) 0 0
\(465\) −0.106279 0.277457i −0.00492859 0.0128668i
\(466\) 0 0
\(467\) −37.4933 −1.73498 −0.867491 0.497452i \(-0.834269\pi\)
−0.867491 + 0.497452i \(0.834269\pi\)
\(468\) 0 0
\(469\) 0.660190 0.0304847
\(470\) 0 0
\(471\) 6.05034 7.46070i 0.278785 0.343771i
\(472\) 0 0
\(473\) 32.0007 55.4268i 1.47139 2.54853i
\(474\) 0 0
\(475\) 9.04583 + 15.6678i 0.415051 + 0.718890i
\(476\) 0 0
\(477\) −2.68878 0.877867i −0.123111 0.0401948i
\(478\) 0 0
\(479\) −14.9549 25.9026i −0.683305 1.18352i −0.973966 0.226693i \(-0.927209\pi\)
0.290661 0.956826i \(-0.406125\pi\)
\(480\) 0 0
\(481\) 11.2443 19.4757i 0.512697 0.888017i
\(482\) 0 0
\(483\) 12.6940 + 2.01978i 0.577596 + 0.0919033i
\(484\) 0 0
\(485\) −4.10069 −0.186203
\(486\) 0 0
\(487\) 21.2632 0.963528 0.481764 0.876301i \(-0.339996\pi\)
0.481764 + 0.876301i \(0.339996\pi\)
\(488\) 0 0
\(489\) −11.3925 1.81270i −0.515186 0.0819729i
\(490\) 0 0
\(491\) 10.6985 18.5303i 0.482816 0.836262i −0.516989 0.855992i \(-0.672947\pi\)
0.999805 + 0.0197296i \(0.00628054\pi\)
\(492\) 0 0
\(493\) −6.41586 11.1126i −0.288956 0.500487i
\(494\) 0 0
\(495\) −3.49480 1.14103i −0.157079 0.0512853i
\(496\) 0 0
\(497\) 6.87072 + 11.9004i 0.308194 + 0.533808i
\(498\) 0 0
\(499\) −7.28263 + 12.6139i −0.326015 + 0.564675i −0.981717 0.190345i \(-0.939039\pi\)
0.655702 + 0.755020i \(0.272373\pi\)
\(500\) 0 0
\(501\) 4.80834 5.92918i 0.214821 0.264896i
\(502\) 0 0
\(503\) 2.92339 0.130348 0.0651738 0.997874i \(-0.479240\pi\)
0.0651738 + 0.997874i \(0.479240\pi\)
\(504\) 0 0
\(505\) 1.71737 0.0764220
\(506\) 0 0
\(507\) 6.73431 + 17.5808i 0.299081 + 0.780792i
\(508\) 0 0
\(509\) 9.62025 16.6628i 0.426410 0.738564i −0.570141 0.821547i \(-0.693111\pi\)
0.996551 + 0.0829830i \(0.0264447\pi\)
\(510\) 0 0
\(511\) −1.83009 3.16982i −0.0809586 0.140224i
\(512\) 0 0
\(513\) −16.9275 8.67053i −0.747368 0.382813i
\(514\) 0 0
\(515\) 1.53379 + 2.65661i 0.0675869 + 0.117064i
\(516\) 0 0
\(517\) 11.1202 19.2608i 0.489068 0.847091i
\(518\) 0 0
\(519\) 15.6940 + 40.9713i 0.688889 + 1.79844i
\(520\) 0 0
\(521\) 27.7486 1.21569 0.607844 0.794057i \(-0.292035\pi\)
0.607844 + 0.794057i \(0.292035\pi\)
\(522\) 0 0
\(523\) −2.73680 −0.119672 −0.0598360 0.998208i \(-0.519058\pi\)
−0.0598360 + 0.998208i \(0.519058\pi\)
\(524\) 0 0
\(525\) 5.39248 6.64948i 0.235347 0.290207i
\(526\) 0 0
\(527\) 1.32846 2.30096i 0.0578686 0.100231i
\(528\) 0 0
\(529\) −16.0361 27.7754i −0.697222 1.20762i
\(530\) 0 0
\(531\) −16.9184 + 15.1898i −0.734194 + 0.659183i
\(532\) 0 0
\(533\) 13.6871 + 23.7068i 0.592856 + 1.02686i
\(534\) 0 0
\(535\) −0.904515 + 1.56667i −0.0391056 + 0.0677329i
\(536\) 0 0
\(537\) −16.3285 2.59808i −0.704625 0.112115i
\(538\) 0 0
\(539\) −5.12476 −0.220739
\(540\) 0 0
\(541\) −11.9773 −0.514944 −0.257472 0.966286i \(-0.582890\pi\)
−0.257472 + 0.966286i \(0.582890\pi\)
