Properties

Label 1764.2.t.b.521.1
Level $1764$
Weight $2$
Character 1764.521
Analytic conductor $14.086$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(521,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.521");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.1
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1764.521
Dual form 1764.2.t.b.1097.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 - 3.00000i) q^{5} +(-3.67423 - 2.12132i) q^{11} -4.89898i q^{13} +(-1.73205 + 3.00000i) q^{17} +(4.24264 - 2.44949i) q^{19} +(-3.67423 + 2.12132i) q^{23} +(-3.50000 + 6.06218i) q^{25} +4.24264i q^{29} +(4.00000 + 6.92820i) q^{37} -3.46410 q^{41} -2.00000 q^{43} +(3.46410 + 6.00000i) q^{47} +(-11.0227 - 6.36396i) q^{53} +14.6969i q^{55} +(6.92820 - 12.0000i) q^{59} +(-8.48528 + 4.89898i) q^{61} +(-14.6969 + 8.48528i) q^{65} +(-4.00000 + 6.92820i) q^{67} -4.24264i q^{71} +(-4.24264 - 2.44949i) q^{73} +(2.00000 + 3.46410i) q^{79} +6.92820 q^{83} +12.0000 q^{85} +(5.19615 + 9.00000i) q^{89} +(-14.6969 - 8.48528i) q^{95} -4.89898i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 28 q^{25} + 32 q^{37} - 16 q^{43} - 32 q^{67} + 16 q^{79} + 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.73205 3.00000i −0.774597 1.34164i −0.935021 0.354593i \(-0.884620\pi\)
0.160424 0.987048i \(-0.448714\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.67423 2.12132i −1.10782 0.639602i −0.169559 0.985520i \(-0.554234\pi\)
−0.938265 + 0.345918i \(0.887568\pi\)
\(12\) 0 0
\(13\) 4.89898i 1.35873i −0.733799 0.679366i \(-0.762255\pi\)
0.733799 0.679366i \(-0.237745\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.73205 + 3.00000i −0.420084 + 0.727607i −0.995947 0.0899392i \(-0.971333\pi\)
0.575863 + 0.817546i \(0.304666\pi\)
\(18\) 0 0
\(19\) 4.24264 2.44949i 0.973329 0.561951i 0.0730792 0.997326i \(-0.476717\pi\)
0.900249 + 0.435375i \(0.143384\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.67423 + 2.12132i −0.766131 + 0.442326i −0.831493 0.555536i \(-0.812513\pi\)
0.0653618 + 0.997862i \(0.479180\pi\)
\(24\) 0 0
\(25\) −3.50000 + 6.06218i −0.700000 + 1.21244i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.24264i 0.787839i 0.919145 + 0.393919i \(0.128881\pi\)
−0.919145 + 0.393919i \(0.871119\pi\)
\(30\) 0 0
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 + 6.92820i 0.657596 + 1.13899i 0.981236 + 0.192809i \(0.0617599\pi\)
−0.323640 + 0.946180i \(0.604907\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.46410 −0.541002 −0.270501 0.962720i \(-0.587189\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.46410 + 6.00000i 0.505291 + 0.875190i 0.999981 + 0.00612051i \(0.00194823\pi\)
−0.494690 + 0.869069i \(0.664718\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.0227 6.36396i −1.51408 0.874157i −0.999864 0.0164995i \(-0.994748\pi\)
−0.514221 0.857658i \(-0.671919\pi\)
\(54\) 0 0
\(55\) 14.6969i 1.98173i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.92820 12.0000i 0.901975 1.56227i 0.0770484 0.997027i \(-0.475450\pi\)
0.824927 0.565240i \(-0.191216\pi\)
\(60\) 0 0
\(61\) −8.48528 + 4.89898i −1.08643 + 0.627250i −0.932623 0.360851i \(-0.882486\pi\)
−0.153806 + 0.988101i \(0.549153\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −14.6969 + 8.48528i −1.82293 + 1.05247i
\(66\) 0 0
\(67\) −4.00000 + 6.92820i −0.488678 + 0.846415i −0.999915 0.0130248i \(-0.995854\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.24264i 0.503509i −0.967791 0.251754i \(-0.918992\pi\)
0.967791 0.251754i \(-0.0810075\pi\)
\(72\) 0 0
\(73\) −4.24264 2.44949i −0.496564 0.286691i 0.230730 0.973018i \(-0.425889\pi\)
−0.727293 + 0.686327i \(0.759222\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.00000 + 3.46410i 0.225018 + 0.389742i 0.956325 0.292306i \(-0.0944227\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.92820 0.760469 0.380235 0.924890i \(-0.375843\pi\)
0.380235 + 0.924890i \(0.375843\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.19615 + 9.00000i 0.550791 + 0.953998i 0.998218 + 0.0596775i \(0.0190072\pi\)
−0.447427 + 0.894321i \(0.647659\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −14.6969 8.48528i −1.50787 0.870572i
\(96\) 0 0
\(97\) 4.89898i 0.497416i −0.968579 0.248708i \(-0.919994\pi\)
