Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6300,2,Mod(6049,6300)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6300, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6300.6049");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6300.k (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(50.3057532734\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 84) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 6049.1 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 6300.6049 |
Dual form | 6300.2.k.g.6049.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times\).
\(n\) | \(2801\) | \(3151\) | \(3277\) | \(3601\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 1.00000i | − 0.377964i | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −2.00000 | −0.603023 | −0.301511 | − | 0.953463i | \(-0.597491\pi\) | ||||
−0.301511 | + | 0.953463i | \(0.597491\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 6.00000i | 1.66410i | 0.554700 | + | 0.832050i | \(0.312833\pi\) | ||||
−0.554700 | + | 0.832050i | \(0.687167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 4.00000i | 0.970143i | 0.874475 | + | 0.485071i | \(0.161206\pi\) | ||||
−0.874475 | + | 0.485071i | \(0.838794\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 2.00000i | 0.417029i | 0.978019 | + | 0.208514i | \(0.0668628\pi\) | ||||
−0.978019 | + | 0.208514i | \(0.933137\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −2.00000 | −0.371391 | −0.185695 | − | 0.982607i | \(-0.559454\pi\) | ||||
−0.185695 | + | 0.982607i | \(0.559454\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.00000i | 0.328798i | 0.986394 | + | 0.164399i | \(0.0525685\pi\) | ||||
−0.986394 | + | 0.164399i | \(0.947432\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.00000i | 0.609994i | 0.952353 | + | 0.304997i | \(0.0986555\pi\) | ||||
−0.952353 | + | 0.304997i | \(0.901344\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 12.0000i | − 1.75038i | −0.483779 | − | 0.875190i | \(-0.660736\pi\) | ||||
0.483779 | − | 0.875190i | \(-0.339264\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −1.00000 | −0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 6.00000i | − 0.824163i | −0.911147 | − | 0.412082i | \(-0.864802\pi\) | ||||
0.911147 | − | 0.412082i | \(-0.135198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −8.00000 | −1.04151 | −0.520756 | − | 0.853706i | \(-0.674350\pi\) | ||||
−0.520756 | + | 0.853706i | \(0.674350\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 6.00000 | 0.768221 | 0.384111 | − | 0.923287i | \(-0.374508\pi\) | ||||
0.384111 | + | 0.923287i | \(0.374508\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 8.00000i | − 0.977356i | −0.872464 | − | 0.488678i | \(-0.837479\pi\) | ||||
0.872464 | − | 0.488678i | \(-0.162521\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −14.0000 | −1.66149 | −0.830747 | − | 0.556650i | \(-0.812086\pi\) | ||||
−0.830747 | + | 0.556650i | \(0.812086\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000i | 0.234082i | 0.993127 | + | 0.117041i | \(0.0373409\pi\) | ||||
−0.993127 | + | 0.117041i | \(0.962659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 2.00000i | 0.227921i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −12.0000 | −1.35011 | −0.675053 | − | 0.737769i | \(-0.735879\pi\) | ||||
−0.675053 | + | 0.737769i | \(0.735879\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 4.00000i | − 0.439057i | −0.975606 | − | 0.219529i | \(-0.929548\pi\) | ||||
0.975606 | − | 0.219529i | \(-0.0704519\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 6.00000 | 0.628971 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 2.00000i | − 0.203069i | −0.994832 | − | 0.101535i | \(-0.967625\pi\) | ||||
0.994832 | − | 0.101535i | \(-0.0323753\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −16.0000 | −1.59206 | −0.796030 | − | 0.605257i | \(-0.793070\pi\) | ||||
−0.796030 | + | 0.605257i | \(0.793070\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 16.0000i | 1.57653i | 0.615338 | + | 0.788263i | \(0.289020\pi\) | ||||
−0.615338 | + | 0.788263i | \(0.710980\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 18.0000i | − 1.74013i | −0.492941 | − | 0.870063i | \(-0.664078\pi\) | ||||
0.492941 | − | 0.870063i | \(-0.335922\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 2.00000 | 0.191565 | 0.0957826 | − | 0.995402i | \(-0.469465\pi\) | ||||
0.0957826 | + | 0.995402i | \(0.469465\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 10.0000i | 0.940721i | 0.882474 | + | 0.470360i | \(0.155876\pi\) | ||||
