Properties

Label 1764.2.k.a.361.1
Level $1764$
Weight $2$
Character 1764.361
Analytic conductor $14.086$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(361,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.k (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1764.361
Dual form 1764.2.k.a.1549.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 3.46410i) q^{5} +(1.00000 - 1.73205i) q^{11} +6.00000 q^{13} +(2.00000 - 3.46410i) q^{17} +(-2.00000 - 3.46410i) q^{19} +(1.00000 + 1.73205i) q^{23} +(-5.50000 + 9.52628i) q^{25} +2.00000 q^{29} +(-1.00000 - 1.73205i) q^{37} -4.00000 q^{43} +(-6.00000 - 10.3923i) q^{47} +(-3.00000 + 5.19615i) q^{53} -8.00000 q^{55} +(4.00000 - 6.92820i) q^{59} +(3.00000 + 5.19615i) q^{61} +(-12.0000 - 20.7846i) q^{65} +(4.00000 - 6.92820i) q^{67} -14.0000 q^{71} +(-1.00000 + 1.73205i) q^{73} +(-6.00000 - 10.3923i) q^{79} -4.00000 q^{83} -16.0000 q^{85} +(-8.00000 + 13.8564i) q^{95} +2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{5} + 2 q^{11} + 12 q^{13} + 4 q^{17} - 4 q^{19} + 2 q^{23} - 11 q^{25} + 4 q^{29} - 2 q^{37} - 8 q^{43} - 12 q^{47} - 6 q^{53} - 16 q^{55} + 8 q^{59} + 6 q^{61} - 24 q^{65} + 8 q^{67} - 28 q^{71}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.00000 3.46410i −0.894427 1.54919i −0.834512 0.550990i \(-0.814250\pi\)
−0.0599153 0.998203i \(-0.519083\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 0 0
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 3.46410i 0.485071 0.840168i −0.514782 0.857321i \(-0.672127\pi\)
0.999853 + 0.0171533i \(0.00546033\pi\)
\(18\) 0 0
\(19\) −2.00000 3.46410i −0.458831 0.794719i 0.540068 0.841621i \(-0.318398\pi\)
−0.998899 + 0.0469020i \(0.985065\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 + 1.73205i 0.208514 + 0.361158i 0.951247 0.308431i \(-0.0998038\pi\)
−0.742732 + 0.669588i \(0.766471\pi\)
\(24\) 0 0
\(25\) −5.50000 + 9.52628i −1.10000 + 1.90526i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 1.73205i −0.164399 0.284747i 0.772043 0.635571i \(-0.219235\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.00000 10.3923i −0.875190 1.51587i −0.856560 0.516047i \(-0.827403\pi\)
−0.0186297 0.999826i \(-0.505930\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.00000 + 5.19615i −0.412082 + 0.713746i −0.995117 0.0987002i \(-0.968532\pi\)
0.583036 + 0.812447i \(0.301865\pi\)
\(54\) 0 0
\(55\) −8.00000 −1.07872
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000 6.92820i 0.520756 0.901975i −0.478953 0.877841i \(-0.658984\pi\)
0.999709 0.0241347i \(-0.00768307\pi\)
\(60\) 0 0
\(61\) 3.00000 + 5.19615i 0.384111 + 0.665299i 0.991645 0.128994i \(-0.0411748\pi\)
−0.607535 + 0.794293i \(0.707841\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.0000 20.7846i −1.48842 2.57801i
\(66\) 0 0
\(67\) 4.00000 6.92820i 0.488678 0.846415i −0.511237 0.859440i \(-0.670813\pi\)
0.999915 + 0.0130248i \(0.00414604\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −14.0000 −1.66149 −0.830747 0.556650i \(-0.812086\pi\)
−0.830747 + 0.556650i \(0.812086\pi\)
\(72\) 0 0
\(73\) −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i \(-0.870674\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.00000 10.3923i −0.675053 1.16923i −0.976453 0.215728i \(-0.930788\pi\)
0.301401 0.953498i \(-0.402546\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) −16.0000 −1.73544
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.00000 + 13.8564i −0.820783 + 1.42164i
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.00000 + 13.8564i −0.796030 + 1.37876i 0.126153 + 0.992011i \(0.459737\pi\)
−0.922183 + 0.386753i \(0.873597\pi\)