0.968579 0.248708i \(-0.0800060\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.19615 + 9.00000i −0.517036 + 0.895533i 0.482768 + 0.875748i \(0.339632\pi\)
−0.999804 + 0.0197851i \(0.993702\pi\)
\(102\) 0 0
\(103\) −8.48528 + 4.89898i −0.836080 + 0.482711i −0.855930 0.517092i \(-0.827014\pi\)
0.0198501 + 0.999803i \(0.493681\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.67423 2.12132i 0.355202 0.205076i −0.311772 0.950157i \(-0.600923\pi\)
0.666974 + 0.745081i \(0.267589\pi\)
\(108\) 0 0
\(109\) −2.00000 + 3.46410i −0.191565 + 0.331801i −0.945769 0.324840i \(-0.894690\pi\)
0.754204 + 0.656640i \(0.228023\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.7279i 1.19734i 0.800995 + 0.598671i \(0.204304\pi\)
−0.800995 + 0.598671i \(0.795696\pi\)
\(114\) 0 0
\(115\) 12.7279 + 7.34847i 1.18688 + 0.685248i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.3923 18.0000i −0.907980 1.57267i −0.816866 0.576827i \(-0.804291\pi\)
−0.0911134 0.995841i \(-0.529043\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.67423 2.12132i −0.313911 0.181237i 0.334764 0.942302i \(-0.391343\pi\)
−0.648675 + 0.761065i \(0.724677\pi\)
\(138\) 0 0
\(139\) 9.79796i 0.831052i −0.909581 0.415526i \(-0.863598\pi\)
0.909581 0.415526i \(-0.136402\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −10.3923 + 18.0000i −0.869048 + 1.50524i
\(144\) 0 0
\(145\) 12.7279 7.34847i 1.05700 0.610257i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.0227 + 6.36396i −0.903015 + 0.521356i −0.878177 0.478335i \(-0.841240\pi\)
−0.0248379 + 0.999691i \(0.507907\pi\)
\(150\) 0 0
\(151\) −11.0000 + 19.0526i −0.895167 + 1.55048i −0.0615699 + 0.998103i \(0.519611\pi\)
−0.833597 + 0.552372i \(0.813723\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.00000 6.92820i −0.313304 0.542659i 0.665771 0.746156i \(-0.268103\pi\)
−0.979076 + 0.203497i \(0.934769\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.92820 −0.536120 −0.268060 0.963402i \(-0.586383\pi\)
−0.268060 + 0.963402i \(0.586383\pi\)
\(168\) 0 0
\(169\) −11.0000 −0.846154
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.19615 9.00000i −0.395056 0.684257i 0.598052 0.801457i \(-0.295942\pi\)
−0.993108 + 0.117200i \(0.962608\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.67423 + 2.12132i 0.274625 + 0.158555i 0.630988 0.775793i \(-0.282650\pi\)
−0.356362 + 0.934348i \(0.615983\pi\)
\(180\) 0 0
\(181\) 4.89898i 0.364138i −0.983286 0.182069i \(-0.941721\pi\)
0.983286 0.182069i \(-0.0582795\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.8564 24.0000i 1.01874 1.76452i
\(186\) 0 0
\(187\) 12.7279 7.34847i 0.930758 0.537373i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.3712 10.6066i 1.32929 0.767467i 0.344101 0.938933i \(-0.388184\pi\)
0.985190 + 0.171466i \(0.0548503\pi\)
\(192\) 0 0
\(193\) 10.0000 17.3205i 0.719816 1.24676i −0.241257 0.970461i \(-0.577560\pi\)
0.961073 0.276296i \(-0.0891071\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.24264i 0.302276i 0.988513 + 0.151138i \(0.0482937\pi\)
−0.988513 + 0.151138i \(0.951706\pi\)
\(198\) 0 0
\(199\) −21.2132 12.2474i −1.50376 0.868199i −0.999990 0.00436292i \(-0.998611\pi\)
−0.503774 0.863836i \(-0.668055\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.00000 + 10.3923i 0.419058 + 0.725830i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −20.7846 −1.43770
\(210\) 0 0
\(211\) 10.0000 0.688428 0.344214 0.938891i \(-0.388145\pi\)
0.344214 + 0.938891i \(0.388145\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.46410 + 6.00000i 0.236250 + 0.409197i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 14.6969 + 8.48528i 0.988623 + 0.570782i
\(222\) 0 0
\(223\) 14.6969i 0.984180i −0.870544 0.492090i \(-0.836233\pi\)
0.870544 0.492090i \(-0.163767\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0 0
\(229\) 12.7279 7.34847i 0.841085 0.485601i −0.0165480 0.999863i \(-0.505268\pi\)
0.857633 + 0.514263i \(0.171934\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.3712 + 10.6066i −1.20354 + 0.694862i −0.961340 0.275366i \(-0.911201\pi\)
−0.242196 + 0.970227i \(0.577868\pi\)
\(234\) 0 0
\(235\) 12.0000 20.7846i 0.782794 1.35584i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 29.6985i 1.92104i −0.278219 0.960518i \(-0.589744\pi\)
0.278219 0.960518i \(-0.410256\pi\)
\(240\) 0 0
