Properties

Label 2268.2.x.i.1889.1
Level $2268$
Weight $2$
Character 2268.1889
Analytic conductor $18.110$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,2,Mod(377,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.377");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.x (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1889.1
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1889
Dual form 2268.2.x.i.377.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 - 3.00000i) q^{5} +(-1.62132 - 2.09077i) q^{7} +(3.67423 + 2.12132i) q^{11} +(4.24264 - 2.44949i) q^{13} +3.46410 q^{17} -4.89898i q^{19} +(3.67423 - 2.12132i) q^{23} +(-3.50000 + 6.06218i) q^{25} +(3.67423 + 2.12132i) q^{29} +(-3.46410 + 8.48528i) q^{35} -8.00000 q^{37} +(1.73205 + 3.00000i) q^{41} +(1.00000 - 1.73205i) q^{43} +(3.46410 - 6.00000i) q^{47} +(-1.74264 + 6.77962i) q^{49} -12.7279i q^{53} -14.6969i q^{55} +(6.92820 + 12.0000i) q^{59} +(-8.48528 - 4.89898i) q^{61} +(-14.6969 - 8.48528i) q^{65} +(-4.00000 - 6.92820i) q^{67} +4.24264i q^{71} -4.89898i q^{73} +(-1.52192 - 11.1213i) q^{77} +(2.00000 - 3.46410i) q^{79} +(-3.46410 + 6.00000i) q^{83} +(-6.00000 - 10.3923i) q^{85} -10.3923 q^{89} +(-12.0000 - 4.89898i) q^{91} +(-14.6969 + 8.48528i) q^{95} +(-4.24264 - 2.44949i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} - 28 q^{25} - 64 q^{37} + 8 q^{43} + 20 q^{49} - 32 q^{67} + 16 q^{79} - 48 q^{85} - 96 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.73205 3.00000i −0.774597 1.34164i −0.935021 0.354593i \(-0.884620\pi\)
0.160424 0.987048i \(-0.448714\pi\)
\(6\) 0 0
\(7\) −1.62132 2.09077i −0.612801 0.790237i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.67423 + 2.12132i 1.10782 + 0.639602i 0.938265 0.345918i \(-0.112432\pi\)
0.169559 + 0.985520i \(0.445766\pi\)
\(12\) 0 0
\(13\) 4.24264 2.44949i 1.17670 0.679366i 0.221449 0.975172i \(-0.428921\pi\)
0.955248 + 0.295806i \(0.0955881\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.46410 0.840168 0.420084 0.907485i \(-0.362001\pi\)
0.420084 + 0.907485i \(0.362001\pi\)
\(18\) 0 0
\(19\) 4.89898i 1.12390i −0.827170 0.561951i \(-0.810051\pi\)
0.827170 0.561951i \(-0.189949\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.67423 2.12132i 0.766131 0.442326i −0.0653618 0.997862i \(-0.520820\pi\)
0.831493 + 0.555536i \(0.187487\pi\)
\(24\) 0 0
\(25\) −3.50000 + 6.06218i −0.700000 + 1.21244i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.67423 + 2.12132i 0.682288 + 0.393919i 0.800717 0.599043i \(-0.204452\pi\)
−0.118428 + 0.992963i \(0.537786\pi\)
\(30\) 0 0
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.46410 + 8.48528i −0.585540 + 1.43427i
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.73205 + 3.00000i 0.270501 + 0.468521i 0.968990 0.247099i \(-0.0794774\pi\)
−0.698489 + 0.715621i \(0.746144\pi\)
\(42\) 0 0
\(43\) 1.00000 1.73205i 0.152499 0.264135i −0.779647 0.626219i \(-0.784601\pi\)
0.932145 + 0.362084i \(0.117935\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.46410 6.00000i 0.505291 0.875190i −0.494690 0.869069i \(-0.664718\pi\)
0.999981 0.00612051i \(-0.00194823\pi\)
\(48\) 0 0
\(49\) −1.74264 + 6.77962i −0.248949 + 0.968517i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.7279i 1.74831i −0.485643 0.874157i \(-0.661414\pi\)
0.485643 0.874157i \(-0.338586\pi\)
\(54\) 0 0
\(55\) 14.6969i 1.98173i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.92820 + 12.0000i 0.901975 + 1.56227i 0.824927 + 0.565240i \(0.191216\pi\)
0.0770484 + 0.997027i \(0.475450\pi\)
\(60\) 0 0
\(61\) −8.48528 4.89898i −1.08643 0.627250i −0.153806 0.988101i \(-0.549153\pi\)
−0.932623 + 0.360851i \(0.882486\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −14.6969 8.48528i −1.82293 1.05247i
\(66\) 0 0
\(67\) −4.00000 6.92820i −0.488678 0.846415i 0.511237 0.859440i \(-0.329187\pi\)
−0.999915 + 0.0130248i \(0.995854\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.24264i 0.503509i 0.967791 + 0.251754i \(0.0810075\pi\)
−0.967791 + 0.251754i \(0.918992\pi\)
\(72\) 0 0
\(73\) 4.89898i 0.573382i −0.958023 0.286691i \(-0.907445\pi\)
0.958023 0.286691i \(-0.0925553\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.52192 11.1213i −0.173439 1.26739i
\(78\) 0 0
\(79\) 2.00000 3.46410i 0.225018 0.389742i −0.731307 0.682048i \(-0.761089\pi\)