\(542\) 0 0
\(543\) −21.1666 3.36789i −0.908347 0.144530i
\(544\) 0 0
\(545\) 0.834608 1.44558i 0.0357507 0.0619220i
\(546\) 0 0
\(547\) 10.7346 + 18.5929i 0.458979 + 0.794975i 0.998907 0.0467363i \(-0.0148821\pi\)
−0.539928 + 0.841711i \(0.681549\pi\)
\(548\) 0 0
\(549\) −3.41260 16.1680i −0.145646 0.690034i
\(550\) 0 0
\(551\) −6.34050 10.9821i −0.270114 0.467852i
\(552\) 0 0
\(553\) −3.11273 + 5.39140i −0.132367 + 0.229266i
\(554\) 0 0
\(555\) 1.20082 1.48073i 0.0509719 0.0628536i
\(556\) 0 0
\(557\) −31.8493 −1.34950 −0.674748 0.738048i \(-0.735748\pi\)
−0.674748 + 0.738048i \(0.735748\pi\)
\(558\) 0 0
\(559\) −61.0150 −2.58066
\(560\) 0 0
\(561\) −11.7596 30.7001i −0.496492 1.29616i
\(562\) 0 0
\(563\) −17.7742 + 30.7857i −0.749091 + 1.29746i 0.199167 + 0.979966i \(0.436176\pi\)
−0.948259 + 0.317499i \(0.897157\pi\)
\(564\) 0 0
\(565\) 2.33981 + 4.05267i 0.0984366 + 0.170497i
\(566\) 0 0
\(567\) −0.966208 + 8.94799i −0.0405769 + 0.375780i
\(568\) 0 0
\(569\) −10.8743 18.8348i −0.455874 0.789597i 0.542864 0.839821i \(-0.317340\pi\)
−0.998738 + 0.0502237i \(0.984007\pi\)
\(570\) 0 0
\(571\) 4.79987 8.31362i 0.200868 0.347914i −0.747940 0.663766i \(-0.768957\pi\)
0.948808 + 0.315852i \(0.102290\pi\)
\(572\) 0 0
\(573\) 8.15856 + 21.2990i 0.340829 + 0.889779i
\(574\) 0 0
\(575\) −36.6810 −1.52970
\(576\) 0 0
\(577\) 13.0183 0.541960 0.270980 0.962585i \(-0.412652\pi\)
0.270980 + 0.962585i \(0.412652\pi\)
\(578\) 0 0
\(579\) 12.1631 14.9983i 0.505480 0.623309i
\(580\) 0 0
\(581\) 4.85185 8.40365i 0.201289 0.348642i
\(582\) 0 0
\(583\) −2.41586 4.18440i −0.100055 0.173300i
\(584\) 0 0
\(585\) 0.723815 + 3.42926i 0.0299261 + 0.141782i
\(586\) 0 0
\(587\) −8.64364 14.9712i −0.356761 0.617928i 0.630657 0.776062i \(-0.282786\pi\)
−0.987418 + 0.158134i \(0.949452\pi\)
\(588\) 0 0
\(589\) 1.31285 2.27393i 0.0540952 0.0936957i
\(590\) 0 0
\(591\) 0.246648 + 0.0392450i 0.0101457 + 0.00161432i
\(592\) 0 0
\(593\) 12.4153 0.509836 0.254918 0.966963i \(-0.417952\pi\)
0.254918 + 0.966963i \(0.417952\pi\)
\(594\) 0 0
\(595\) −0.885640 −0.0363077
\(596\) 0 0
\(597\) 33.3027 + 5.29891i 1.36299 + 0.216870i
\(598\) 0 0
\(599\) 3.94282 6.82916i 0.161099 0.279032i −0.774164 0.632985i \(-0.781829\pi\)
0.935263 + 0.353953i \(0.115163\pi\)
\(600\) 0 0
\(601\) −11.1413 19.2973i −0.454464 0.787154i 0.544193 0.838960i \(-0.316836\pi\)
−0.998657 + 0.0518055i \(0.983502\pi\)
\(602\) 0 0
\(603\) 1.47373 1.32317i 0.0600151 0.0538835i
\(604\) 0 0
\(605\) −1.82489 3.16081i −0.0741925 0.128505i
\(606\) 0 0
\(607\) −11.0458 + 19.1319i −0.448336 + 0.776541i −0.998278 0.0586617i \(-0.981317\pi\)
0.549942 + 0.835203i \(0.314650\pi\)
\(608\) 0 0
\(609\) −3.77975 + 4.66082i −0.153163 + 0.188866i
\(610\) 0 0
\(611\) −21.2028 −0.857771
\(612\) 0 0
\(613\) −29.5264 −1.19256 −0.596280 0.802777i \(-0.703355\pi\)