−0.882474 | + | 0.470360i | \(0.844124\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 4.00000 | 0.366679 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −7.00000 | −0.636364 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 12.0000i | 1.06483i | 0.846484 | + | 0.532414i | \(0.178715\pi\) | ||||
−0.846484 | + | 0.532414i | \(0.821285\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −4.00000 | −0.349482 | −0.174741 | − | 0.984614i | \(-0.555909\pi\) | ||||
−0.174741 | + | 0.984614i | \(0.555909\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 4.00000i | − 0.346844i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 2.00000i | 0.170872i | 0.996344 | + | 0.0854358i | \(0.0272282\pi\) | ||||
−0.996344 | + | 0.0854358i | \(0.972772\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −4.00000 | −0.339276 | −0.169638 | − | 0.985506i | \(-0.554260\pi\) | ||||
−0.169638 | + | 0.985506i | \(0.554260\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 12.0000i | − 1.00349i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −6.00000 | −0.491539 | −0.245770 | − | 0.969328i | \(-0.579041\pi\) | ||||
−0.245770 | + | 0.969328i | \(0.579041\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −8.00000 | −0.651031 | −0.325515 | − | 0.945537i | \(-0.605538\pi\) | ||||
−0.325515 | + | 0.945537i | \(0.605538\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 14.0000i | 1.11732i | 0.829396 | + | 0.558661i | \(0.188685\pi\) | ||||
−0.829396 | + | 0.558661i | \(0.811315\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 2.00000 | 0.157622 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 16.0000i | 1.25322i | 0.779334 | + | 0.626608i | \(0.215557\pi\) | ||||
−0.779334 | + | 0.626608i | \(0.784443\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 4.00000i | − 0.309529i | −0.987951 | − | 0.154765i | \(-0.950538\pi\) | ||||
0.987951 | − | 0.154765i | \(-0.0494619\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −23.0000 | −1.76923 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 16.0000i | 1.21646i | 0.793762 | + | 0.608229i | \(0.208120\pi\) | ||||
−0.793762 | + | 0.608229i | \(0.791880\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −18.0000 | −1.34538 | −0.672692 | − | 0.739923i | \(-0.734862\pi\) | ||||
−0.672692 | + | 0.739923i | \(0.734862\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −6.00000 | −0.445976 | −0.222988 | − | 0.974821i | \(-0.571581\pi\) | ||||
−0.222988 | + | 0.974821i | \(0.571581\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 8.00000i | − 0.585018i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 18.0000 | 1.30243 | 0.651217 | − | 0.758891i | \(-0.274259\pi\) | ||||
0.651217 | + | 0.758891i | \(0.274259\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 10.0000i | 0.719816i | 0.932988 | + | 0.359908i | \(0.117192\pi\) | ||||
−0.932988 | + | 0.359908i | \(0.882808\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 22.0000i | 1.56744i | 0.621117 | + | 0.783718i | \(0.286679\pi\) | ||||
−0.621117 | + | 0.783718i | \(0.713321\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 16.0000 | 1.13421 | 0.567105 | − | 0.823646i | \(-0.308063\pi\) | ||||
0.567105 | + | 0.823646i | \(0.308063\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 2.00000i | 0.140372i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −8.00000 | −0.553372 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −4.00000 | −0.275371 | −0.137686 | − | 0.990476i | \(-0.543966\pi\) | ||||
−0.137686 | + | 0.990476i | \(0.543966\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −24.0000 | −1.61441 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 8.00000i | − 0.535720i | −0.963458 | − | 0.267860i | \(-0.913684\pi\) | ||||
0.963458 | − | 0.267860i | \(-0.0863164\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −10.0000 | −0.660819 | −0.330409 | − | 0.943838i | \(-0.607187\pi\) | ||||
−0.330409 | + | 0.943838i | \(0.607187\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 14.0000i | 0.917170i | 0.888650 | + | 0.458585i | \(0.151644\pi\) | ||||
−0.888650 | + | 0.458585i | \(0.848356\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −6.00000 | −0.388108 | −0.194054 | − | 0.980991i | \(-0.562164\pi\) | ||||
−0.194054 | + | 0.980991i | \(0.562164\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 14.0000 | 0.901819 | 0.450910 | − | 0.892570i | \(-0.351100\pi\) | ||||
0.450910 | + | 0.892570i | \(0.351100\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 24.0000i | 1.52708i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 24.0000 | 1.51487 | 0.757433 | − | 0.652913i | \(-0.226453\pi\) | ||||