0.956325 + 0.292306i \(0.0944227\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.46410 + 6.00000i −0.380235 + 0.658586i −0.991096 0.133152i \(-0.957490\pi\)
0.610861 + 0.791738i \(0.290823\pi\)
\(84\) 0 0
\(85\) −6.00000 10.3923i −0.650791 1.12720i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.3923 −1.10158 −0.550791 0.834643i \(-0.685674\pi\)
−0.550791 + 0.834643i \(0.685674\pi\)
\(90\) 0 0
\(91\) −12.0000 4.89898i −1.25794 0.513553i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −14.6969 + 8.48528i −1.50787 + 0.870572i
\(96\) 0 0
\(97\) −4.24264 2.44949i −0.430775 0.248708i 0.268902 0.963168i \(-0.413339\pi\)
−0.699677 + 0.714460i \(0.746673\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.19615 + 9.00000i −0.517036 + 0.895533i 0.482768 + 0.875748i \(0.339632\pi\)
−0.999804 + 0.0197851i \(0.993702\pi\)
\(102\) 0 0
\(103\) 8.48528 4.89898i 0.836080 0.482711i −0.0198501 0.999803i \(-0.506319\pi\)
0.855930 + 0.517092i \(0.172986\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.24264i 0.410152i −0.978746 0.205076i \(-0.934256\pi\)
0.978746 0.205076i \(-0.0657441\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.0227 + 6.36396i −1.03693 + 0.598671i −0.918962 0.394346i \(-0.870971\pi\)
−0.117967 + 0.993018i \(0.537638\pi\)
\(114\) 0 0
\(115\) −12.7279 7.34847i −1.18688 0.685248i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.61642 7.24264i −0.514856 0.663932i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.3923 18.0000i −0.907980 1.57267i −0.816866 0.576827i \(-0.804291\pi\)
−0.0911134 0.995841i \(-0.529043\pi\)
\(132\) 0 0
\(133\) −10.2426 + 7.94282i −0.888150 + 0.688729i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.67423 + 2.12132i 0.313911 + 0.181237i 0.648675 0.761065i \(-0.275323\pi\)
−0.334764 + 0.942302i \(0.608657\pi\)
\(138\) 0 0
\(139\) 8.48528 4.89898i 0.719712 0.415526i −0.0949346 0.995484i \(-0.530264\pi\)
0.814647 + 0.579957i \(0.196931\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 20.7846 1.73810
\(144\) 0 0
\(145\) 14.6969i 1.22051i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.0227 6.36396i 0.903015 0.521356i 0.0248379 0.999691i \(-0.492093\pi\)
0.878177 + 0.478335i \(0.158760\pi\)
\(150\) 0 0
\(151\) −11.0000 + 19.0526i −0.895167 + 1.55048i −0.0615699 + 0.998103i \(0.519611\pi\)
−0.833597 + 0.552372i \(0.813723\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −10.3923 4.24264i −0.819028 0.334367i
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.46410 + 6.00000i 0.268060 + 0.464294i 0.968361 0.249554i \(-0.0802840\pi\)
−0.700301 + 0.713848i \(0.746951\pi\)
\(168\) 0 0
\(169\) 5.50000 9.52628i 0.423077 0.732791i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.19615 + 9.00000i −0.395056 + 0.684257i −0.993108 0.117200i \(-0.962608\pi\)
0.598052 + 0.801457i \(0.295942\pi\)
\(174\) 0 0
\(175\) 18.3492 2.51104i 1.38707 0.189817i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.24264i 0.317110i 0.987350 + 0.158555i \(0.0506835\pi\)
−0.987350 + 0.158555i \(0.949317\pi\)
\(180\) 0 0
\(181\) 4.89898i 0.364138i 0.983286 + 0.182069i \(0.0582795\pi\)
−0.983286 + 0.182069i \(0.941721\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.8564 + 24.0000i 1.01874 + 1.76452i
\(186\) 0 0
\(187\) 12.7279 + 7.34847i 0.930758 + 0.537373i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.3712 + 10.6066i 1.32929 + 0.767467i 0.985190 0.171466i \(-0.0548503\pi\)
0.344101 + 0.938933i \(0.388184\pi\)
\(192\) 0 0
\(193\) 10.0000 + 17.3205i 0.719816 + 1.24676i 0.961073 + 0.276296i \(0.0891071\pi\)
−0.241257 + 0.970461i \(0.577560\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.24264i 0.302276i −0.988513 0.151138i \(-0.951706\pi\)
0.988513 0.151138i \(-0.0482937\pi\)
\(198\) 0 0
\(199\) 24.4949i 1.73640i −0.496217 0.868199i \(-0.665278\pi\)
0.496217 0.868199i \(-0.334722\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.52192 11.1213i −0.106818 0.780564i
\(204\) 0 0
\(205\) 6.00000 10.3923i 0.419058 0.725830i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.3923 18.0000i 0.718851 1.24509i
\(210\) 0 0
\(211\) −5.00000 8.66025i −0.344214 0.596196i 0.640996 0.767544i \(-0.278521\pi\)
−0.985211 + 0.171347i \(0.945188\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.92820 −0.472500
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 14.6969 8.48528i 0.988623 0.570782i