\(102\) 0 0
\(103\) −8.00000 13.8564i −0.788263 1.36531i −0.927030 0.374987i \(-0.877647\pi\)
0.138767 0.990325i \(-0.455686\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.00000 + 15.5885i 0.870063 + 1.50699i 0.861931 + 0.507026i \(0.169255\pi\)
0.00813215 + 0.999967i \(0.497411\pi\)
\(108\) 0 0
\(109\) 1.00000 1.73205i 0.0957826 0.165900i −0.814152 0.580651i \(-0.802798\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) 4.00000 6.92820i 0.373002 0.646058i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.00000 3.46410i −0.174741 0.302660i 0.765331 0.643637i \(-0.222575\pi\)
−0.940072 + 0.340977i \(0.889242\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.00000 + 1.73205i −0.0854358 + 0.147979i −0.905577 0.424182i \(-0.860562\pi\)
0.820141 + 0.572161i \(0.193895\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.00000 10.3923i 0.501745 0.869048i
\(144\) 0 0
\(145\) −4.00000 6.92820i −0.332182 0.575356i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) 4.00000 6.92820i 0.325515 0.563809i −0.656101 0.754673i \(-0.727796\pi\)
0.981617 + 0.190864i \(0.0611289\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.00000 12.1244i 0.558661 0.967629i −0.438948 0.898513i \(-0.644649\pi\)
0.997609 0.0691164i \(-0.0220180\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.00000 + 13.8564i 0.626608 + 1.08532i 0.988227 + 0.152992i \(0.0488907\pi\)
−0.361619 + 0.932326i \(0.617776\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.00000 0.309529 0.154765 0.987951i \(-0.450538\pi\)
0.154765 + 0.987951i \(0.450538\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.00000 13.8564i −0.608229 1.05348i −0.991532 0.129861i \(-0.958547\pi\)
0.383304 0.923622i \(-0.374786\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.00000 + 15.5885i −0.672692 + 1.16514i 0.304446 + 0.952529i \(0.401529\pi\)
−0.977138 + 0.212607i \(0.931805\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.00000 + 6.92820i −0.294086 + 0.509372i
\(186\) 0 0
\(187\) −4.00000 6.92820i −0.292509 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −9.00000 15.5885i −0.651217 1.12794i −0.982828 0.184525i \(-0.940925\pi\)
0.331611 0.943416i \(-0.392408\pi\)
\(192\) 0 0
\(193\) 5.00000 8.66025i 0.359908 0.623379i −0.628037 0.778183i \(-0.716141\pi\)
0.987945 + 0.154805i \(0.0494748\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) −8.00000 + 13.8564i −0.567105 + 0.982255i 0.429745 + 0.902950i \(0.358603\pi\)
−0.996850 + 0.0793045i \(0.974730\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.00000 −0.553372
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.00000 + 13.8564i 0.545595 + 0.944999i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000 20.7846i 0.807207 1.39812i
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0 0
\(229\) 5.00000 + 8.66025i 0.330409 + 0.572286i 0.982592 0.185776i \(-0.0594799\pi\)
−0.652183 + 0.758062i \(0.726147\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.00000 + 12.1244i 0.458585 + 0.794293i 0.998886 0.0471787i \(-0.0150230\pi\)
−0.540301 + 0.841472i \(0.681690\pi\)
\(234\) 0 0
\(235\) −24.0000 + 41.5692i −1.56559 + 2.71168i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 7.00000 12.1244i 0.450910 0.780998i −0.547533 0.836784i \(-0.684433\pi\)
0.998443 + 0.0557856i \(0.0177663\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −12.0000 20.7846i −0.763542 1.32249i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.0000 + 20.7846i 0.748539 + 1.29651i 0.948523 + 0.316709i \(0.102578\pi\)
−0.199983 + 0.979799i \(0.564089\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.00000 15.5885i 0.554964 0.961225i −0.442943 0.896550i \(-0.646065\pi\)