−0.596280 + 0.802777i \(0.703355\pi\)
\(614\) 0 0
\(615\) 0.830095 + 2.16708i 0.0334727 + 0.0873849i
\(616\) 0 0
\(617\) 5.01655 8.68892i 0.201959 0.349803i −0.747201 0.664598i \(-0.768603\pi\)
0.949159 + 0.314796i \(0.101936\pi\)
\(618\) 0 0
\(619\) 19.1283 + 33.1312i 0.768833 + 1.33166i 0.938196 + 0.346103i \(0.112495\pi\)
−0.169364 + 0.985554i \(0.554171\pi\)
\(620\) 0 0
\(621\) 32.3847 20.9328i 1.29955 0.840004i
\(622\) 0 0
\(623\) −3.74433 6.48536i −0.150013 0.259831i
\(624\) 0 0
\(625\) −12.0728 + 20.9107i −0.482911 + 0.836427i
\(626\) 0 0
\(627\) −11.6215 30.3395i −0.464118 1.21164i
\(628\) 0 0
\(629\) 17.0482 0.679754
\(630\) 0 0
\(631\) −23.0377 −0.917118 −0.458559 0.888664i \(-0.651634\pi\)
−0.458559 + 0.888664i \(0.651634\pi\)
\(632\) 0 0
\(633\) −3.52244 + 4.34354i −0.140004 + 0.172640i
\(634\) 0 0
\(635\) 2.00972 3.48093i 0.0797531 0.138136i
\(636\) 0 0
\(637\) 2.44282 + 4.23109i 0.0967881 + 0.167642i
\(638\) 0 0
\(639\) 39.1885 + 12.7948i 1.55027 + 0.506153i
\(640\) 0 0
\(641\) 8.68646 + 15.0454i 0.343094 + 0.594257i 0.985006 0.172522i \(-0.0551916\pi\)
−0.641911 + 0.766779i \(0.721858\pi\)
\(642\) 0 0
\(643\) 9.47949 16.4190i 0.373835 0.647501i −0.616317 0.787498i \(-0.711376\pi\)
0.990152 + 0.139997i \(0.0447094\pi\)
\(644\) 0 0
\(645\) −5.10821 0.812785i −0.201136 0.0320034i
\(646\) 0 0
\(647\) 19.0194 0.747731 0.373865 0.927483i \(-0.378032\pi\)
0.373865 + 0.927483i \(0.378032\pi\)
\(648\) 0 0
\(649\) −38.8402 −1.52461
\(650\) 0 0
\(651\) −1.22708 0.195246i −0.0480933 0.00765228i
\(652\) 0 0
\(653\) 3.59329 6.22377i 0.140616 0.243555i −0.787112 0.616810i \(-0.788425\pi\)
0.927729 + 0.373255i \(0.121758\pi\)
\(654\) 0 0
\(655\) −0.585770 1.01458i −0.0228879 0.0396430i
\(656\) 0 0
\(657\) −10.4383 3.40803i −0.407237 0.132960i
\(658\) 0 0
\(659\) −12.7261 22.0423i −0.495740 0.858647i 0.504248 0.863559i \(-0.331770\pi\)
−0.999988 + 0.00491209i \(0.998436\pi\)
\(660\) 0 0
\(661\) −4.14295 + 7.17580i −0.161142 + 0.279106i −0.935279 0.353912i \(-0.884851\pi\)
0.774136 + 0.633019i \(0.218184\pi\)
\(662\) 0 0
\(663\) −19.7411 + 24.3428i −0.766679 + 0.945395i
\(664\) 0 0
\(665\) −0.875237 −0.0339402
\(666\) 0 0
\(667\) 25.7108 0.995527
\(668\) 0 0
\(669\) 12.8691 + 33.5965i 0.497548 + 1.29892i
\(670\) 0 0
\(671\) 14.1138 24.4458i 0.544857 0.943721i
\(672\) 0 0
\(673\) 5.91586 + 10.2466i 0.228040 + 0.394977i 0.957227 0.289338i \(-0.0934350\pi\)
−0.729187 + 0.684314i \(0.760102\pi\)
\(674\) 0 0
\(675\) −1.28947 25.6513i −0.0496316 0.987317i
\(676\) 0 0
\(677\) −6.80314 11.7834i −0.261466 0.452872i 0.705166 0.709042i \(-0.250873\pi\)
−0.966632 + 0.256170i \(0.917539\pi\)
\(678\) 0 0
\(679\) −8.57442 + 14.8513i −0.329056 + 0.569942i
\(680\) 0 0
\(681\) 13.5949 + 35.4914i 0.520959 + 1.36003i
\(682\) 0 0
\(683\) 3.58142 0.137039 0.0685196 0.997650i \(-0.478172\pi\)