\(241\) −4.24264 2.44949i −0.273293 0.157786i 0.357090 0.934070i \(-0.383769\pi\)
−0.630383 + 0.776284i \(0.717102\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −12.0000 20.7846i −0.763542 1.32249i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.92820 −0.437304 −0.218652 0.975803i \(-0.570166\pi\)
−0.218652 + 0.975803i \(0.570166\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.19615 + 9.00000i 0.324127 + 0.561405i 0.981335 0.192304i \(-0.0615961\pi\)
−0.657208 + 0.753709i \(0.728263\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.67423 + 2.12132i 0.226563 + 0.130806i 0.608985 0.793181i \(-0.291577\pi\)
−0.382422 + 0.923988i \(0.624910\pi\)
\(264\) 0 0
\(265\) 44.0908i 2.70848i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.73205 3.00000i 0.105605 0.182913i −0.808380 0.588661i \(-0.799655\pi\)
0.913985 + 0.405747i \(0.132989\pi\)
\(270\) 0 0
\(271\) −16.9706 + 9.79796i −1.03089 + 0.595184i −0.917239 0.398337i \(-0.869587\pi\)
−0.113649 + 0.993521i \(0.536254\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 25.7196 14.8492i 1.55095 0.895443i
\(276\) 0 0
\(277\) −1.00000 + 1.73205i −0.0600842 + 0.104069i −0.894503 0.447062i \(-0.852470\pi\)
0.834419 + 0.551131i \(0.185804\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.24264i 0.253095i −0.991961 0.126547i \(-0.959610\pi\)
0.991961 0.126547i \(-0.0403896\pi\)
\(282\) 0 0
\(283\) 12.7279 + 7.34847i 0.756596 + 0.436821i 0.828072 0.560621i \(-0.189438\pi\)
−0.0714760 + 0.997442i \(0.522771\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2.50000 + 4.33013i 0.147059 + 0.254713i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 17.3205 1.01187 0.505937 0.862570i \(-0.331147\pi\)
0.505937 + 0.862570i \(0.331147\pi\)
\(294\) 0 0
\(295\) −48.0000 −2.79467
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.3923 + 18.0000i 0.601003 + 1.04097i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 29.3939 + 16.9706i 1.68309 + 0.971732i
\(306\) 0 0
\(307\) 14.6969i 0.838799i −0.907802 0.419399i \(-0.862241\pi\)
0.907802 0.419399i \(-0.137759\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.92820 + 12.0000i −0.392862 + 0.680458i −0.992826 0.119570i \(-0.961848\pi\)
0.599963 + 0.800027i \(0.295182\pi\)
\(312\) 0 0
\(313\) −16.9706 + 9.79796i −0.959233 + 0.553813i −0.895937 0.444181i \(-0.853495\pi\)
−0.0632961 + 0.997995i \(0.520161\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.0227 6.36396i 0.619097 0.357436i −0.157421 0.987532i \(-0.550318\pi\)
0.776517 + 0.630096i \(0.216984\pi\)
\(318\) 0 0
\(319\) 9.00000 15.5885i 0.503903 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.9706i 0.944267i
\(324\) 0 0
\(325\) 29.6985 + 17.1464i 1.64738 + 0.951113i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −11.0000 19.0526i −0.604615 1.04722i −0.992112 0.125353i \(-0.959994\pi\)
0.387498 0.921871i \(-0.373340\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 27.7128 1.51411
\(336\) 0 0
\(337\) 16.0000 0.871576 0.435788 0.900049i \(-0.356470\pi\)
0.435788 + 0.900049i \(0.356470\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.3712 + 10.6066i 0.986216 + 0.569392i 0.904141 0.427234i \(-0.140512\pi\)
0.0820751 + 0.996626i \(0.473845\pi\)
\(348\) 0 0
\(349\) 19.5959i 1.04895i 0.851427 + 0.524473i \(0.175738\pi\)
−0.851427 + 0.524473i \(0.824262\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.73205 + 3.00000i −0.0921878 + 0.159674i −0.908431 0.418034i \(-0.862719\pi\)
0.816244 + 0.577708i \(0.196053\pi\)
\(354\) 0 0
\(355\) −12.7279 + 7.34847i −0.675528 + 0.390016i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.3712 10.6066i 0.969593 0.559795i 0.0704812 0.997513i \(-0.477547\pi\)
0.899112 + 0.437718i \(0.144213\pi\)
\(360\) 0 0
\(361\) 2.50000 4.33013i 0.131579 0.227901i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 16.9706i 0.888280i
\(366\) 0 0
\(367\) −21.2132 12.2474i −1.10732 0.639312i −0.169186 0.985584i \(-0.554114\pi\)
−0.938134 + 0.346272i \(0.887447\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.00000 1.73205i −0.0517780 0.0896822i 0.838975 0.544170i \(-0.183156\pi\)
−0.890753 + 0.454488i \(0.849822\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.7846 1.07046
\(378\) 0 0
\(379\) 10.0000 0.513665 0.256833 0.966456i \(-0.417321\pi\)