0.997906 0.0646755i \(-0.0206012\pi\)
\(264\) 0 0
\(265\) 24.0000 1.47431
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.0000 17.3205i 0.609711 1.05605i −0.381577 0.924337i \(-0.624619\pi\)
0.991288 0.131713i \(-0.0420477\pi\)
\(270\) 0 0
\(271\) 12.0000 + 20.7846i 0.728948 + 1.26258i 0.957328 + 0.289003i \(0.0933238\pi\)
−0.228380 + 0.973572i \(0.573343\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.0000 + 19.0526i 0.663325 + 1.14891i
\(276\) 0 0
\(277\) 11.0000 19.0526i 0.660926 1.14476i −0.319447 0.947604i \(-0.603497\pi\)
0.980373 0.197153i \(-0.0631696\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.500000 + 0.866025i 0.0294118 + 0.0509427i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) −32.0000 −1.86311
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.00000 + 10.3923i 0.346989 + 0.601003i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.0000 20.7846i 0.687118 1.19012i
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.00000 + 3.46410i −0.113410 + 0.196431i −0.917143 0.398559i \(-0.869511\pi\)
0.803733 + 0.594990i \(0.202844\pi\)
\(312\) 0 0
\(313\) 5.00000 + 8.66025i 0.282617 + 0.489506i 0.972028 0.234863i \(-0.0754642\pi\)
−0.689412 + 0.724370i \(0.742131\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.00000 + 15.5885i 0.505490 + 0.875535i 0.999980 + 0.00635137i \(0.00202172\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(318\) 0 0
\(319\) 2.00000 3.46410i 0.111979 0.193952i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −16.0000 −0.890264
\(324\) 0 0
\(325\) −33.0000 + 57.1577i −1.83051 + 3.17054i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 14.0000 + 24.2487i 0.769510 + 1.33283i 0.937829 + 0.347097i \(0.112833\pi\)
−0.168320 + 0.985732i \(0.553834\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −32.0000 −1.74835
\(336\) 0 0
\(337\) −6.00000 −0.326841 −0.163420 0.986557i \(-0.552253\pi\)
−0.163420 + 0.986557i \(0.552253\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.00000 5.19615i 0.161048 0.278944i −0.774197 0.632945i \(-0.781846\pi\)
0.935245 + 0.354001i \(0.115179\pi\)
\(348\) 0 0
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.00000 + 10.3923i −0.319348 + 0.553127i −0.980352 0.197256i \(-0.936797\pi\)
0.661004 + 0.750382i \(0.270130\pi\)
\(354\) 0 0
\(355\) 28.0000 + 48.4974i 1.48609 + 2.57398i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.00000 1.73205i −0.0527780 0.0914141i 0.838429 0.545010i \(-0.183474\pi\)
−0.891207 + 0.453596i \(0.850141\pi\)
\(360\) 0 0
\(361\) 1.50000 2.59808i 0.0789474 0.136741i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.00000 0.418739
\(366\) 0 0
\(367\) −8.00000 + 13.8564i −0.417597 + 0.723299i −0.995697 0.0926670i \(-0.970461\pi\)
0.578101 + 0.815966i \(0.303794\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i \(-0.973781\pi\)
0.427051 0.904227i \(-0.359552\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.00000 6.92820i −0.204390 0.354015i 0.745548 0.666452i \(-0.232188\pi\)
−0.949938 + 0.312437i \(0.898855\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.0000 19.0526i 0.557722 0.966003i −0.439964 0.898015i \(-0.645009\pi\)
0.997686 0.0679877i \(-0.0216579\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −24.0000 + 41.5692i −1.20757 + 2.09157i
\(396\) 0 0
\(397\) −9.00000 15.5885i −0.451697 0.782362i 0.546795 0.837267i \(-0.315848\pi\)
−0.998492 + 0.0549046i \(0.982515\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.00000 15.5885i −0.449439 0.778450i 0.548911 0.835881i \(-0.315043\pi\)