0.0685196 + 0.997650i \(0.478172\pi\)
\(684\) 0 0
\(685\) 1.30206 0.0497492
\(686\) 0 0
\(687\) 24.8428 30.6338i 0.947813 1.16875i
\(688\) 0 0
\(689\) −2.30314 + 3.98916i −0.0877426 + 0.151975i
\(690\) 0 0
\(691\) −5.85868 10.1475i −0.222875 0.386031i 0.732805 0.680439i \(-0.238211\pi\)
−0.955680 + 0.294408i \(0.904877\pi\)
\(692\) 0 0
\(693\) −11.4399 + 10.2712i −0.434567 + 0.390169i
\(694\) 0 0
\(695\) −0.676742 1.17215i −0.0256703 0.0444622i
\(696\) 0 0
\(697\) −10.3759 + 17.9716i −0.393016 + 0.680724i
\(698\) 0 0
\(699\) 44.1004 + 7.01697i 1.66803 + 0.265406i
\(700\) 0 0
\(701\) −10.5926 −0.400077 −0.200039 0.979788i \(-0.564107\pi\)
−0.200039 + 0.979788i \(0.564107\pi\)
\(702\) 0 0
\(703\) 16.8479 0.635430
\(704\) 0 0
\(705\) −1.77511 0.282443i −0.0668543 0.0106374i
\(706\) 0 0
\(707\) 3.59097 6.21975i 0.135052 0.233918i
\(708\) 0 0
\(709\) −19.1488 33.1668i −0.719150 1.24560i −0.961337 0.275374i \(-0.911198\pi\)
0.242187 0.970230i \(-0.422135\pi\)
\(710\) 0 0
\(711\) 3.85705 + 18.2737i 0.144651 + 0.685318i
\(712\) 0 0
\(713\) 2.66182 + 4.61042i 0.0996861 + 0.172661i
\(714\) 0 0
\(715\) −2.99355 + 5.18499i −0.111953 + 0.193908i
\(716\) 0 0
\(717\) −29.7810 + 36.7230i −1.11219 + 1.37145i
\(718\) 0 0
\(719\) 41.6752 1.55422 0.777112 0.629362i \(-0.216684\pi\)
0.777112 + 0.629362i \(0.216684\pi\)
\(720\) 0 0
\(721\) 12.8285 0.477757
\(722\) 0 0
\(723\) 6.21698 + 16.2303i 0.231212 + 0.603610i
\(724\) 0 0
\(725\) 8.56238 14.8305i 0.317999 0.550790i
\(726\) 0 0
\(727\) 16.4126 + 28.4274i 0.608709 + 1.05432i 0.991453 + 0.130461i \(0.0416458\pi\)
−0.382744 + 0.923854i \(0.625021\pi\)
\(728\) 0 0
\(729\) 15.7769 + 21.9110i 0.584329 + 0.811517i
\(730\) 0 0
\(731\) −23.1271 40.0573i −0.855386 1.48157i
\(732\) 0 0
\(733\) −4.64884 + 8.05203i −0.171709 + 0.297408i −0.939017 0.343870i \(-0.888262\pi\)
0.767309 + 0.641278i \(0.221595\pi\)
\(734\) 0 0
\(735\) 0.148152 + 0.386770i 0.00546465 + 0.0142662i
\(736\) 0 0
\(737\) 3.38332 0.124626
\(738\) 0 0
\(739\) 11.3776 0.418530 0.209265 0.977859i \(-0.432893\pi\)
0.209265 + 0.977859i \(0.432893\pi\)
\(740\) 0 0
\(741\) −19.5092 + 24.0568i −0.716687 + 0.883749i
\(742\) 0 0
\(743\) 1.16182 2.01234i 0.0426232 0.0738256i −0.843927 0.536458i \(-0.819762\pi\)
0.886550 + 0.462633i \(0.153095\pi\)
\(744\) 0 0
\(745\) −0.272915 0.472703i −0.00999883 0.0173185i
\(746\) 0 0
\(747\) −6.01204 28.4835i −0.219969 1.04216i
\(748\) 0 0
\(749\) 3.78263 + 6.55171i 0.138214 + 0.239394i
\(750\) 0 0
\(751\) 5.56690 9.64215i 0.203139 0.351847i −0.746399 0.665498i \(-0.768219\pi\)
0.949538 + 0.313652i \(0.101552\pi\)
\(752\) 0 0
\(753\) 48.4374 + 7.70703i 1.76516 + 0.280860i
\(754\) 0 0
\(755\) 2.69329 0.0980190
\(756\) 0 0
\(757\) 52.1639 1.89593 0.947964 0.318376i \(-0.103138\pi\)
0.947964 + 0.318376i \(0.103138\pi\)
\(758\) 0 0