0.256833 + 0.966456i \(0.417321\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.46410 6.00000i −0.177007 0.306586i 0.763847 0.645398i \(-0.223308\pi\)
−0.940854 + 0.338812i \(0.889975\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.3712 + 10.6066i 0.931455 + 0.537776i 0.887272 0.461247i \(-0.152598\pi\)
0.0441839 + 0.999023i \(0.485931\pi\)
\(390\) 0 0
\(391\) 14.6969i 0.743256i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.92820 12.0000i 0.348596 0.603786i
\(396\) 0 0
\(397\) −25.4558 + 14.6969i −1.27759 + 0.737618i −0.976405 0.215947i \(-0.930716\pi\)
−0.301187 + 0.953565i \(0.597383\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.3712 10.6066i 0.917413 0.529668i 0.0346039 0.999401i \(-0.488983\pi\)
0.882809 + 0.469733i \(0.155650\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 33.9411i 1.68240i
\(408\) 0 0
\(409\) −4.24264 2.44949i −0.209785 0.121119i 0.391426 0.920209i \(-0.371982\pi\)
−0.601212 + 0.799090i \(0.705315\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 20.7846i −0.589057 1.02028i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −27.7128 −1.35386 −0.676930 0.736048i \(-0.736690\pi\)
−0.676930 + 0.736048i \(0.736690\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.1244 21.0000i −0.588118 1.01865i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3.67423 2.12132i −0.176982 0.102180i 0.408892 0.912583i \(-0.365915\pi\)
−0.585874 + 0.810402i \(0.699249\pi\)
\(432\) 0 0
\(433\) 29.3939i 1.41258i −0.707923 0.706290i \(-0.750368\pi\)
0.707923 0.706290i \(-0.249632\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.3923 + 18.0000i −0.497131 + 0.861057i
\(438\) 0 0
\(439\) 12.7279 7.34847i 0.607471 0.350723i −0.164504 0.986376i \(-0.552602\pi\)
0.771975 + 0.635653i \(0.219269\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.0227 6.36396i 0.523704 0.302361i −0.214745 0.976670i \(-0.568892\pi\)
0.738449 + 0.674309i \(0.235559\pi\)
\(444\) 0 0
\(445\) 18.0000 31.1769i 0.853282 1.47793i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.24264i 0.200223i −0.994976 0.100111i \(-0.968080\pi\)
0.994976 0.100111i \(-0.0319199\pi\)
\(450\) 0 0
\(451\) 12.7279 + 7.34847i 0.599334 + 0.346026i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.00000 + 6.92820i 0.187112 + 0.324088i 0.944286 0.329125i \(-0.106754\pi\)
−0.757174 + 0.653213i \(0.773421\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.46410 −0.161339 −0.0806696 0.996741i \(-0.525706\pi\)
−0.0806696 + 0.996741i \(0.525706\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.3923 18.0000i −0.480899 0.832941i 0.518861 0.854858i \(-0.326356\pi\)
−0.999760 + 0.0219178i \(0.993023\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.34847 + 4.24264i 0.337883 + 0.195077i
\(474\) 0 0
\(475\) 34.2929i 1.57346i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.92820 12.0000i 0.316558 0.548294i −0.663210 0.748434i \(-0.730806\pi\)
0.979767 + 0.200140i \(0.0641396\pi\)
\(480\) 0 0
\(481\) 33.9411 19.5959i 1.54758 0.893497i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.6969 + 8.48528i −0.667354 + 0.385297i
\(486\) 0 0
\(487\) 7.00000 12.1244i 0.317200 0.549407i −0.662702 0.748883i \(-0.730591\pi\)
0.979903 + 0.199476i \(0.0639239\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.7279i 0.574403i −0.957870 0.287202i \(-0.907275\pi\)
0.957870 0.287202i \(-0.0927249\pi\)
\(492\) 0 0
\(493\) −12.7279 7.34847i −0.573237 0.330958i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −5.00000 8.66025i −0.223831 0.387686i 0.732137 0.681157i \(-0.238523\pi\)
−0.955968 + 0.293471i \(0.905190\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −34.6410 −1.54457 −0.772283 0.635278i \(-0.780885\pi\)
−0.772283 + 0.635278i \(0.780885\pi\)
\(504\) 0 0
\(505\) 36.0000 1.60198
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.1244 + 21.0000i 0.537403 + 0.930809i 0.999043 + 0.0437414i \(0.0139278\pi\)
−0.461640 + 0.887067i \(0.652739\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 29.3939 + 16.9706i 1.29525 + 0.747812i
\(516\) 0 0
\(517\) 29.3939i 1.29274i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.73205 3.00000i 0.0758825 0.131432i −0.825587 0.564275i \(-0.809156\pi\)
0.901470 + 0.432842i \(0.142489\pi\)
\(522\) 0 0
\(523\) 33.9411 19.5959i 1.48414 0.856870i 0.484304 0.874900i \(-0.339073\pi\)