−0.998350 + 0.0574304i \(0.981709\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.00000 −0.198273
\(408\) 0 0
\(409\) 19.0000 32.9090i 0.939490 1.62724i 0.173064 0.984911i \(-0.444633\pi\)
0.766426 0.642333i \(-0.222033\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 8.00000 + 13.8564i 0.392705 + 0.680184i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 22.0000 + 38.1051i 1.06716 + 1.84837i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.0000 25.9808i 0.722525 1.25145i −0.237460 0.971397i \(-0.576315\pi\)
0.959985 0.280052i \(-0.0903517\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.00000 6.92820i 0.191346 0.331421i
\(438\) 0 0
\(439\) −12.0000 20.7846i −0.572729 0.991995i −0.996284 0.0861252i \(-0.972552\pi\)
0.423556 0.905870i \(-0.360782\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 19.0000 + 32.9090i 0.902717 + 1.56355i 0.823952 + 0.566659i \(0.191764\pi\)
0.0787648 + 0.996893i \(0.474902\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.00000 8.66025i −0.233890 0.405110i 0.725059 0.688686i \(-0.241812\pi\)
−0.958950 + 0.283577i \(0.908479\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 40.0000 1.86299 0.931493 0.363760i \(-0.118507\pi\)
0.931493 + 0.363760i \(0.118507\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.00000 + 6.92820i 0.185098 + 0.320599i 0.943610 0.331061i \(-0.107406\pi\)
−0.758512 + 0.651660i \(0.774073\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.00000 + 6.92820i −0.183920 + 0.318559i
\(474\) 0 0
\(475\) 44.0000 2.01886
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.0000 24.2487i 0.639676 1.10795i −0.345827 0.938298i \(-0.612402\pi\)
0.985504 0.169654i \(-0.0542649\pi\)
\(480\) 0 0
\(481\) −6.00000 10.3923i −0.273576 0.473848i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.00000 6.92820i −0.181631 0.314594i
\(486\) 0 0
\(487\) 8.00000 13.8564i 0.362515 0.627894i −0.625859 0.779936i \(-0.715252\pi\)
0.988374 + 0.152042i \(0.0485850\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 42.0000 1.89543 0.947717 0.319113i \(-0.103385\pi\)
0.947717 + 0.319113i \(0.103385\pi\)
\(492\) 0 0
\(493\) 4.00000 6.92820i 0.180151 0.312031i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 10.0000 + 17.3205i 0.447661 + 0.775372i 0.998233 0.0594153i \(-0.0189236\pi\)
−0.550572 + 0.834788i \(0.685590\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 64.0000 2.84796
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 18.0000 + 31.1769i 0.797836 + 1.38189i 0.921023 + 0.389509i \(0.127355\pi\)
−0.123187 + 0.992384i \(0.539311\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −32.0000 + 55.4256i −1.41009 + 2.44234i
\(516\) 0 0
\(517\) −24.0000 −1.05552
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.00000 + 10.3923i −0.262865 + 0.455295i −0.967002 0.254769i \(-0.918001\pi\)
0.704137 + 0.710064i \(0.251334\pi\)
\(522\) 0 0
\(523\) −14.0000 24.2487i −0.612177 1.06032i −0.990873 0.134801i \(-0.956961\pi\)
0.378695 0.925521i \(-0.376373\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 9.50000 16.4545i 0.413043 0.715412i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 36.0000 62.3538i 1.55642 2.69579i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 15.0000 + 25.9808i 0.644900 + 1.11700i 0.984325 + 0.176367i \(0.0564345\pi\)
−0.339424 + 0.940633i \(0.610232\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.00000 −0.342682
\(546\) 0 0
\(547\) 24.0000 1.02617 0.513083 0.858339i \(-0.328503\pi\)
0.513083 + 0.858339i \(0.328503\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.00000 6.92820i −0.170406 0.295151i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −19.0000 + 32.9090i −0.805056 + 1.39440i 0.111198 + 0.993798i \(0.464531\pi\)