\(759\) 65.0537 + 10.3509i 2.36130 + 0.375714i
\(760\) 0 0
\(761\) 23.5127 40.7252i 0.852336 1.47629i −0.0267592 0.999642i \(-0.508519\pi\)
0.879095 0.476647i \(-0.158148\pi\)
\(762\) 0 0
\(763\) −3.49028 6.04535i −0.126357 0.218856i
\(764\) 0 0
\(765\) −1.97700 + 1.77502i −0.0714787 + 0.0641759i
\(766\) 0 0
\(767\) 18.5140 + 32.0671i 0.668501 + 1.15788i
\(768\) 0 0
\(769\) 3.30314 5.72121i 0.119114 0.206312i −0.800303 0.599596i \(-0.795328\pi\)
0.919417 + 0.393284i \(0.128661\pi\)
\(770\) 0 0
\(771\) 31.4887 38.8288i 1.13404 1.39838i
\(772\) 0 0
\(773\) 19.0870 0.686512 0.343256 0.939242i \(-0.388470\pi\)
0.343256 + 0.939242i \(0.388470\pi\)
\(774\) 0 0
\(775\) 3.54583 0.127370
\(776\) 0 0
\(777\) −2.85185 7.44514i −0.102309 0.267093i
\(778\) 0 0
\(779\) −10.2540 + 17.7605i −0.367389 + 0.636337i
\(780\) 0 0
\(781\) 35.2108 + 60.9869i 1.25994 + 2.18228i
\(782\) 0 0
\(783\) 0.903827 + 17.9797i 0.0323001 + 0.642544i
\(784\) 0 0
\(785\) −0.663069 1.14847i −0.0236659 0.0409906i
\(786\) 0 0
\(787\) −25.4503 + 44.0813i −0.907207 + 1.57133i −0.0892796 + 0.996007i \(0.528456\pi\)
−0.817927 + 0.575322i \(0.804877\pi\)
\(788\) 0 0
\(789\) −0.749229 1.95596i −0.0266733 0.0696342i
\(790\) 0 0
\(791\) 19.5699 0.695826
\(792\) 0 0
\(793\) −26.9105 −0.955620
\(794\) 0 0
\(795\) −0.245960 + 0.303294i −0.00872330 + 0.0107567i
\(796\) 0 0
\(797\) −4.38727 + 7.59898i −0.155405 + 0.269170i −0.933207 0.359341i \(-0.883002\pi\)
0.777801 + 0.628510i \(0.216335\pi\)
\(798\) 0 0
\(799\) −8.03667 13.9199i −0.284317 0.492451i
\(800\) 0 0
\(801\) −21.3565 6.97274i −0.754595 0.246370i
\(802\) 0 0
\(803\) −9.37880 16.2446i −0.330971 0.573258i
\(804\) 0 0
\(805\) 0.887275 1.53681i 0.0312723 0.0541653i
\(806\) 0 0
\(807\) −15.4182 2.45324i −0.542746 0.0863581i
\(808\) 0 0
\(809\) −9.51384 −0.334489 −0.167244 0.985915i \(-0.553487\pi\)
−0.167244 + 0.985915i \(0.553487\pi\)
\(810\) 0 0
\(811\) −25.0118 −0.878282 −0.439141 0.898418i \(-0.644717\pi\)
−0.439141 + 0.898418i \(0.644717\pi\)
\(812\) 0 0
\(813\) −30.1105 4.79099i −1.05602 0.168027i
\(814\) 0 0
\(815\) −0.796303 + 1.37924i −0.0278933 + 0.0483126i
\(816\) 0 0
\(817\) −22.8554 39.5867i −0.799610 1.38496i
\(818\) 0 0
\(819\) 13.9331 + 4.54906i 0.486862 + 0.158957i
\(820\) 0 0
\(821\) 17.7970 + 30.8253i 0.621119 + 1.07581i 0.989278 + 0.146047i \(0.0466551\pi\)
−0.368158 + 0.929763i \(0.620012\pi\)
\(822\) 0 0
\(823\) −8.00000 + 13.8564i −0.278862 + 0.483004i −0.971102 0.238664i \(-0.923291\pi\)
0.692240 + 0.721668i \(0.256624\pi\)
\(824\) 0 0
\(825\) 27.6352 34.0770i 0.962133 1.18641i
\(826\) 0 0
\(827\) −25.4531 −0.885090 −0.442545 0.896746i \(-0.645924\pi\)
−0.442545 + 0.896746i \(0.645924\pi\)
\(828\) 0 0
\(829\) −17.5458 −0.609392 −0.304696 0.952450i \(-0.598555\pi\)
−0.304696 + 0.952450i \(0.598555\pi\)
\(830\) 0 0
\(831\) 0.900948 + 2.35205i 0.0312535 + 0.0815916i