\(222\) 0 0
\(223\) −12.7279 7.34847i −0.852325 0.492090i 0.00910984 0.999959i \(-0.497100\pi\)
−0.861435 + 0.507869i \(0.830434\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0 0
\(229\) −12.7279 + 7.34847i −0.841085 + 0.485601i −0.857633 0.514263i \(-0.828066\pi\)
0.0165480 + 0.999863i \(0.494732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.2132i 1.38972i 0.719144 + 0.694862i \(0.244534\pi\)
−0.719144 + 0.694862i \(0.755466\pi\)
\(234\) 0 0
\(235\) −24.0000 −1.56559
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 25.7196 14.8492i 1.66367 0.960518i 0.692723 0.721204i \(-0.256411\pi\)
0.970942 0.239314i \(-0.0769225\pi\)
\(240\) 0 0
\(241\) 4.24264 + 2.44949i 0.273293 + 0.157786i 0.630383 0.776284i \(-0.282898\pi\)
−0.357090 + 0.934070i \(0.616231\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 23.3572 6.51472i 1.49224 0.416210i
\(246\) 0 0
\(247\) −12.0000 20.7846i −0.763542 1.32249i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.92820 −0.437304 −0.218652 0.975803i \(-0.570166\pi\)
−0.218652 + 0.975803i \(0.570166\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.19615 + 9.00000i 0.324127 + 0.561405i 0.981335 0.192304i \(-0.0615961\pi\)
−0.657208 + 0.753709i \(0.728263\pi\)
\(258\) 0 0
\(259\) 12.9706 + 16.7262i 0.805952 + 1.03931i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.67423 2.12132i −0.226563 0.130806i 0.382422 0.923988i \(-0.375090\pi\)
−0.608985 + 0.793181i \(0.708423\pi\)
\(264\) 0 0
\(265\) −38.1838 + 22.0454i −2.34561 + 1.35424i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.46410 −0.211210 −0.105605 0.994408i \(-0.533678\pi\)
−0.105605 + 0.994408i \(0.533678\pi\)
\(270\) 0 0
\(271\) 19.5959i 1.19037i 0.803590 + 0.595184i \(0.202921\pi\)
−0.803590 + 0.595184i \(0.797079\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −25.7196 + 14.8492i −1.55095 + 0.895443i
\(276\) 0 0
\(277\) −1.00000 + 1.73205i −0.0600842 + 0.104069i −0.894503 0.447062i \(-0.852470\pi\)
0.834419 + 0.551131i \(0.185804\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3.67423 2.12132i −0.219186 0.126547i 0.386387 0.922337i \(-0.373723\pi\)
−0.605574 + 0.795789i \(0.707056\pi\)
\(282\) 0 0
\(283\) 12.7279 7.34847i 0.756596 0.436821i −0.0714760 0.997442i \(-0.522771\pi\)
0.828072 + 0.560621i \(0.189438\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.46410 8.48528i 0.204479 0.500870i
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −8.66025 15.0000i −0.505937 0.876309i −0.999976 0.00686959i \(-0.997813\pi\)
0.494039 0.869440i \(-0.335520\pi\)
\(294\) 0 0
\(295\) 24.0000 41.5692i 1.39733 2.42025i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.3923 18.0000i 0.601003 1.04097i
\(300\) 0 0
\(301\) −5.24264 + 0.717439i −0.302181 + 0.0413525i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 33.9411i 1.94346i
\(306\) 0 0
\(307\) 14.6969i 0.838799i 0.907802 + 0.419399i \(0.137759\pi\)
−0.907802 + 0.419399i \(0.862241\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.92820 12.0000i −0.392862 0.680458i 0.599963 0.800027i \(-0.295182\pi\)
−0.992826 + 0.119570i \(0.961848\pi\)
\(312\) 0 0
\(313\) −16.9706 9.79796i −0.959233 0.553813i −0.0632961 0.997995i \(-0.520161\pi\)
−0.895937 + 0.444181i \(0.853495\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.0227 + 6.36396i 0.619097 + 0.357436i 0.776517 0.630096i \(-0.216984\pi\)
−0.157421 + 0.987532i \(0.550318\pi\)
\(318\) 0 0
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.9706i 0.944267i
\(324\) 0 0
\(325\) 34.2929i 1.90223i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −18.1610 + 2.48528i −1.00125 + 0.137018i
\(330\) 0 0
\(331\) −11.0000 + 19.0526i −0.604615 + 1.04722i 0.387498 + 0.921871i \(0.373340\pi\)
−0.992112 + 0.125353i \(0.959994\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −13.8564 + 24.0000i −0.757056 + 1.31126i
\(336\) 0 0
\(337\) −8.00000 13.8564i −0.435788 0.754807i 0.561572 0.827428i \(-0.310197\pi\)
−0.997360 + 0.0726214i \(0.976864\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 17.0000 7.34847i 0.917914 0.396780i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.3712 10.6066i 0.986216 0.569392i 0.0820751 0.996626i \(-0.473845\pi\)
0.904141 + 0.427234i \(0.140512\pi\)
\(348\) 0 0
\(349\) 16.9706 + 9.79796i 0.908413 + 0.524473i 0.879920 0.475121i \(-0.157596\pi\)