0.757433 | + | 0.652913i | \(0.226453\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 4.00000i | − 0.251478i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 24.0000i | 1.49708i | 0.663090 | + | 0.748539i | \(0.269245\pi\) | ||||
−0.663090 | + | 0.748539i | \(0.730755\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 2.00000 | 0.124274 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 18.0000i | 1.10993i | 0.831875 | + | 0.554964i | \(0.187268\pi\) | ||||
−0.831875 | + | 0.554964i | \(0.812732\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −20.0000 | −1.21942 | −0.609711 | − | 0.792624i | \(-0.708714\pi\) | ||||
−0.609711 | + | 0.792624i | \(0.708714\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 24.0000 | 1.45790 | 0.728948 | − | 0.684569i | \(-0.240010\pi\) | ||||
0.728948 | + | 0.684569i | \(0.240010\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 22.0000i | − 1.32185i | −0.750451 | − | 0.660926i | \(-0.770164\pi\) | ||||
0.750451 | − | 0.660926i | \(-0.229836\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 10.0000 | 0.596550 | 0.298275 | − | 0.954480i | \(-0.403589\pi\) | ||||
0.298275 | + | 0.954480i | \(0.403589\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 4.00000i | − 0.237775i | −0.992908 | − | 0.118888i | \(-0.962067\pi\) | ||||
0.992908 | − | 0.118888i | \(-0.0379328\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 1.00000 | 0.0588235 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −12.0000 | −0.693978 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 4.00000 | 0.230556 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 4.00000i | 0.228292i | 0.993464 | + | 0.114146i | \(0.0364132\pi\) | ||||
−0.993464 | + | 0.114146i | \(0.963587\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −4.00000 | −0.226819 | −0.113410 | − | 0.993548i | \(-0.536177\pi\) | ||||
−0.113410 | + | 0.993548i | \(0.536177\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 10.0000i | − 0.565233i | −0.959233 | − | 0.282617i | \(-0.908798\pi\) | ||||
0.959233 | − | 0.282617i | \(-0.0912024\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 18.0000i | − 1.01098i | −0.862832 | − | 0.505490i | \(-0.831312\pi\) | ||||
0.862832 | − | 0.505490i | \(-0.168688\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 4.00000 | 0.223957 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 16.0000i | 0.890264i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −12.0000 | −0.661581 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −28.0000 | −1.53902 | −0.769510 | − | 0.638635i | \(-0.779499\pi\) | ||||
−0.769510 | + | 0.638635i | \(0.779499\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 6.00000i | − 0.326841i | −0.986557 | − | 0.163420i | \(-0.947747\pi\) | ||||
0.986557 | − | 0.163420i | \(-0.0522527\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 1.00000i | 0.0539949i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 6.00000i | − 0.322097i | −0.986947 | − | 0.161048i | \(-0.948512\pi\) | ||||
0.986947 | − | 0.161048i | \(-0.0514875\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −22.0000 | −1.17763 | −0.588817 | − | 0.808267i | \(-0.700406\pi\) | ||||
−0.588817 | + | 0.808267i | \(0.700406\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 12.0000i | 0.638696i | 0.947638 | + | 0.319348i | \(0.103464\pi\) | ||||
−0.947638 | + | 0.319348i | \(0.896536\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −2.00000 | −0.105556 | −0.0527780 | − | 0.998606i | \(-0.516808\pi\) | ||||
−0.0527780 | + | 0.998606i | \(0.516808\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 16.0000i | − 0.835193i | −0.908633 | − | 0.417597i | \(-0.862873\pi\) | ||||
0.908633 | − | 0.417597i | \(-0.137127\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −6.00000 | −0.311504 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 22.0000i | − 1.13912i | −0.821951 | − | 0.569558i | \(-0.807114\pi\) | ||||
0.821951 | − | 0.569558i | \(-0.192886\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 12.0000i | − 0.618031i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −4.00000 | −0.205466 | −0.102733 | − | 0.994709i | \(-0.532759\pi\) | ||||
−0.102733 | + | 0.994709i | \(0.532759\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 8.00000i | 0.408781i | 0.978889 | + | 0.204390i | \(0.0655212\pi\) | ||||
−0.978889 | + | 0.204390i | \(0.934479\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 22.0000 | 1.11544 | 0.557722 | − | 0.830028i | \(-0.311675\pi\) | ||||
0.557722 | + | 0.830028i | \(0.311675\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −8.00000 | −0.404577 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 18.0000i | − 0.903394i | −0.892171 | − | 0.451697i | \(-0.850819\pi\) | ||||