−0.916253 + 0.400599i \(0.868802\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.00000 + 6.92820i −0.168580 + 0.291989i −0.937921 0.346850i \(-0.887251\pi\)
0.769341 + 0.638838i \(0.220585\pi\)
\(564\) 0 0
\(565\) 20.0000 + 34.6410i 0.841406 + 1.45736i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.0000 + 25.9808i 0.628833 + 1.08917i 0.987786 + 0.155815i \(0.0498003\pi\)
−0.358954 + 0.933355i \(0.616866\pi\)
\(570\) 0 0
\(571\) 12.0000 20.7846i 0.502184 0.869809i −0.497812 0.867285i \(-0.665863\pi\)
0.999997 0.00252413i \(-0.000803457\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −22.0000 −0.917463
\(576\) 0 0
\(577\) −19.0000 + 32.9090i −0.790980 + 1.37002i 0.134380 + 0.990930i \(0.457096\pi\)
−0.925361 + 0.379088i \(0.876238\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 6.00000 + 10.3923i 0.248495 + 0.430405i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 32.0000 1.32078 0.660391 0.750922i \(-0.270391\pi\)
0.660391 + 0.750922i \(0.270391\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.00000 10.3923i −0.246390 0.426761i 0.716131 0.697966i \(-0.245911\pi\)
−0.962522 + 0.271205i \(0.912578\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.00000 5.19615i 0.122577 0.212309i −0.798206 0.602384i \(-0.794218\pi\)
0.920783 + 0.390075i \(0.127551\pi\)
\(600\) 0 0
\(601\) 46.0000 1.87638 0.938190 0.346122i \(-0.112502\pi\)
0.938190 + 0.346122i \(0.112502\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 14.0000 24.2487i 0.569181 0.985850i
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −36.0000 62.3538i −1.45640 2.52257i
\(612\) 0 0
\(613\) −3.00000 + 5.19615i −0.121169 + 0.209871i −0.920229 0.391381i \(-0.871998\pi\)
0.799060 + 0.601251i \(0.205331\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −38.0000 −1.52982 −0.764911 0.644136i \(-0.777217\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 0 0
\(619\) −10.0000 + 17.3205i −0.401934 + 0.696170i −0.993959 0.109749i \(-0.964995\pi\)
0.592025 + 0.805919i \(0.298329\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.5000 35.5070i −0.820000 1.42028i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −24.0000 41.5692i −0.952411 1.64962i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.00000 + 8.66025i −0.197488 + 0.342059i −0.947713 0.319123i \(-0.896612\pi\)
0.750225 + 0.661182i \(0.229945\pi\)
\(642\) 0 0
\(643\) −44.0000 −1.73519 −0.867595 0.497271i \(-0.834335\pi\)
−0.867595 + 0.497271i \(0.834335\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.00000 + 10.3923i −0.235884 + 0.408564i −0.959529 0.281609i \(-0.909132\pi\)
0.723645 + 0.690172i \(0.242465\pi\)
\(648\) 0 0
\(649\) −8.00000 13.8564i −0.314027 0.543912i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.00000 + 5.19615i 0.117399 + 0.203341i 0.918736 0.394872i \(-0.129211\pi\)
−0.801337 + 0.598213i \(0.795878\pi\)
\(654\) 0 0
\(655\) −8.00000 + 13.8564i −0.312586 + 0.541415i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.00000 −0.0779089 −0.0389545 0.999241i \(-0.512403\pi\)
−0.0389545 + 0.999241i \(0.512403\pi\)
\(660\) 0 0
\(661\) 11.0000 19.0526i 0.427850 0.741059i −0.568831 0.822454i \(-0.692604\pi\)
0.996682 + 0.0813955i \(0.0259377\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.00000 + 3.46410i 0.0774403 + 0.134131i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) −34.0000 −1.31060 −0.655302 0.755367i \(-0.727459\pi\)
−0.655302 + 0.755367i \(0.727459\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.0000 + 20.7846i 0.461197 + 0.798817i 0.999021 0.0442400i \(-0.0140866\pi\)