0.0284931 + 0.999594i \(0.490929\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.73205 + 3.00000i −0.0921878 + 0.159674i −0.908431 0.418034i \(-0.862719\pi\)
0.816244 + 0.577708i \(0.196053\pi\)
\(354\) 0 0
\(355\) 12.7279 7.34847i 0.675528 0.390016i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.2132i 1.11959i −0.828631 0.559795i \(-0.810880\pi\)
0.828631 0.559795i \(-0.189120\pi\)
\(360\) 0 0
\(361\) −5.00000 −0.263158
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −14.6969 + 8.48528i −0.769273 + 0.444140i
\(366\) 0 0
\(367\) 21.2132 + 12.2474i 1.10732 + 0.639312i 0.938134 0.346272i \(-0.112553\pi\)
0.169186 + 0.985584i \(0.445886\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −26.6112 + 20.6360i −1.38158 + 1.07137i
\(372\) 0 0
\(373\) −1.00000 1.73205i −0.0517780 0.0896822i 0.838975 0.544170i \(-0.183156\pi\)
−0.890753 + 0.454488i \(0.849822\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.7846 1.07046
\(378\) 0 0
\(379\) 10.0000 0.513665 0.256833 0.966456i \(-0.417321\pi\)
0.256833 + 0.966456i \(0.417321\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.46410 6.00000i −0.177007 0.306586i 0.763847 0.645398i \(-0.223308\pi\)
−0.940854 + 0.338812i \(0.889975\pi\)
\(384\) 0 0
\(385\) −30.7279 + 23.8284i −1.56604 + 1.21441i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.3712 10.6066i −0.931455 0.537776i −0.0441839 0.999023i \(-0.514069\pi\)
−0.887272 + 0.461247i \(0.847402\pi\)
\(390\) 0 0
\(391\) 12.7279 7.34847i 0.643679 0.371628i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −13.8564 −0.697191
\(396\) 0 0
\(397\) 29.3939i 1.47524i 0.675218 + 0.737618i \(0.264050\pi\)
−0.675218 + 0.737618i \(0.735950\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −18.3712 + 10.6066i −0.917413 + 0.529668i −0.882809 0.469733i \(-0.844350\pi\)
−0.0346039 + 0.999401i \(0.511017\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −29.3939 16.9706i −1.45700 0.841200i
\(408\) 0 0
\(409\) −4.24264 + 2.44949i −0.209785 + 0.121119i −0.601212 0.799090i \(-0.705315\pi\)
0.391426 + 0.920209i \(0.371982\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 13.8564 33.9411i 0.681829 1.67013i
\(414\) 0 0
\(415\) 24.0000 1.17811
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.8564 + 24.0000i 0.676930 + 1.17248i 0.975901 + 0.218215i \(0.0700233\pi\)
−0.298971 + 0.954262i \(0.596643\pi\)
\(420\) 0 0
\(421\) 17.0000 29.4449i 0.828529 1.43505i −0.0706626 0.997500i \(-0.522511\pi\)
0.899192 0.437555i \(-0.144155\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.1244 + 21.0000i −0.588118 + 1.01865i
\(426\) 0 0
\(427\) 3.51472 + 25.6836i 0.170089 + 1.24292i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.24264i 0.204361i −0.994766 0.102180i \(-0.967418\pi\)
0.994766 0.102180i \(-0.0325819\pi\)
\(432\) 0 0
\(433\) 29.3939i 1.41258i 0.707923 + 0.706290i \(0.249632\pi\)
−0.707923 + 0.706290i \(0.750368\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.3923 18.0000i −0.497131 0.861057i
\(438\) 0 0
\(439\) 12.7279 + 7.34847i 0.607471 + 0.350723i 0.771975 0.635653i \(-0.219269\pi\)
−0.164504 + 0.986376i \(0.552602\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.0227 + 6.36396i 0.523704 + 0.302361i 0.738449 0.674309i \(-0.235559\pi\)
−0.214745 + 0.976670i \(0.568892\pi\)
\(444\) 0 0
\(445\) 18.0000 + 31.1769i 0.853282 + 1.47793i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.24264i 0.200223i 0.994976 + 0.100111i \(0.0319199\pi\)
−0.994976 + 0.100111i \(0.968080\pi\)
\(450\) 0 0
\(451\) 14.6969i 0.692052i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.08767 + 44.4853i 0.285394 + 2.08550i
\(456\) 0 0
\(457\) 4.00000 6.92820i 0.187112 0.324088i −0.757174 0.653213i \(-0.773421\pi\)
0.944286 + 0.329125i \(0.106754\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.73205 3.00000i 0.0806696 0.139724i −0.822868 0.568232i \(-0.807627\pi\)
0.903538 + 0.428508i \(0.140961\pi\)
\(462\) 0 0
\(463\) −10.0000 17.3205i −0.464739 0.804952i 0.534450 0.845200i \(-0.320519\pi\)
−0.999190 + 0.0402476i \(0.987185\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.7846 0.961797 0.480899 0.876776i \(-0.340311\pi\)
0.480899 + 0.876776i \(0.340311\pi\)
\(468\) 0 0
\(469\) −8.00000 + 19.5959i −0.369406 + 0.904855i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.34847 4.24264i 0.337883 0.195077i