0.892171 | − | 0.451697i | \(-0.149181\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 18.0000 | 0.898877 | 0.449439 | − | 0.893311i | \(-0.351624\pi\) | ||||
0.449439 | + | 0.893311i | \(0.351624\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 4.00000i | − 0.198273i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −38.0000 | −1.87898 | −0.939490 | − | 0.342578i | \(-0.888700\pi\) | ||||
−0.939490 | + | 0.342578i | \(0.888700\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 8.00000i | 0.393654i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −6.00000 | −0.292422 | −0.146211 | − | 0.989253i | \(-0.546708\pi\) | ||||
−0.146211 | + | 0.989253i | \(0.546708\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 6.00000i | − 0.290360i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −30.0000 | −1.44505 | −0.722525 | − | 0.691345i | \(-0.757018\pi\) | ||||
−0.722525 | + | 0.691345i | \(0.757018\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 26.0000i | − 1.24948i | −0.780833 | − | 0.624740i | \(-0.785205\pi\) | ||||
0.780833 | − | 0.624740i | \(-0.214795\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 8.00000i | 0.382692i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 24.0000 | 1.14546 | 0.572729 | − | 0.819745i | \(-0.305885\pi\) | ||||
0.572729 | + | 0.819745i | \(0.305885\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 38.0000i | 1.80543i | 0.430234 | + | 0.902717i | \(0.358431\pi\) | ||||
−0.430234 | + | 0.902717i | \(0.641569\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −14.0000 | −0.660701 | −0.330350 | − | 0.943858i | \(-0.607167\pi\) | ||||
−0.330350 | + | 0.943858i | \(0.607167\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 10.0000i | 0.467780i | 0.972263 | + | 0.233890i | \(0.0751456\pi\) | ||||
−0.972263 | + | 0.233890i | \(0.924854\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −40.0000 | −1.86299 | −0.931493 | − | 0.363760i | \(-0.881493\pi\) | ||||
−0.931493 | + | 0.363760i | \(0.881493\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 4.00000i | − 0.185896i | −0.995671 | − | 0.0929479i | \(-0.970371\pi\) | ||||
0.995671 | − | 0.0929479i | \(-0.0296290\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 8.00000i | 0.370196i | 0.982720 | + | 0.185098i | \(0.0592602\pi\) | ||||
−0.982720 | + | 0.185098i | \(0.940740\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −8.00000 | −0.369406 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 8.00000i | − 0.367840i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −28.0000 | −1.27935 | −0.639676 | − | 0.768644i | \(-0.720932\pi\) | ||||
−0.639676 | + | 0.768644i | \(0.720932\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −12.0000 | −0.547153 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 16.0000i | − 0.725029i | −0.931978 | − | 0.362515i | \(-0.881918\pi\) | ||||
0.931978 | − | 0.362515i | \(-0.118082\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 42.0000 | 1.89543 | 0.947717 | − | 0.319113i | \(-0.103385\pi\) | ||||
0.947717 | + | 0.319113i | \(0.103385\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 8.00000i | − 0.360302i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 14.0000i | 0.627986i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 20.0000 | 0.895323 | 0.447661 | − | 0.894203i | \(-0.352257\pi\) | ||||
0.447661 | + | 0.894203i | \(0.352257\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 24.0000i | − 1.07011i | −0.844818 | − | 0.535054i | \(-0.820291\pi\) | ||||
0.844818 | − | 0.535054i | \(-0.179709\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −36.0000 | −1.59567 | −0.797836 | − | 0.602875i | \(-0.794022\pi\) | ||||
−0.797836 | + | 0.602875i | \(0.794022\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 2.00000 | 0.0884748 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 24.0000i | 1.05552i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −12.0000 | −0.525730 | −0.262865 | − | 0.964833i | \(-0.584667\pi\) | ||||
−0.262865 | + | 0.964833i | \(0.584667\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 28.0000i | 1.22435i | 0.790721 | + | 0.612177i | \(0.209706\pi\) | ||||
−0.790721 | + | 0.612177i | \(0.790294\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 19.0000 | 0.826087 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 2.00000 | 0.0861461 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −30.0000 | −1.28980 | −0.644900 | − | 0.764267i | \(-0.723101\pi\) | ||||