\(832\) 0 0
\(833\) −1.85185 + 3.20750i −0.0641627 + 0.111133i
\(834\) 0 0
\(835\) −0.526955 0.912713i −0.0182360 0.0315857i
\(836\) 0 0
\(837\) −3.13052 + 2.02350i −0.108207 + 0.0699425i
\(838\) 0 0
\(839\) −12.0562 20.8820i −0.416227 0.720927i 0.579329 0.815094i \(-0.303315\pi\)
−0.995556 + 0.0941668i \(0.969981\pi\)
\(840\) 0 0
\(841\) 8.49837 14.7196i 0.293047 0.507572i
\(842\) 0 0
\(843\) −12.5748 32.8282i −0.433099 1.13066i
\(844\) 0 0
\(845\) 2.59915 0.0894133
\(846\) 0 0
\(847\) −15.2632 −0.524450
\(848\) 0 0
\(849\) −5.02175 + 6.19234i −0.172346 + 0.212521i
\(850\) 0 0
\(851\) −17.0796 + 29.5828i −0.585482 + 1.01408i
\(852\) 0 0
\(853\) −16.2616 28.1659i −0.556785 0.964381i −0.997762 0.0668621i \(-0.978701\pi\)
0.440977 0.897518i \(-0.354632\pi\)
\(854\) 0 0
\(855\) −1.95378 + 1.75417i −0.0668178 + 0.0599912i
\(856\) 0 0
\(857\) 0.299870 + 0.519390i 0.0102434 + 0.0177420i 0.871102 0.491103i \(-0.163406\pi\)
−0.860858 + 0.508845i \(0.830073\pi\)
\(858\) 0 0
\(859\) 13.2174 22.8932i 0.450971 0.781104i −0.547476 0.836822i \(-0.684411\pi\)
0.998447 + 0.0557171i \(0.0177445\pi\)
\(860\) 0 0
\(861\) 9.58414 + 1.52496i 0.326626 + 0.0519706i
\(862\) 0 0
\(863\) 19.8454 0.675545 0.337773 0.941228i \(-0.390326\pi\)
0.337773 + 0.941228i \(0.390326\pi\)
\(864\) 0 0
\(865\) 6.05718 0.205950
\(866\) 0 0
\(867\) 5.61505 + 0.893429i 0.190697 + 0.0303424i
\(868\) 0 0
\(869\) −15.9520 + 27.6296i −0.541134 + 0.937271i
\(870\) 0 0
\(871\) −1.61273 2.79332i −0.0546451 0.0946481i
\(872\) 0 0
\(873\) 10.6248 + 50.3374i 0.359594 + 1.70366i
\(874\) 0 0
\(875\) −1.18878 2.05903i −0.0401881 0.0696078i
\(876\) 0 0
\(877\) −10.2352 + 17.7278i −0.345617 + 0.598626i −0.985466 0.169875i \(-0.945664\pi\)
0.639849 + 0.768501i \(0.278997\pi\)
\(878\) 0 0
\(879\) −7.71681 + 9.51563i −0.260282 + 0.320954i
\(880\) 0 0
\(881\) −31.1683 −1.05009 −0.525043 0.851076i \(-0.675951\pi\)
−0.525043 + 0.851076i \(0.675951\pi\)
\(882\) 0 0
\(883\) −2.64187 −0.0889060 −0.0444530 0.999011i \(-0.514154\pi\)
−0.0444530 + 0.999011i \(0.514154\pi\)
\(884\) 0 0
\(885\) 1.12283 + 2.93130i 0.0377436 + 0.0985347i
\(886\) 0 0
\(887\) 11.5825 20.0615i 0.388902 0.673599i −0.603400 0.797439i \(-0.706188\pi\)
0.992302 + 0.123840i \(0.0395210\pi\)
\(888\) 0 0
\(889\) −8.40451 14.5570i −0.281878 0.488228i
\(890\) 0 0
\(891\) −4.95159 + 45.8563i −0.165884 + 1.53624i
\(892\) 0 0
\(893\) −7.94226 13.7564i −0.265778 0.460341i
\(894\) 0 0
\(895\) −1.14132 + 1.97682i −0.0381500 + 0.0660777i
\(896\) 0 0
\(897\) −22.4632 58.6433i −0.750026 1.95804i
\(898\) 0 0
\(899\) −2.48538 −0.0828921
\(900\) 0 0
\(901\) −3.49192 −0.116333
\(902\) 0 0
\(903\) −13.6248 + 16.8007i −0.453404 + 0.559094i
\(904\) 0 0
\(905\) −1.47949 + 2.56255i −0.0491799 + 0.0851821i
\(906\) 0 0
\(907\) 25.0264 + 43.3470i 0.830988 + 1.43931i 0.897256 + 0.441511i \(0.145558\pi\)