\(474\) 0 0
\(475\) 29.6985 + 17.1464i 1.36266 + 0.786732i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.92820 12.0000i 0.316558 0.548294i −0.663210 0.748434i \(-0.730806\pi\)
0.979767 + 0.200140i \(0.0641396\pi\)
\(480\) 0 0
\(481\) −33.9411 + 19.5959i −1.54758 + 0.893497i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.9706i 0.770594i
\(486\) 0 0
\(487\) −14.0000 −0.634401 −0.317200 0.948359i \(-0.602743\pi\)
−0.317200 + 0.948359i \(0.602743\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.0227 6.36396i 0.497448 0.287202i −0.230211 0.973141i \(-0.573942\pi\)
0.727659 + 0.685939i \(0.240608\pi\)
\(492\) 0 0
\(493\) 12.7279 + 7.34847i 0.573237 + 0.330958i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.87039 6.87868i 0.397891 0.308551i
\(498\) 0 0
\(499\) −5.00000 8.66025i −0.223831 0.387686i 0.732137 0.681157i \(-0.238523\pi\)
−0.955968 + 0.293471i \(0.905190\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −34.6410 −1.54457 −0.772283 0.635278i \(-0.780885\pi\)
−0.772283 + 0.635278i \(0.780885\pi\)
\(504\) 0 0
\(505\) 36.0000 1.60198
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.1244 + 21.0000i 0.537403 + 0.930809i 0.999043 + 0.0437414i \(0.0139278\pi\)
−0.461640 + 0.887067i \(0.652739\pi\)
\(510\) 0 0
\(511\) −10.2426 + 7.94282i −0.453108 + 0.351369i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −29.3939 16.9706i −1.29525 0.747812i
\(516\) 0 0
\(517\) 25.4558 14.6969i 1.11955 0.646371i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.46410 −0.151765 −0.0758825 0.997117i \(-0.524177\pi\)
−0.0758825 + 0.997117i \(0.524177\pi\)
\(522\) 0 0
\(523\) 39.1918i 1.71374i −0.515533 0.856870i \(-0.672406\pi\)
0.515533 0.856870i \(-0.327594\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −2.50000 + 4.33013i −0.108696 + 0.188266i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 14.6969 + 8.48528i 0.636595 + 0.367538i
\(534\) 0 0
\(535\) −12.7279 + 7.34847i −0.550276 + 0.317702i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −20.7846 + 21.2132i −0.895257 + 0.913717i
\(540\) 0 0
\(541\) 26.0000 1.11783 0.558914 0.829226i \(-0.311218\pi\)
0.558914 + 0.829226i \(0.311218\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.92820 12.0000i −0.296772 0.514024i
\(546\) 0 0
\(547\) 20.0000 34.6410i 0.855138 1.48114i −0.0213785 0.999771i \(-0.506805\pi\)
0.876517 0.481371i \(-0.159861\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.3923 18.0000i 0.442727 0.766826i
\(552\) 0 0
\(553\) −10.4853 + 1.43488i −0.445880 + 0.0610172i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.24264i 0.179766i −0.995952 0.0898832i \(-0.971351\pi\)
0.995952 0.0898832i \(-0.0286494\pi\)
\(558\) 0 0
\(559\) 9.79796i 0.414410i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.3923 18.0000i −0.437983 0.758610i 0.559550 0.828796i \(-0.310974\pi\)
−0.997534 + 0.0701867i \(0.977640\pi\)
\(564\) 0 0
\(565\) 38.1838 + 22.0454i 1.60640 + 0.927457i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.67423 2.12132i −0.154032 0.0889304i 0.421003 0.907059i \(-0.361678\pi\)
−0.575035 + 0.818129i \(0.695012\pi\)
\(570\) 0 0
\(571\) 8.00000 + 13.8564i 0.334790 + 0.579873i 0.983444 0.181210i \(-0.0580014\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 29.6985i 1.23851i
\(576\) 0 0
\(577\) 9.79796i 0.407894i 0.978982 + 0.203947i \(0.0653771\pi\)
−0.978982 + 0.203947i \(0.934623\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 18.1610 2.48528i 0.753447 0.103107i
\(582\) 0 0
\(583\) 27.0000 46.7654i 1.11823 1.93682i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.3923 18.0000i 0.428936 0.742940i −0.567843 0.823137i \(-0.692222\pi\)
0.996779 + 0.0801976i \(0.0255551\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.3205 0.711268 0.355634 0.934625i \(-0.384265\pi\)
0.355634 + 0.934625i \(0.384265\pi\)
\(594\) 0 0
\(595\) −12.0000 + 29.3939i −0.491952 + 1.20503i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.67423 + 2.12132i −0.150125 + 0.0866748i −0.573181 0.819429i \(-0.694291\pi\)
0.423056 + 0.906104i \(0.360957\pi\)
\(600\) 0 0
\(601\) −25.4558 14.6969i −1.03837 0.599501i −0.118996 0.992895i \(-0.537967\pi\)
−0.919370 + 0.393394i \(0.871301\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 12.1244 21.0000i 0.492925 0.853771i
\(606\) 0 0