−0.644900 | + | 0.764267i | \(0.723101\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 24.0000i | 1.02617i | 0.858339 | + | 0.513083i | \(0.171497\pi\) | ||||
−0.858339 | + | 0.513083i | \(0.828503\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −8.00000 | −0.340811 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 12.0000i | 0.510292i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 38.0000i | 1.61011i | 0.593199 | + | 0.805056i | \(0.297865\pi\) | ||||
−0.593199 | + | 0.805056i | \(0.702135\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −24.0000 | −1.01509 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 8.00000i | 0.337160i | 0.985688 | + | 0.168580i | \(0.0539181\pi\) | ||||
−0.985688 | + | 0.168580i | \(0.946082\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 30.0000 | 1.25767 | 0.628833 | − | 0.777541i | \(-0.283533\pi\) | ||||
0.628833 | + | 0.777541i | \(0.283533\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −24.0000 | −1.00437 | −0.502184 | − | 0.864761i | \(-0.667470\pi\) | ||||
−0.502184 | + | 0.864761i | \(0.667470\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 38.0000i | − 1.58196i | −0.611842 | − | 0.790980i | \(-0.709571\pi\) | ||||
0.611842 | − | 0.790980i | \(-0.290429\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −4.00000 | −0.165948 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 12.0000i | 0.496989i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 32.0000i | − 1.32078i | −0.750922 | − | 0.660391i | \(-0.770391\pi\) | ||||
0.750922 | − | 0.660391i | \(-0.229609\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 12.0000i | 0.492781i | 0.969171 | + | 0.246390i | \(0.0792446\pi\) | ||||
−0.969171 | + | 0.246390i | \(0.920755\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 6.00000 | 0.245153 | 0.122577 | − | 0.992459i | \(-0.460884\pi\) | ||||
0.122577 | + | 0.992459i | \(0.460884\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −46.0000 | −1.87638 | −0.938190 | − | 0.346122i | \(-0.887498\pi\) | ||||
−0.938190 | + | 0.346122i | \(0.887498\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 72.0000 | 2.91281 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 6.00000i | − 0.242338i | −0.992632 | − | 0.121169i | \(-0.961336\pi\) | ||||
0.992632 | − | 0.121169i | \(-0.0386643\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 38.0000i | − 1.52982i | −0.644136 | − | 0.764911i | \(-0.722783\pi\) | ||||
0.644136 | − | 0.764911i | \(-0.277217\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 20.0000 | 0.803868 | 0.401934 | − | 0.915669i | \(-0.368338\pi\) | ||||
0.401934 | + | 0.915669i | \(0.368338\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −8.00000 | −0.318981 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 20.0000 | 0.796187 | 0.398094 | − | 0.917345i | \(-0.369672\pi\) | ||||
0.398094 | + | 0.917345i | \(0.369672\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 6.00000i | − 0.237729i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 10.0000 | 0.394976 | 0.197488 | − | 0.980305i | \(-0.436722\pi\) | ||||
0.197488 | + | 0.980305i | \(0.436722\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 44.0000i | − 1.73519i | −0.497271 | − | 0.867595i | \(-0.665665\pi\) | ||||
0.497271 | − | 0.867595i | \(-0.334335\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 12.0000i | − 0.471769i | −0.971781 | − | 0.235884i | \(-0.924201\pi\) | ||||
0.971781 | − | 0.235884i | \(-0.0757987\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 16.0000 | 0.628055 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 6.00000i | 0.234798i | 0.993085 | + | 0.117399i | \(0.0374557\pi\) | ||||
−0.993085 | + | 0.117399i | \(0.962544\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 2.00000 | 0.0779089 | 0.0389545 | − | 0.999241i | \(-0.487597\pi\) | ||||
0.0389545 | + | 0.999241i | \(0.487597\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 22.0000 | 0.855701 | 0.427850 | − | 0.903850i | \(-0.359271\pi\) | ||||
0.427850 | + | 0.903850i | \(0.359271\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 4.00000i | − 0.154881i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −12.0000 | −0.463255 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 34.0000i | 1.31060i | 0.755367 | + | 0.655302i | \(0.227459\pi\) | ||||
−0.755367 | + | 0.655302i | \(0.772541\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 24.0000i | 0.922395i | 0.887298 | + | 0.461197i | \(0.152580\pi\) | ||||
−0.887298 | + | 0.461197i | \(0.847420\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −2.00000 | −0.0767530 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 30.0000i | 1.14792i | 0.818884 | + | 0.573959i | \(0.194593\pi\) | ||||