0.999837 + 0.0180299i \(0.00573942\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −2.50000 + 4.33013i −0.108696 + 0.188266i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.9706i 0.735077i
\(534\) 0 0
\(535\) −12.7279 7.34847i −0.550276 0.317702i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −13.0000 22.5167i −0.558914 0.968067i −0.997587 0.0694205i \(-0.977885\pi\)
0.438674 0.898646i \(-0.355448\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13.8564 0.593543
\(546\) 0 0
\(547\) −40.0000 −1.71028 −0.855138 0.518400i \(-0.826528\pi\)
−0.855138 + 0.518400i \(0.826528\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.3923 + 18.0000i 0.442727 + 0.766826i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.67423 2.12132i −0.155682 0.0898832i 0.420135 0.907462i \(-0.361983\pi\)
−0.575817 + 0.817578i \(0.695316\pi\)
\(558\) 0 0
\(559\) 9.79796i 0.414410i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.3923 + 18.0000i −0.437983 + 0.758610i −0.997534 0.0701867i \(-0.977640\pi\)
0.559550 + 0.828796i \(0.310974\pi\)
\(564\) 0 0
\(565\) 38.1838 22.0454i 1.60640 0.927457i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.67423 + 2.12132i −0.154032 + 0.0889304i −0.575035 0.818129i \(-0.695012\pi\)
0.421003 + 0.907059i \(0.361678\pi\)
\(570\) 0 0
\(571\) 8.00000 13.8564i 0.334790 0.579873i −0.648655 0.761083i \(-0.724668\pi\)
0.983444 + 0.181210i \(0.0580014\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 29.6985i 1.23851i
\(576\) 0 0
\(577\) 8.48528 + 4.89898i 0.353247 + 0.203947i 0.666114 0.745850i \(-0.267956\pi\)
−0.312868 + 0.949797i \(0.601290\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 27.0000 + 46.7654i 1.11823 + 1.93682i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20.7846 −0.857873 −0.428936 0.903335i \(-0.641112\pi\)
−0.428936 + 0.903335i \(0.641112\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8.66025 15.0000i −0.355634 0.615976i 0.631592 0.775301i \(-0.282402\pi\)
−0.987226 + 0.159325i \(0.949068\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.67423 2.12132i −0.150125 0.0866748i 0.423056 0.906104i \(-0.360957\pi\)
−0.573181 + 0.819429i \(0.694291\pi\)
\(600\) 0 0
\(601\) 29.3939i 1.19900i −0.800374 0.599501i \(-0.795366\pi\)
0.800374 0.599501i \(-0.204634\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 12.1244 21.0000i 0.492925 0.853771i
\(606\) 0 0
\(607\) −4.24264 + 2.44949i −0.172203 + 0.0994217i −0.583624 0.812024i \(-0.698366\pi\)
0.411421 + 0.911445i \(0.365033\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 29.3939 16.9706i 1.18915 0.686555i
\(612\) 0 0
\(613\) −7.00000 + 12.1244i −0.282727 + 0.489698i −0.972056 0.234751i \(-0.924572\pi\)
0.689328 + 0.724449i \(0.257906\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.7279i 0.512407i 0.966623 + 0.256203i \(0.0824717\pi\)
−0.966623 + 0.256203i \(0.917528\pi\)
\(618\) 0 0
\(619\) −8.48528 4.89898i −0.341052 0.196907i 0.319685 0.947524i \(-0.396423\pi\)
−0.660737 + 0.750617i \(0.729756\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 5.50000 + 9.52628i 0.220000 + 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −27.7128 −1.10498
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.92820 + 12.0000i 0.274937 + 0.476205i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −25.7196 14.8492i −1.01586 0.586510i −0.102961 0.994685i \(-0.532832\pi\)
−0.912903 + 0.408176i \(0.866165\pi\)
\(642\) 0 0
\(643\) 14.6969i 0.579591i 0.957089 + 0.289795i \(0.0935872\pi\)
−0.957089 + 0.289795i \(0.906413\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.7846 36.0000i 0.817127 1.41531i −0.0906629 0.995882i \(-0.528899\pi\)
0.907790 0.419424i \(-0.137768\pi\)
\(648\) 0 0
\(649\) −50.9117 + 29.3939i −1.99846 + 1.15381i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −40.4166 + 23.3345i −1.58162 + 0.913150i −0.587000 + 0.809587i \(0.699691\pi\)
−0.994623 + 0.103564i \(0.966975\pi\)
\(654\) 0 0
\(655\) −36.0000 + 62.3538i −1.40664 + 2.43637i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 46.6690i 1.81797i 0.416831 + 0.908984i \(0.363141\pi\)
−0.416831 + 0.908984i \(0.636859\pi\)
\(660\) 0 0
\(661\) −33.9411 19.5959i −1.32016 0.762193i −0.336403 0.941718i \(-0.609211\pi\)