−0.537823 + 0.843057i \(0.680753\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15.0000 25.9808i 0.573959 0.994126i −0.422195 0.906505i \(-0.638740\pi\)
0.996154 0.0876211i \(-0.0279265\pi\)
\(684\) 0 0
\(685\) 8.00000 0.305664
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −18.0000 + 31.1769i −0.685745 + 1.18775i
\(690\) 0 0
\(691\) −14.0000 24.2487i −0.532585 0.922464i −0.999276 0.0380440i \(-0.987887\pi\)
0.466691 0.884420i \(-0.345446\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.00000 + 13.8564i 0.303457 + 0.525603i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 50.0000 1.88847 0.944237 0.329267i \(-0.106802\pi\)
0.944237 + 0.329267i \(0.106802\pi\)
\(702\) 0 0
\(703\) −4.00000 + 6.92820i −0.150863 + 0.261302i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −19.0000 32.9090i −0.713560 1.23592i −0.963512 0.267664i \(-0.913748\pi\)
0.249952 0.968258i \(-0.419585\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −48.0000 −1.79510
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −11.0000 + 19.0526i −0.408530 + 0.707594i
\(726\) 0 0
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.00000 + 13.8564i −0.295891 + 0.512498i
\(732\) 0 0
\(733\) −3.00000 5.19615i −0.110808 0.191924i 0.805289 0.592883i \(-0.202010\pi\)
−0.916096 + 0.400959i \(0.868677\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 13.8564i −0.294684 0.510407i
\(738\) 0 0
\(739\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −30.0000 −1.10059 −0.550297 0.834969i \(-0.685485\pi\)
−0.550297 + 0.834969i \(0.685485\pi\)
\(744\) 0 0
\(745\) −12.0000 + 20.7846i −0.439646 + 0.761489i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −32.0000 −1.16460
\(756\) 0 0
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −16.0000 27.7128i −0.580000 1.00459i −0.995479 0.0949859i \(-0.969719\pi\)
0.415479 0.909603i \(-0.363614\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24.0000 41.5692i 0.866590 1.50098i
\(768\) 0 0
\(769\) 38.0000 1.37032 0.685158 0.728395i \(-0.259733\pi\)
0.685158 + 0.728395i \(0.259733\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.00000 6.92820i 0.143870 0.249190i −0.785081 0.619393i \(-0.787379\pi\)
0.928951 + 0.370203i \(0.120712\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −14.0000 + 24.2487i −0.500959 + 0.867687i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −56.0000 −1.99873
\(786\) 0 0
\(787\) −6.00000 + 10.3923i −0.213877 + 0.370446i −0.952925 0.303207i \(-0.901942\pi\)
0.739048 + 0.673653i \(0.235276\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 18.0000 + 31.1769i 0.639199 + 1.10712i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) −48.0000 −1.69812
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.00000 + 3.46410i 0.0705785 + 0.122245i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.00000 8.66025i 0.175791 0.304478i −0.764644 0.644453i \(-0.777085\pi\)
0.940435 + 0.339975i \(0.110418\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 32.0000 55.4256i 1.12091 1.94147i
\(816\) 0 0
\(817\) 8.00000 + 13.8564i 0.279885 + 0.484774i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.00000 + 1.73205i 0.0349002 + 0.0604490i 0.882948 0.469471i \(-0.155555\pi\)
−0.848048 + 0.529920i \(0.822222\pi\)
\(822\) 0 0
\(823\) 10.0000 17.3205i 0.348578 0.603755i −0.637419 0.770517i \(-0.719998\pi\)
0.985997 + 0.166762i \(0.0533313\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.0000 −0.625921 −0.312961 0.949766i \(-0.601321\pi\)
−0.312961 + 0.949766i \(0.601321\pi\)
\(828\) 0 0