−0.818884 | + | 0.573959i | \(0.805407\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 36.0000 | 1.37149 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −28.0000 | −1.06517 | −0.532585 | − | 0.846376i | \(-0.678779\pi\) | ||||
−0.532585 | + | 0.846376i | \(0.678779\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 50.0000 | 1.88847 | 0.944237 | − | 0.329267i | \(-0.106802\pi\) | ||||
0.944237 | + | 0.329267i | \(0.106802\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 8.00000i | 0.301726i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 16.0000i | 0.601742i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −38.0000 | −1.42712 | −0.713560 | − | 0.700594i | \(-0.752918\pi\) | ||||
−0.713560 | + | 0.700594i | \(0.752918\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 16.0000 | 0.595871 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 16.0000i | 0.593407i | 0.954970 | + | 0.296704i | \(0.0958873\pi\) | ||||
−0.954970 | + | 0.296704i | \(0.904113\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −16.0000 | −0.591781 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 6.00000i | 0.221615i | 0.993842 | + | 0.110808i | \(0.0353437\pi\) | ||||
−0.993842 | + | 0.110808i | \(0.964656\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 16.0000i | 0.589368i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 30.0000i | 1.10059i | 0.834969 | + | 0.550297i | \(0.185485\pi\) | ||||
−0.834969 | + | 0.550297i | \(0.814515\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −18.0000 | −0.657706 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 42.0000i | − 1.52652i | −0.646094 | − | 0.763258i | \(-0.723599\pi\) | ||||
0.646094 | − | 0.763258i | \(-0.276401\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −32.0000 | −1.16000 | −0.580000 | − | 0.814617i | \(-0.696947\pi\) | ||||
−0.580000 | + | 0.814617i | \(0.696947\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 2.00000i | − 0.0724049i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 48.0000i | − 1.73318i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 38.0000 | 1.37032 | 0.685158 | − | 0.728395i | \(-0.259733\pi\) | ||||
0.685158 | + | 0.728395i | \(0.259733\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 8.00000i | − 0.287740i | −0.989597 | − | 0.143870i | \(-0.954045\pi\) | ||||
0.989597 | − | 0.143870i | \(-0.0459547\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 28.0000 | 1.00192 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 12.0000i | − 0.427754i | −0.976861 | − | 0.213877i | \(-0.931391\pi\) | ||||
0.976861 | − | 0.213877i | \(-0.0686091\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 10.0000 | 0.355559 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 36.0000i | 1.27840i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 48.0000 | 1.69812 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 4.00000i | − 0.141157i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 10.0000 | 0.351581 | 0.175791 | − | 0.984428i | \(-0.443752\pi\) | ||||
0.175791 | + | 0.984428i | \(0.443752\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 28.0000 | 0.983213 | 0.491606 | − | 0.870817i | \(-0.336410\pi\) | ||||
0.491606 | + | 0.870817i | \(0.336410\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 16.0000i | 0.559769i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −2.00000 | −0.0698005 | −0.0349002 | − | 0.999391i | \(-0.511111\pi\) | ||||
−0.0349002 | + | 0.999391i | \(0.511111\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 20.0000i | 0.697156i | 0.937280 | + | 0.348578i | \(0.113335\pi\) | ||||
−0.937280 | + | 0.348578i | \(0.886665\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 18.0000i | − 0.625921i | −0.949766 | − | 0.312961i | \(-0.898679\pi\) | ||||
0.949766 | − | 0.312961i | \(-0.101321\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 14.0000 | 0.486240 | 0.243120 | − | 0.969996i | \(-0.421829\pi\) | ||||
0.243120 | + | 0.969996i | \(0.421829\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 4.00000i | − 0.138592i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 44.0000 | 1.51905 | 0.759524 | − | 0.650479i | \(-0.225432\pi\) | ||||
0.759524 | + | 0.650479i | \(0.225432\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −25.0000 | −0.862069 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 7.00000i | 0.240523i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −4.00000 | −0.137118 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 14.0000i | − 0.479351i | −0.970853 | − | 0.239675i | \(-0.922959\pi\) | ||||