−0.0662676 + 0.997802i \(0.521109\pi\)
\(908\) 0 0
\(909\) −4.44966 21.0814i −0.147586 0.699224i
\(910\) 0 0
\(911\) 5.42231 + 9.39172i 0.179649 + 0.311161i 0.941760 0.336285i \(-0.109170\pi\)
−0.762111 + 0.647446i \(0.775837\pi\)
\(912\) 0 0
\(913\) 24.8646 43.0667i 0.822897 1.42530i
\(914\) 0 0
\(915\) −2.25296 0.358476i −0.0744806 0.0118509i
\(916\) 0 0
\(917\) −4.89931 −0.161790
\(918\) 0 0
\(919\) 11.1910 0.369156 0.184578 0.982818i \(-0.440908\pi\)
0.184578 + 0.982818i \(0.440908\pi\)
\(920\) 0 0
\(921\) −26.9441 4.28716i −0.887837 0.141267i
\(922\) 0 0
\(923\) 33.5679 58.1413i 1.10490 1.91374i
\(924\) 0 0
\(925\) 11.3759 + 19.7037i 0.374038 + 0.647853i
\(926\) 0 0
\(927\) 28.6368 25.7111i 0.940556 0.844462i
\(928\) 0 0
\(929\) −20.6478 35.7630i −0.677431 1.17335i −0.975752 0.218879i \(-0.929760\pi\)
0.298321 0.954466i \(-0.403573\pi\)
\(930\) 0 0
\(931\) −1.83009 + 3.16982i −0.0599789 + 0.103887i
\(932\) 0 0
\(933\) −21.4090 + 26.3995i −0.700900 + 0.864282i
\(934\) 0 0
\(935\) −4.53870 −0.148431
\(936\) 0 0
\(937\) −33.5620 −1.09642 −0.548211 0.836340i \(-0.684691\pi\)
−0.548211 + 0.836340i \(0.684691\pi\)
\(938\) 0 0
\(939\) −15.7898 41.2213i −0.515279 1.34521i
\(940\) 0 0
\(941\) −25.2112 + 43.6671i −0.821862 + 1.42351i 0.0824315 + 0.996597i \(0.473731\pi\)
−0.904294 + 0.426911i \(0.859602\pi\)
\(942\) 0 0
\(943\) −20.7902 36.0096i −0.677021 1.17263i
\(944\) 0 0
\(945\) 1.10589 + 0.566453i 0.0359746 + 0.0184267i
\(946\) 0 0
\(947\) −10.1212 17.5304i −0.328895 0.569662i 0.653398 0.757014i \(-0.273343\pi\)
−0.982293 + 0.187352i \(0.940009\pi\)
\(948\) 0 0
\(949\) −8.94119 + 15.4866i −0.290243 + 0.502716i
\(950\) 0 0
\(951\) 5.13160 + 13.3967i 0.166404 + 0.434419i
\(952\) 0 0
\(953\) −29.3685 −0.951340 −0.475670 0.879624i \(-0.657794\pi\)
−0.475670 + 0.879624i \(0.657794\pi\)
\(954\) 0 0
\(955\) 3.14884 0.101894
\(956\) 0 0
\(957\) −19.3703 + 23.8856i −0.626154 + 0.772113i
\(958\) 0 0
\(959\) 2.72257 4.71563i 0.0879164 0.152276i
\(960\) 0 0
\(961\) 15.2427 + 26.4011i 0.491700 + 0.851649i
\(962\) 0 0
\(963\) 21.5750 + 7.04407i 0.695244 + 0.226992i
\(964\) 0 0
\(965\) −1.33297 2.30878i −0.0429099 0.0743222i
\(966\) 0 0
\(967\) 15.2157 26.3544i 0.489305 0.847501i −0.510619 0.859807i \(-0.670584\pi\)
0.999924 + 0.0123057i \(0.00391714\pi\)
\(968\) 0 0
\(969\) −23.1884 3.68958i −0.744918 0.118526i
\(970\) 0 0
\(971\) 7.18659 0.230629 0.115314 0.993329i \(-0.463212\pi\)
0.115314 + 0.993329i \(0.463212\pi\)
\(972\) 0 0
\(973\) −5.66019 −0.181457
\(974\) 0 0
\(975\) −41.3074 6.57256i −1.32290 0.210490i
\(976\) 0 0
\(977\) −14.2713 + 24.7186i −0.456579 + 0.790818i −0.998777 0.0494328i \(-0.984259\pi\)
0.542199 + 0.840250i \(0.317592\pi\)
\(978\) 0 0
\(979\) −19.1888 33.2359i −0.613276 1.06223i
\(980\) 0 0