\(607\) 4.24264 2.44949i 0.172203 0.0994217i −0.411421 0.911445i \(-0.634967\pi\)
0.583624 + 0.812024i \(0.301634\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 33.9411i 1.37311i
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11.0227 + 6.36396i −0.443757 + 0.256203i −0.705190 0.709018i \(-0.749138\pi\)
0.261433 + 0.965222i \(0.415805\pi\)
\(618\) 0 0
\(619\) 8.48528 + 4.89898i 0.341052 + 0.196907i 0.660737 0.750617i \(-0.270244\pi\)
−0.319685 + 0.947524i \(0.603577\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.8493 + 21.7279i 0.675051 + 0.870511i
\(624\) 0 0
\(625\) 5.50000 + 9.52628i 0.220000 + 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −27.7128 −1.10498
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.92820 + 12.0000i 0.274937 + 0.476205i
\(636\) 0 0
\(637\) 9.21320 + 33.0321i 0.365040 + 1.30878i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 25.7196 + 14.8492i 1.01586 + 0.586510i 0.912903 0.408176i \(-0.133835\pi\)
0.102961 + 0.994685i \(0.467168\pi\)
\(642\) 0 0
\(643\) −12.7279 + 7.34847i −0.501940 + 0.289795i −0.729514 0.683965i \(-0.760254\pi\)
0.227574 + 0.973761i \(0.426921\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −41.5692 −1.63425 −0.817127 0.576457i \(-0.804435\pi\)
−0.817127 + 0.576457i \(0.804435\pi\)
\(648\) 0 0
\(649\) 58.7878i 2.30762i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 40.4166 23.3345i 1.58162 0.913150i 0.587000 0.809587i \(-0.300309\pi\)
0.994623 0.103564i \(-0.0330246\pi\)
\(654\) 0 0
\(655\) −36.0000 + 62.3538i −1.40664 + 2.43637i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.4166 + 23.3345i 1.57441 + 0.908984i 0.995619 + 0.0935057i \(0.0298073\pi\)
0.578788 + 0.815478i \(0.303526\pi\)
\(660\) 0 0
\(661\) −33.9411 + 19.5959i −1.32016 + 0.762193i −0.983753 0.179525i \(-0.942544\pi\)
−0.336403 + 0.941718i \(0.609211\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 41.5692 + 16.9706i 1.61199 + 0.658090i
\(666\) 0 0
\(667\) 18.0000 0.696963
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −20.7846 36.0000i −0.802381 1.38976i
\(672\) 0 0
\(673\) 10.0000 17.3205i 0.385472 0.667657i −0.606363 0.795188i \(-0.707372\pi\)
0.991835 + 0.127532i \(0.0407054\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15.5885 + 27.0000i −0.599113 + 1.03769i 0.393839 + 0.919179i \(0.371147\pi\)
−0.992952 + 0.118515i \(0.962187\pi\)
\(678\) 0 0
\(679\) 1.75736 + 12.8418i 0.0674413 + 0.492823i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.7279i 0.487020i 0.969898 + 0.243510i \(0.0782989\pi\)
−0.969898 + 0.243510i \(0.921701\pi\)
\(684\) 0 0
\(685\) 14.6969i 0.561541i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −31.1769 54.0000i −1.18775 2.05724i
\(690\) 0 0
\(691\) −25.4558 14.6969i −0.968386 0.559098i −0.0696421 0.997572i \(-0.522186\pi\)
−0.898744 + 0.438474i \(0.855519\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −29.3939 16.9706i −1.11497 0.643730i
\(696\) 0 0
\(697\) 6.00000 + 10.3923i 0.227266 + 0.393637i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.7279i 0.480727i 0.970683 + 0.240363i \(0.0772666\pi\)
−0.970683 + 0.240363i \(0.922733\pi\)
\(702\) 0 0
\(703\) 39.1918i 1.47815i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 27.2416 3.72792i 1.02452 0.140203i
\(708\) 0 0
\(709\) −2.00000 + 3.46410i −0.0751116 + 0.130097i −0.901135 0.433539i \(-0.857265\pi\)
0.826023 + 0.563636i \(0.190598\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −36.0000 62.3538i −1.34632 2.33190i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 27.7128 1.03351 0.516757 0.856132i \(-0.327139\pi\)
0.516757 + 0.856132i \(0.327139\pi\)
\(720\) 0 0
\(721\) −24.0000 9.79796i −0.893807 0.364895i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −25.7196 + 14.8492i −0.955204 + 0.551487i
\(726\) 0 0
\(727\) 25.4558 + 14.6969i 0.944105 + 0.545079i 0.891245 0.453523i \(-0.149833\pi\)
0.0528602 + 0.998602i \(0.483166\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.46410 6.00000i 0.128124 0.221918i
\(732\) 0 0
\(733\) 38.1838 22.0454i 1.41035 0.814266i 0.414929 0.909854i \(-0.363807\pi\)
0.995421 + 0.0955883i \(0.0304732\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 33.9411i 1.25024i
\(738\) 0 0
\(739\) −16.0000 −0.588570 −0.294285 0.955718i \(-0.595081\pi\)