\(829\) −7.00000 + 12.1244i −0.243120 + 0.421096i −0.961601 0.274450i \(-0.911504\pi\)
0.718481 + 0.695546i \(0.244838\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −8.00000 13.8564i −0.276851 0.479521i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 44.0000 1.51905 0.759524 0.650479i \(-0.225432\pi\)
0.759524 + 0.650479i \(0.225432\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −46.0000 79.6743i −1.58245 2.74088i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.00000 3.46410i 0.0685591 0.118748i
\(852\) 0 0
\(853\) −14.0000 −0.479351 −0.239675 0.970853i \(-0.577041\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24.0000 41.5692i 0.819824 1.41998i −0.0859870 0.996296i \(-0.527404\pi\)
0.905811 0.423681i \(-0.139262\pi\)
\(858\) 0 0
\(859\) 22.0000 + 38.1051i 0.750630 + 1.30013i 0.947518 + 0.319704i \(0.103583\pi\)
−0.196887 + 0.980426i \(0.563083\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −7.00000 12.1244i −0.238283 0.412718i 0.721939 0.691957i \(-0.243251\pi\)
−0.960222 + 0.279239i \(0.909918\pi\)
\(864\) 0 0
\(865\) −32.0000 + 55.4256i −1.08803 + 1.88453i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) 24.0000 41.5692i 0.813209 1.40852i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −23.0000 39.8372i −0.776655 1.34521i −0.933860 0.357640i \(-0.883582\pi\)
0.157205 0.987566i \(-0.449752\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 36.0000 1.21287 0.606435 0.795133i \(-0.292599\pi\)
0.606435 + 0.795133i \(0.292599\pi\)
\(882\) 0 0
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.00000 + 10.3923i 0.201460 + 0.348939i 0.948999 0.315279i \(-0.102098\pi\)
−0.747539 + 0.664218i \(0.768765\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −24.0000 + 41.5692i −0.803129 + 1.39106i
\(894\) 0 0
\(895\) 72.0000 2.40669
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 12.0000 + 20.7846i 0.399778 + 0.692436i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.0000 20.7846i −0.398893 0.690904i
\(906\) 0 0
\(907\) −6.00000 + 10.3923i −0.199227 + 0.345071i −0.948278 0.317441i \(-0.897176\pi\)
0.749051 + 0.662512i \(0.230510\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 18.0000 0.596367 0.298183 0.954509i \(-0.403619\pi\)
0.298183 + 0.954509i \(0.403619\pi\)
\(912\) 0 0
\(913\) −4.00000 + 6.92820i −0.132381 + 0.229290i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −8.00000 13.8564i −0.263896 0.457081i 0.703378 0.710816i \(-0.251674\pi\)
−0.967274 + 0.253735i \(0.918341\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −84.0000 −2.76489
\(924\) 0 0
\(925\) 22.0000 0.723356
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −24.0000 41.5692i −0.787414 1.36384i −0.927546 0.373709i \(-0.878086\pi\)
0.140132 0.990133i \(-0.455247\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −16.0000 + 27.7128i −0.523256 + 0.906306i
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −14.0000 + 24.2487i −0.456387 + 0.790485i −0.998767 0.0496480i \(-0.984190\pi\)
0.542380 + 0.840133i \(0.317523\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.00000 + 8.66025i 0.162478 + 0.281420i 0.935757 0.352646i \(-0.114718\pi\)
−0.773279 + 0.634066i \(0.781385\pi\)
\(948\) 0 0
\(949\) −6.00000 + 10.3923i −0.194768 + 0.337348i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) 0 0
\(955\) −36.0000 + 62.3538i −1.16493 + 2.01772i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 15.5000 + 26.8468i 0.500000 + 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −40.0000 −1.28765
\(966\) 0 0
\(967\) 20.0000 0.643157 0.321578 0.946883i \(-0.395787\pi\)