−0.983753 + 0.179525i \(0.942544\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −9.00000 15.5885i −0.348481 0.603587i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 41.5692 1.60476
\(672\) 0 0
\(673\) −20.0000 −0.770943 −0.385472 0.922720i \(-0.625961\pi\)
−0.385472 + 0.922720i \(0.625961\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15.5885 27.0000i −0.599113 1.03769i −0.992952 0.118515i \(-0.962187\pi\)
0.393839 0.919179i \(-0.371147\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11.0227 + 6.36396i 0.421772 + 0.243510i 0.695835 0.718201i \(-0.255034\pi\)
−0.274063 + 0.961712i \(0.588368\pi\)
\(684\) 0 0
\(685\) 14.6969i 0.561541i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −31.1769 + 54.0000i −1.18775 + 2.05724i
\(690\) 0 0
\(691\) −25.4558 + 14.6969i −0.968386 + 0.559098i −0.898744 0.438474i \(-0.855519\pi\)
−0.0696421 + 0.997572i \(0.522186\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −29.3939 + 16.9706i −1.11497 + 0.643730i
\(696\) 0 0
\(697\) 6.00000 10.3923i 0.227266 0.393637i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.7279i 0.480727i −0.970683 0.240363i \(-0.922733\pi\)
0.970683 0.240363i \(-0.0772666\pi\)
\(702\) 0 0
\(703\) 33.9411 + 19.5959i 1.28011 + 0.739074i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −2.00000 3.46410i −0.0751116 0.130097i 0.826023 0.563636i \(-0.190598\pi\)
−0.901135 + 0.433539i \(0.857265\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 72.0000 2.69265
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −13.8564 24.0000i −0.516757 0.895049i −0.999811 0.0194584i \(-0.993806\pi\)
0.483054 0.875591i \(-0.339528\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −25.7196 14.8492i −0.955204 0.551487i
\(726\) 0 0
\(727\) 29.3939i 1.09016i 0.838385 + 0.545079i \(0.183500\pi\)
−0.838385 + 0.545079i \(0.816500\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.46410 6.00000i 0.128124 0.221918i
\(732\) 0 0
\(733\) −38.1838 + 22.0454i −1.41035 + 0.814266i −0.995421 0.0955883i \(-0.969527\pi\)
−0.414929 + 0.909854i \(0.636193\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 29.3939 16.9706i 1.08274 0.625119i
\(738\) 0 0
\(739\) 8.00000 13.8564i 0.294285 0.509716i −0.680534 0.732717i \(-0.738252\pi\)
0.974818 + 0.223001i \(0.0715853\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.24264i 0.155647i 0.996967 + 0.0778237i \(0.0247971\pi\)
−0.996967 + 0.0778237i \(0.975203\pi\)
\(744\) 0 0
\(745\) 38.1838 + 22.0454i 1.39894 + 0.807681i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −5.00000 8.66025i −0.182453 0.316017i 0.760263 0.649616i \(-0.225070\pi\)
−0.942715 + 0.333599i \(0.891737\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 76.2102 2.77357
\(756\) 0 0
\(757\) 28.0000 1.01768 0.508839 0.860862i \(-0.330075\pi\)
0.508839 + 0.860862i \(0.330075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.5167 + 39.0000i 0.816228 + 1.41375i 0.908443 + 0.418010i \(0.137272\pi\)
−0.0922143 + 0.995739i \(0.529394\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −58.7878 33.9411i −2.12270 1.22554i
\(768\) 0 0
\(769\) 9.79796i 0.353323i −0.984272 0.176662i \(-0.943470\pi\)
0.984272 0.176662i \(-0.0565299\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.66025 15.0000i 0.311488 0.539513i −0.667197 0.744881i \(-0.732506\pi\)
0.978685 + 0.205369i \(0.0658394\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.6969 + 8.48528i −0.526572 + 0.304017i
\(780\) 0 0
\(781\) −9.00000 + 15.5885i −0.322045 + 0.557799i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 16.9706 + 9.79796i 0.604935 + 0.349260i 0.770981 0.636859i \(-0.219766\pi\)
−0.166045 + 0.986118i \(0.553100\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 24.0000 + 41.5692i 0.852265 + 1.47617i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −10.3923 −0.368114 −0.184057 0.982916i \(-0.558923\pi\)
−0.184057 + 0.982916i \(0.558923\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.3923 + 18.0000i 0.366736 + 0.635206i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −33.0681 19.0919i −1.16261 0.671235i −0.210684 0.977554i \(-0.567569\pi\)
−0.951929 + 0.306319i \(0.900902\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.8564 + 24.0000i −0.485369 + 0.840683i
\(816\) 0 0
\(817\) −8.48528 + 4.89898i −0.296862 + 0.171394i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −11.0227 + 6.36396i −0.384695 + 0.222104i −0.679859 0.733343i \(-0.737959\pi\)