−0.294285 + 0.955718i \(0.595081\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.67423 + 2.12132i −0.134795 + 0.0778237i −0.565881 0.824487i \(-0.691464\pi\)
0.431086 + 0.902311i \(0.358130\pi\)
\(744\) 0 0
\(745\) −38.1838 22.0454i −1.39894 0.807681i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −8.87039 + 6.87868i −0.324117 + 0.251341i
\(750\) 0 0
\(751\) −5.00000 8.66025i −0.182453 0.316017i 0.760263 0.649616i \(-0.225070\pi\)
−0.942715 + 0.333599i \(0.891737\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 76.2102 2.77357
\(756\) 0 0
\(757\) 28.0000 1.01768 0.508839 0.860862i \(-0.330075\pi\)
0.508839 + 0.860862i \(0.330075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.5167 + 39.0000i 0.816228 + 1.41375i 0.908443 + 0.418010i \(0.137272\pi\)
−0.0922143 + 0.995739i \(0.529394\pi\)
\(762\) 0 0
\(763\) −6.48528 8.36308i −0.234783 0.302764i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 58.7878 + 33.9411i 2.12270 + 1.22554i
\(768\) 0 0
\(769\) 8.48528 4.89898i 0.305987 0.176662i −0.339142 0.940735i \(-0.610137\pi\)
0.645129 + 0.764073i \(0.276803\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17.3205 −0.622975 −0.311488 0.950250i \(-0.600827\pi\)
−0.311488 + 0.950250i \(0.600827\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.6969 8.48528i 0.526572 0.304017i
\(780\) 0 0
\(781\) −9.00000 + 15.5885i −0.322045 + 0.557799i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 16.9706 9.79796i 0.604935 0.349260i −0.166045 0.986118i \(-0.553100\pi\)
0.770981 + 0.636859i \(0.219766\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 31.1769 + 12.7279i 1.10852 + 0.452553i
\(792\) 0 0
\(793\) −48.0000 −1.70453
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.19615 + 9.00000i 0.184057 + 0.318796i 0.943258 0.332060i \(-0.107744\pi\)
−0.759201 + 0.650856i \(0.774410\pi\)
\(798\) 0 0
\(799\) 12.0000 20.7846i 0.424529 0.735307i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.3923 18.0000i 0.366736 0.635206i
\(804\) 0 0
\(805\) 5.27208 + 38.5254i 0.185816 + 1.35784i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 38.1838i 1.34247i −0.741245 0.671235i \(-0.765764\pi\)
0.741245 0.671235i \(-0.234236\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.8564 24.0000i −0.485369 0.840683i
\(816\) 0 0
\(817\) −8.48528 4.89898i −0.296862 0.171394i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −11.0227 6.36396i −0.384695 0.222104i 0.295164 0.955447i \(-0.404626\pi\)
−0.679859 + 0.733343i \(0.737959\pi\)
\(822\) 0 0
\(823\) −10.0000 17.3205i −0.348578 0.603755i 0.637419 0.770517i \(-0.280002\pi\)
−0.985997 + 0.166762i \(0.946669\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.7279i 0.442593i −0.975207 0.221297i \(-0.928971\pi\)
0.975207 0.221297i \(-0.0710289\pi\)
\(828\) 0 0
\(829\) 24.4949i 0.850743i −0.905019 0.425371i \(-0.860143\pi\)
0.905019 0.425371i \(-0.139857\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.03668 + 23.4853i −0.209159 + 0.813717i
\(834\) 0 0
\(835\) 12.0000 20.7846i 0.415277 0.719281i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −17.3205 + 30.0000i −0.597970 + 1.03572i 0.395150 + 0.918617i \(0.370693\pi\)
−0.993120 + 0.117098i \(0.962641\pi\)
\(840\) 0 0
\(841\) −5.50000 9.52628i −0.189655 0.328492i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −38.1051 −1.31086
\(846\) 0 0
\(847\) 7.00000 17.1464i 0.240523 0.589158i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −29.3939 + 16.9706i −1.00761 + 0.581743i
\(852\) 0 0
\(853\) 8.48528 + 4.89898i 0.290531 + 0.167738i 0.638181 0.769886i \(-0.279687\pi\)
−0.347651 + 0.937624i \(0.613020\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.1244 + 21.0000i −0.414160 + 0.717346i −0.995340 0.0964289i \(-0.969258\pi\)
0.581180 + 0.813775i \(0.302591\pi\)
\(858\) 0 0
\(859\) 4.24264 2.44949i 0.144757 0.0835755i −0.425872 0.904783i \(-0.640033\pi\)
0.570629 + 0.821208i \(0.306699\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 55.1543i 1.87748i 0.344633 + 0.938738i \(0.388003\pi\)
−0.344633 + 0.938738i \(0.611997\pi\)
\(864\) 0 0
\(865\) 36.0000 1.22404
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 14.6969 8.48528i 0.498559 0.287843i
\(870\) 0 0
\(871\) −33.9411 19.5959i −1.15005 0.663982i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −11.2328 14.4853i −0.379739 0.489692i
\(876\) 0 0