\(981\) −19.9075 6.49966i −0.635598 0.207518i
\(982\) 0 0
\(983\) −2.20821 3.82473i −0.0704310 0.121990i 0.828659 0.559753i \(-0.189104\pi\)
−0.899090 + 0.437763i \(0.855771\pi\)
\(984\) 0 0
\(985\) 0.0172400 0.0298606i 0.000549313 0.000951438i
\(986\) 0 0
\(987\) −4.73461 + 5.83826i −0.150704 + 0.185834i
\(988\) 0 0
\(989\) 92.6791 2.94702
\(990\) 0 0
\(991\) −5.81341 −0.184669 −0.0923345 0.995728i \(-0.529433\pi\)
−0.0923345 + 0.995728i \(0.529433\pi\)
\(992\) 0 0
\(993\) −7.42270 19.3780i −0.235552 0.614941i
\(994\) 0 0
\(995\) 2.32777 4.03182i 0.0737953 0.127817i
\(996\) 0 0
\(997\) 26.3204 + 45.5882i 0.833575 + 1.44379i 0.895186 + 0.445694i \(0.147043\pi\)
−0.0616108 + 0.998100i \(0.519624\pi\)
\(998\) 0 0
\(999\) −21.2878 10.9040i −0.673517 0.344986i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.2.j.a.85.1 6
3.2 odd 2 756.2.j.b.253.2 6
4.3 odd 2 1008.2.r.j.337.3 6
7.2 even 3 1764.2.l.e.949.3 6
7.3 odd 6 1764.2.i.d.373.2 6
7.4 even 3 1764.2.i.g.373.2 6
7.5 odd 6 1764.2.l.f.949.1 6
7.6 odd 2 1764.2.j.e.589.3 6
9.2 odd 6 756.2.j.b.505.2 6
9.4 even 3 2268.2.a.i.1.2 3
9.5 odd 6 2268.2.a.h.1.2 3
9.7 even 3 inner 252.2.j.a.169.1 yes 6
12.11 even 2 3024.2.r.j.1009.2 6
21.2 odd 6 5292.2.l.e.361.2 6
21.5 even 6 5292.2.l.f.361.2 6
21.11 odd 6 5292.2.i.f.1549.2 6
21.17 even 6 5292.2.i.e.1549.2 6
21.20 even 2 5292.2.j.d.1765.2 6
36.7 odd 6 1008.2.r.j.673.3 6
36.11 even 6 3024.2.r.j.2017.2 6
36.23 even 6 9072.2.a.bv.1.2 3
36.31 odd 6 9072.2.a.by.1.2 3
63.2 odd 6 5292.2.i.f.2125.2 6
63.11 odd 6 5292.2.l.e.3313.2 6
63.16 even 3 1764.2.i.g.1537.2 6
63.20 even 6 5292.2.j.d.3529.2 6
63.25 even 3 1764.2.l.e.961.3 6
63.34 odd 6 1764.2.j.e.1177.3 6
63.38 even 6 5292.2.l.f.3313.2 6
63.47 even 6 5292.2.i.e.2125.2 6
63.52 odd 6 1764.2.l.f.961.1 6
63.61 odd 6 1764.2.i.d.1537.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.a.85.1 6 1.1 even 1 trivial
252.2.j.a.169.1 yes 6 9.7 even 3 inner
756.2.j.b.253.2 6 3.2 odd 2
756.2.j.b.505.2 6 9.2 odd 6
1008.2.r.j.337.3 6 4.3 odd 2
1008.2.r.j.673.3 6 36.7 odd 6
1764.2.i.d.373.2 6 7.3 odd 6
1764.2.i.d.1537.2 6 63.61 odd 6
1764.2.i.g.373.2 6 7.4 even 3
1764.2.i.g.1537.2 6 63.16 even 3
1764.2.j.e.589.3 6 7.6 odd 2
1764.2.j.e.1177.3 6 63.34 odd 6
1764.2.l.e.949.3 6 7.2 even 3
1764.2.l.e.961.3 6 63.25 even 3
1764.2.l.f.949.1 6 7.5 odd 6
1764.2.l.f.961.1 6 63.52 odd 6
2268.2.a.h.1.2 3 9.5 odd 6
2268.2.a.i.1.2 3 9.4 even 3
3024.2.r.j.1009.2 6 12.11 even 2
3024.2.r.j.2017.2 6 36.11 even 6
5292.2.i.e.1549.2 6 21.17 even 6
5292.2.i.e.2125.2 6 63.47 even 6
5292.2.i.f.1549.2 6 21.11 odd 6
5292.2.i.f.2125.2 6 63.2 odd 6
5292.2.j.d.1765.2 6 21.20 even 2
5292.2.j.d.3529.2 6 63.20 even 6
5292.2.l.e.361.2 6 21.2 odd 6
5292.2.l.e.3313.2 6 63.11 odd 6
5292.2.l.f.361.2 6 21.5 even 6
5292.2.l.f.3313.2 6 63.38 even 6
9072.2.a.bv.1.2 3 36.23 even 6
9072.2.a.by.1.2 3 36.31 odd 6