0.321578 + 0.946883i \(0.395787\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.0000 31.1769i −0.577647 1.00051i −0.995748 0.0921142i \(-0.970638\pi\)
0.418101 0.908401i \(-0.362696\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 15.0000 25.9808i 0.479893 0.831198i −0.519841 0.854263i \(-0.674009\pi\)
0.999734 + 0.0230645i \(0.00734232\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 24.0000 41.5692i 0.765481 1.32585i −0.174511 0.984655i \(-0.555834\pi\)
0.939992 0.341197i \(-0.110832\pi\)
\(984\) 0 0
\(985\) −44.0000 76.2102i −1.40196 2.42826i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.00000 6.92820i −0.127193 0.220304i
\(990\) 0 0
\(991\) −28.0000 + 48.4974i −0.889449 + 1.54057i −0.0489218 + 0.998803i \(0.515578\pi\)
−0.840528 + 0.541769i \(0.817755\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 64.0000 2.02894
\(996\) 0 0
\(997\) 19.0000 32.9090i 0.601736 1.04224i −0.390822 0.920466i \(-0.627809\pi\)
0.992558 0.121771i \(-0.0388574\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.k.a.361.1 2
3.2 odd 2 588.2.i.d.361.1 2
7.2 even 3 inner 1764.2.k.a.1549.1 2
7.3 odd 6 252.2.a.a.1.1 1
7.4 even 3 1764.2.a.k.1.1 1
7.5 odd 6 1764.2.k.k.1549.1 2
7.6 odd 2 1764.2.k.k.361.1 2
12.11 even 2 2352.2.q.z.1537.1 2
21.2 odd 6 588.2.i.d.373.1 2
21.5 even 6 588.2.i.e.373.1 2
21.11 odd 6 588.2.a.d.1.1 1
21.17 even 6 84.2.a.a.1.1 1
21.20 even 2 588.2.i.e.361.1 2
28.3 even 6 1008.2.a.a.1.1 1
28.11 odd 6 7056.2.a.cd.1.1 1
35.3 even 12 6300.2.k.g.6049.2 2
35.17 even 12 6300.2.k.g.6049.1 2
35.24 odd 6 6300.2.a.w.1.1 1
56.3 even 6 4032.2.a.bn.1.1 1
56.45 odd 6 4032.2.a.bm.1.1 1
63.31 odd 6 2268.2.j.n.1513.1 2
63.38 even 6 2268.2.j.a.757.1 2
63.52 odd 6 2268.2.j.n.757.1 2
63.59 even 6 2268.2.j.a.1513.1 2
84.11 even 6 2352.2.a.a.1.1 1
84.23 even 6 2352.2.q.z.961.1 2
84.47 odd 6 2352.2.q.b.961.1 2
84.59 odd 6 336.2.a.f.1.1 1
84.83 odd 2 2352.2.q.b.1537.1 2
105.17 odd 12 2100.2.k.i.1849.2 2
105.38 odd 12 2100.2.k.i.1849.1 2
105.59 even 6 2100.2.a.r.1.1 1
168.11 even 6 9408.2.a.df.1.1 1
168.53 odd 6 9408.2.a.bn.1.1 1
168.59 odd 6 1344.2.a.a.1.1 1
168.101 even 6 1344.2.a.k.1.1 1
336.59 odd 12 5376.2.c.p.2689.1 2
336.101 even 12 5376.2.c.q.2689.2 2
336.227 odd 12 5376.2.c.p.2689.2 2
336.269 even 12 5376.2.c.q.2689.1 2
420.59 odd 6 8400.2.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.a.a.1.1 1 21.17 even 6
252.2.a.a.1.1 1 7.3 odd 6
336.2.a.f.1.1 1 84.59 odd 6
588.2.a.d.1.1 1 21.11 odd 6
588.2.i.d.361.1 2 3.2 odd 2
588.2.i.d.373.1 2 21.2 odd 6
588.2.i.e.361.1 2 21.20 even 2
588.2.i.e.373.1 2 21.5 even 6
1008.2.a.a.1.1 1 28.3 even 6
1344.2.a.a.1.1 1 168.59 odd 6
1344.2.a.k.1.1 1 168.101 even 6
1764.2.a.k.1.1 1 7.4 even 3
1764.2.k.a.361.1 2 1.1 even 1 trivial
1764.2.k.a.1549.1 2 7.2 even 3 inner
1764.2.k.k.361.1 2 7.6 odd 2
1764.2.k.k.1549.1 2 7.5 odd 6
2100.2.a.r.1.1 1 105.59 even 6
2100.2.k.i.1849.1 2 105.38 odd 12
2100.2.k.i.1849.2 2 105.17 odd 12
2268.2.j.a.757.1 2 63.38 even 6
2268.2.j.a.1513.1 2 63.59 even 6
2268.2.j.n.757.1 2 63.52 odd 6
2268.2.j.n.1513.1 2 63.31 odd 6
2352.2.a.a.1.1 1 84.11 even 6
2352.2.q.b.961.1 2 84.47 odd 6
2352.2.q.b.1537.1 2 84.83 odd 2
2352.2.q.z.961.1 2 84.23 even 6
2352.2.q.z.1537.1 2 12.11 even 2
4032.2.a.bm.1.1 1 56.45 odd 6
4032.2.a.bn.1.1 1 56.3 even 6
5376.2.c.p.2689.1 2 336.59 odd 12
5376.2.c.p.2689.2 2 336.227 odd 12
5376.2.c.q.2689.1 2 336.269 even 12
5376.2.c.q.2689.2 2 336.101 even 12
6300.2.a.w.1.1 1 35.24 odd 6
6300.2.k.g.6049.1 2 35.17 even 12
6300.2.k.g.6049.2 2 35.3 even 12
7056.2.a.cd.1.1 1 28.11 odd 6
8400.2.a.e.1.1 1 420.59 odd 6
9408.2.a.bn.1.1 1 168.53 odd 6
9408.2.a.df.1.1 1 168.11 even 6