0.970853 | − | 0.239675i | \(-0.0770410\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 48.0000i | 1.63965i | 0.572615 | + | 0.819824i | \(0.305929\pi\) | ||||
−0.572615 | + | 0.819824i | \(0.694071\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −44.0000 | −1.50126 | −0.750630 | − | 0.660722i | \(-0.770250\pi\) | ||||
−0.750630 | + | 0.660722i | \(0.770250\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 14.0000i | − 0.476566i | −0.971196 | − | 0.238283i | \(-0.923415\pi\) | ||||
0.971196 | − | 0.238283i | \(-0.0765845\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 24.0000 | 0.814144 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 48.0000 | 1.62642 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 46.0000i | 1.55331i | 0.629926 | + | 0.776655i | \(0.283085\pi\) | ||||
−0.629926 | + | 0.776655i | \(0.716915\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −36.0000 | −1.21287 | −0.606435 | − | 0.795133i | \(-0.707401\pi\) | ||||
−0.606435 | + | 0.795133i | \(0.707401\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 44.0000i | − 1.48072i | −0.672212 | − | 0.740359i | \(-0.734656\pi\) | ||||
0.672212 | − | 0.740359i | \(-0.265344\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 12.0000i | 0.402921i | 0.979497 | + | 0.201460i | \(0.0645687\pi\) | ||||
−0.979497 | + | 0.201460i | \(0.935431\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 12.0000 | 0.402467 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 48.0000i | − 1.60626i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 24.0000 | 0.799556 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 12.0000i | 0.398453i | 0.979953 | + | 0.199227i | \(0.0638430\pi\) | ||||
−0.979953 | + | 0.199227i | \(0.936157\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 18.0000 | 0.596367 | 0.298183 | − | 0.954509i | \(-0.403619\pi\) | ||||
0.298183 | + | 0.954509i | \(0.403619\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 8.00000i | 0.264761i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 4.00000i | 0.132092i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −16.0000 | −0.527791 | −0.263896 | − | 0.964551i | \(-0.585007\pi\) | ||||
−0.263896 | + | 0.964551i | \(0.585007\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 84.0000i | − 2.76489i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 48.0000 | 1.57483 | 0.787414 | − | 0.616424i | \(-0.211419\pi\) | ||||
0.787414 | + | 0.616424i | \(0.211419\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −4.00000 | −0.131095 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 2.00000i | 0.0653372i | 0.999466 | + | 0.0326686i | \(0.0104006\pi\) | ||||
−0.999466 | + | 0.0326686i | \(0.989599\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −28.0000 | −0.912774 | −0.456387 | − | 0.889781i | \(-0.650857\pi\) | ||||
−0.456387 | + | 0.889781i | \(0.650857\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 10.0000i | − 0.324956i | −0.986712 | − | 0.162478i | \(-0.948051\pi\) | ||||
0.986712 | − | 0.162478i | \(-0.0519487\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −12.0000 | −0.389536 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 22.0000i | − 0.712650i | −0.934362 | − | 0.356325i | \(-0.884030\pi\) | ||||
0.934362 | − | 0.356325i | \(-0.115970\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 2.00000 | 0.0645834 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −31.0000 | −1.00000 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 20.0000i | 0.643157i | 0.946883 | + | 0.321578i | \(0.104213\pi\) | ||||
−0.946883 | + | 0.321578i | \(0.895787\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −36.0000 | −1.15529 | −0.577647 | − | 0.816286i | \(-0.696029\pi\) | ||||
−0.577647 | + | 0.816286i | \(0.696029\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 4.00000i | 0.128234i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − 30.0000i | − 0.959785i | −0.877327 | − | 0.479893i | \(-0.840676\pi\) | ||||
0.877327 | − | 0.479893i | \(-0.159324\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 48.0000i | − 1.53096i | −0.643458 | − | 0.765481i | \(-0.722501\pi\) | ||||
0.643458 | − | 0.765481i | \(-0.277499\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −8.00000 | −0.254385 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 56.0000 | 1.77890 | 0.889449 | − | 0.457034i | \(-0.151088\pi\) | ||||
0.889449 | + | 0.457034i | \(0.151088\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 38.0000i | 1.20347i | 0.798695 | + | 0.601736i | \(0.205524\pi\) | ||||
−0.798695 | + | 0.601736i | \(0.794476\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))