0.295164 + 0.955447i \(0.404626\pi\)
\(822\) 0 0
\(823\) −10.0000 + 17.3205i −0.348578 + 0.603755i −0.985997 0.166762i \(-0.946669\pi\)
0.637419 + 0.770517i \(0.280002\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.7279i 0.442593i 0.975207 + 0.221297i \(0.0710289\pi\)
−0.975207 + 0.221297i \(0.928971\pi\)
\(828\) 0 0
\(829\) −21.2132 12.2474i −0.736765 0.425371i 0.0841269 0.996455i \(-0.473190\pi\)
−0.820892 + 0.571084i \(0.806523\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 12.0000 + 20.7846i 0.415277 + 0.719281i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 34.6410 1.19594 0.597970 0.801518i \(-0.295974\pi\)
0.597970 + 0.801518i \(0.295974\pi\)
\(840\) 0 0
\(841\) 11.0000 0.379310
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 19.0526 + 33.0000i 0.655428 + 1.13523i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −29.3939 16.9706i −1.00761 0.581743i
\(852\) 0 0
\(853\) 9.79796i 0.335476i 0.985832 + 0.167738i \(0.0536462\pi\)
−0.985832 + 0.167738i \(0.946354\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.1244 + 21.0000i −0.414160 + 0.717346i −0.995340 0.0964289i \(-0.969258\pi\)
0.581180 + 0.813775i \(0.302591\pi\)
\(858\) 0 0
\(859\) −4.24264 + 2.44949i −0.144757 + 0.0835755i −0.570629 0.821208i \(-0.693301\pi\)
0.425872 + 0.904783i \(0.359967\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −47.7650 + 27.5772i −1.62594 + 0.938738i −0.640654 + 0.767830i \(0.721337\pi\)
−0.985287 + 0.170908i \(0.945330\pi\)
\(864\) 0 0
\(865\) −18.0000 + 31.1769i −0.612018 + 1.06005i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16.9706i 0.575687i
\(870\) 0 0
\(871\) 33.9411 + 19.5959i 1.15005 + 0.663982i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.00000 1.73205i −0.0337676 0.0584872i 0.848648 0.528958i \(-0.177417\pi\)
−0.882415 + 0.470471i \(0.844084\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −31.1769 −1.05038 −0.525188 0.850986i \(-0.676005\pi\)
−0.525188 + 0.850986i \(0.676005\pi\)
\(882\) 0 0
\(883\) 46.0000 1.54802 0.774012 0.633171i \(-0.218247\pi\)
0.774012 + 0.633171i \(0.218247\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.46410 + 6.00000i 0.116313 + 0.201460i 0.918304 0.395876i \(-0.129559\pi\)
−0.801991 + 0.597336i \(0.796226\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 29.3939 + 16.9706i 0.983629 + 0.567898i
\(894\) 0 0
\(895\) 14.6969i 0.491264i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 38.1838 22.0454i 1.27209 0.734439i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −14.6969 + 8.48528i −0.488543 + 0.282060i
\(906\) 0 0
\(907\) −11.0000 + 19.0526i −0.365249 + 0.632630i −0.988816 0.149140i \(-0.952349\pi\)
0.623567 + 0.781770i \(0.285683\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 21.2132i 0.702825i −0.936221 0.351412i \(-0.885702\pi\)
0.936221 0.351412i \(-0.114298\pi\)
\(912\) 0 0
\(913\) −25.4558 14.6969i −0.842465 0.486398i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 7.00000 + 12.1244i 0.230909 + 0.399946i 0.958076 0.286515i \(-0.0924968\pi\)
−0.727167 + 0.686461i \(0.759163\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −20.7846 −0.684134
\(924\) 0 0
\(925\) −56.0000 −1.84127
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22.5167 39.0000i −0.738748 1.27955i −0.953059 0.302783i \(-0.902084\pi\)
0.214312 0.976765i \(-0.431249\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −44.0908 25.4558i −1.44192 0.832495i
\(936\) 0 0
\(937\) 19.5959i 0.640171i 0.947389 + 0.320085i \(0.103712\pi\)
−0.947389 + 0.320085i \(0.896288\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 22.5167 39.0000i 0.734022 1.27136i −0.221129 0.975245i \(-0.570974\pi\)
0.955151 0.296119i \(-0.0956925\pi\)
\(942\) 0 0
\(943\) 12.7279 7.34847i 0.414478 0.239299i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −25.7196 + 14.8492i −0.835776 + 0.482536i −0.855826 0.517263i \(-0.826951\pi\)
0.0200502 + 0.999799i \(0.493617\pi\)
\(948\) 0 0
\(949\) −12.0000 + 20.7846i −0.389536 + 0.674697i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38.1838i 1.23689i 0.785827 + 0.618447i \(0.212238\pi\)
−0.785827 + 0.618447i \(0.787762\pi\)
\(954\) 0 0
\(955\) −63.6396 36.7423i −2.05933 1.18895i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.5000 26.8468i −0.500000 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −69.2820 −2.23027
\(966\) 0 0
\(967\) −28.0000 −0.900419 −0.450210 0.892923i \(-0.648651\pi\)
−0.450210 + 0.892923i \(0.648651\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13.8564 24.0000i −0.444673 0.770197i 0.553356 0.832945i \(-0.313347\pi\)
−0.998029 + 0.0627481i \(0.980014\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.67423 + 2.12132i 0.117549 + 0.0678671i 0.557622 0.830095i \(-0.311714\pi\)
−0.440073 + 0.897962i \(0.645047\pi\)
\(978\) 0 0
\(979\) 44.0908i 1.40915i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.3205 30.0000i 0.552438 0.956851i −0.445659 0.895203i \(-0.647031\pi\)
0.998098 0.0616488i \(-0.0196359\pi\)
\(984\) 0 0
\(985\) 12.7279 7.34847i 0.405545 0.234142i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.34847 4.24264i 0.233668 0.134908i
\(990\) 0 0
\(991\) 13.0000 22.5167i 0.412959 0.715265i −0.582253 0.813008i \(-0.697829\pi\)
0.995212 + 0.0977423i \(0.0311621\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 84.8528i 2.69002i
\(996\) 0 0
\(997\) −25.4558 14.6969i −0.806195 0.465457i 0.0394380 0.999222i \(-0.487443\pi\)
−0.845633 + 0.533765i \(0.820777\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.t.b.521.1 8
3.2 odd 2 inner 1764.2.t.b.521.4 8
7.2 even 3 inner 1764.2.t.b.1097.2 8
7.3 odd 6 252.2.f.a.125.2 yes 4
7.4 even 3 252.2.f.a.125.3 yes 4
7.5 odd 6 inner 1764.2.t.b.1097.4 8
7.6 odd 2 inner 1764.2.t.b.521.3 8
21.2 odd 6 inner 1764.2.t.b.1097.3 8
21.5 even 6 inner 1764.2.t.b.1097.1 8
21.11 odd 6 252.2.f.a.125.1 4
21.17 even 6 252.2.f.a.125.4 yes 4
21.20 even 2 inner 1764.2.t.b.521.2 8
28.3 even 6 1008.2.k.b.881.1 4
28.11 odd 6 1008.2.k.b.881.4 4
35.3 even 12 6300.2.f.b.3149.8 8
35.4 even 6 6300.2.d.c.3401.4 4
35.17 even 12 6300.2.f.b.3149.2 8
35.18 odd 12 6300.2.f.b.3149.4 8
35.24 odd 6 6300.2.d.c.3401.2 4
35.32 odd 12 6300.2.f.b.3149.6 8
56.3 even 6 4032.2.k.d.3905.3 4
56.11 odd 6 4032.2.k.d.3905.2 4
56.45 odd 6 4032.2.k.a.3905.4 4
56.53 even 6 4032.2.k.a.3905.1 4
63.4 even 3 2268.2.x.i.1889.2 8
63.11 odd 6 2268.2.x.i.377.3 8
63.25 even 3 2268.2.x.i.377.1 8
63.31 odd 6 2268.2.x.i.1889.3 8
63.32 odd 6 2268.2.x.i.1889.4 8
63.38 even 6 2268.2.x.i.377.2 8
63.52 odd 6 2268.2.x.i.377.4 8
63.59 even 6 2268.2.x.i.1889.1 8
84.11 even 6 1008.2.k.b.881.2 4
84.59 odd 6 1008.2.k.b.881.3 4
105.17 odd 12 6300.2.f.b.3149.1 8
105.32 even 12 6300.2.f.b.3149.5 8
105.38 odd 12 6300.2.f.b.3149.7 8
105.53 even 12 6300.2.f.b.3149.3 8
105.59 even 6 6300.2.d.c.3401.1 4
105.74 odd 6 6300.2.d.c.3401.3 4
168.11 even 6 4032.2.k.d.3905.4 4
168.53 odd 6 4032.2.k.a.3905.3 4
168.59 odd 6 4032.2.k.d.3905.1 4
168.101 even 6 4032.2.k.a.3905.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.f.a.125.1 4 21.11 odd 6
252.2.f.a.125.2 yes 4 7.3 odd 6
252.2.f.a.125.3 yes 4 7.4 even 3
252.2.f.a.125.4 yes 4 21.17 even 6
1008.2.k.b.881.1 4 28.3 even 6
1008.2.k.b.881.2 4 84.11 even 6
1008.2.k.b.881.3 4 84.59 odd 6
1008.2.k.b.881.4 4 28.11 odd 6
1764.2.t.b.521.1 8 1.1 even 1 trivial
1764.2.t.b.521.2 8 21.20 even 2 inner
1764.2.t.b.521.3 8 7.6 odd 2 inner
1764.2.t.b.521.4 8 3.2 odd 2 inner
1764.2.t.b.1097.1 8 21.5 even 6 inner
1764.2.t.b.1097.2 8 7.2 even 3 inner
1764.2.t.b.1097.3 8 21.2 odd 6 inner
1764.2.t.b.1097.4 8 7.5 odd 6 inner
2268.2.x.i.377.1 8 63.25 even 3
2268.2.x.i.377.2 8 63.38 even 6
2268.2.x.i.377.3 8 63.11 odd 6
2268.2.x.i.377.4 8 63.52 odd 6
2268.2.x.i.1889.1 8 63.59 even 6
2268.2.x.i.1889.2 8 63.4 even 3
2268.2.x.i.1889.3 8 63.31 odd 6
2268.2.x.i.1889.4 8 63.32 odd 6
4032.2.k.a.3905.1 4 56.53 even 6
4032.2.k.a.3905.2 4 168.101 even 6
4032.2.k.a.3905.3 4 168.53 odd 6
4032.2.k.a.3905.4 4 56.45 odd 6
4032.2.k.d.3905.1 4 168.59 odd 6
4032.2.k.d.3905.2 4 56.11 odd 6
4032.2.k.d.3905.3 4 56.3 even 6
4032.2.k.d.3905.4 4 168.11 even 6
6300.2.d.c.3401.1 4 105.59 even 6
6300.2.d.c.3401.2 4 35.24 odd 6
6300.2.d.c.3401.3 4 105.74 odd 6
6300.2.d.c.3401.4 4 35.4 even 6
6300.2.f.b.3149.1 8 105.17 odd 12
6300.2.f.b.3149.2 8 35.17 even 12
6300.2.f.b.3149.3 8 105.53 even 12
6300.2.f.b.3149.4 8 35.18 odd 12
6300.2.f.b.3149.5 8 105.32 even 12
6300.2.f.b.3149.6 8 35.32 odd 12
6300.2.f.b.3149.7 8 105.38 odd 12
6300.2.f.b.3149.8 8 35.3 even 12