\(877\) −1.00000 1.73205i −0.0337676 0.0584872i 0.848648 0.528958i \(-0.177417\pi\)
−0.882415 + 0.470471i \(0.844084\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −31.1769 −1.05038 −0.525188 0.850986i \(-0.676005\pi\)
−0.525188 + 0.850986i \(0.676005\pi\)
\(882\) 0 0
\(883\) 46.0000 1.54802 0.774012 0.633171i \(-0.218247\pi\)
0.774012 + 0.633171i \(0.218247\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.46410 + 6.00000i 0.116313 + 0.201460i 0.918304 0.395876i \(-0.129559\pi\)
−0.801991 + 0.597336i \(0.796226\pi\)
\(888\) 0 0
\(889\) 6.48528 + 8.36308i 0.217509 + 0.280489i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −29.3939 16.9706i −0.983629 0.567898i
\(894\) 0 0
\(895\) 12.7279 7.34847i 0.425448 0.245632i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 44.0908i 1.46888i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14.6969 8.48528i 0.488543 0.282060i
\(906\) 0 0
\(907\) −11.0000 + 19.0526i −0.365249 + 0.632630i −0.988816 0.149140i \(-0.952349\pi\)
0.623567 + 0.781770i \(0.285683\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −18.3712 10.6066i −0.608664 0.351412i 0.163778 0.986497i \(-0.447632\pi\)
−0.772442 + 0.635085i \(0.780965\pi\)
\(912\) 0 0
\(913\) −25.4558 + 14.6969i −0.842465 + 0.486398i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −20.7846 + 50.9117i −0.686368 + 1.68125i
\(918\) 0 0
\(919\) −14.0000 −0.461817 −0.230909 0.972975i \(-0.574170\pi\)
−0.230909 + 0.972975i \(0.574170\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 10.3923 + 18.0000i 0.342067 + 0.592477i
\(924\) 0 0
\(925\) 28.0000 48.4974i 0.920634 1.59459i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22.5167 + 39.0000i −0.738748 + 1.27955i 0.214312 + 0.976765i \(0.431249\pi\)
−0.953059 + 0.302783i \(0.902084\pi\)
\(930\) 0 0
\(931\) 33.2132 + 8.53716i 1.08852 + 0.279794i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 50.9117i 1.66499i
\(936\) 0 0
\(937\) 19.5959i 0.640171i −0.947389 0.320085i \(-0.896288\pi\)
0.947389 0.320085i \(-0.103712\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 22.5167 + 39.0000i 0.734022 + 1.27136i 0.955151 + 0.296119i \(0.0956925\pi\)
−0.221129 + 0.975245i \(0.570974\pi\)
\(942\) 0 0
\(943\) 12.7279 + 7.34847i 0.414478 + 0.239299i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −25.7196 14.8492i −0.835776 0.482536i 0.0200502 0.999799i \(-0.493617\pi\)
−0.855826 + 0.517263i \(0.826951\pi\)
\(948\) 0 0
\(949\) −12.0000 20.7846i −0.389536 0.674697i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38.1838i 1.23689i −0.785827 0.618447i \(-0.787762\pi\)
0.785827 0.618447i \(-0.212238\pi\)
\(954\) 0 0
\(955\) 73.4847i 2.37791i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.52192 11.1213i −0.0491453 0.359126i
\(960\) 0 0
\(961\) −15.5000 + 26.8468i −0.500000 + 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 34.6410 60.0000i 1.11513 1.93147i
\(966\) 0 0
\(967\) 14.0000 + 24.2487i 0.450210 + 0.779786i 0.998399 0.0565684i \(-0.0180159\pi\)
−0.548189 + 0.836354i \(0.684683\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 27.7128 0.889346 0.444673 0.895693i \(-0.353320\pi\)
0.444673 + 0.895693i \(0.353320\pi\)
\(972\) 0 0
\(973\) −24.0000 9.79796i −0.769405 0.314108i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.67423 2.12132i 0.117549 0.0678671i −0.440073 0.897962i \(-0.645047\pi\)
0.557622 + 0.830095i \(0.311714\pi\)
\(978\) 0 0
\(979\) −38.1838 22.0454i −1.22036 0.704574i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.3205 30.0000i 0.552438 0.956851i −0.445659 0.895203i \(-0.647031\pi\)
0.998098 0.0616488i \(-0.0196359\pi\)
\(984\) 0 0
\(985\) −12.7279 + 7.34847i −0.405545 + 0.234142i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.48528i 0.269816i
\(990\) 0 0
\(991\) −26.0000 −0.825917 −0.412959 0.910750i \(-0.635505\pi\)
−0.412959 + 0.910750i \(0.635505\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −73.4847 + 42.4264i −2.32962 + 1.34501i
\(996\) 0 0
\(997\) 25.4558 + 14.6969i 0.806195 + 0.465457i 0.845633 0.533765i \(-0.179223\pi\)
−0.0394380 + 0.999222i \(0.512557\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.x.i.1889.1 8
3.2 odd 2 inner 2268.2.x.i.1889.3 8
7.6 odd 2 inner 2268.2.x.i.1889.4 8
9.2 odd 6 252.2.f.a.125.2 yes 4
9.4 even 3 inner 2268.2.x.i.377.2 8
9.5 odd 6 inner 2268.2.x.i.377.4 8
9.7 even 3 252.2.f.a.125.4 yes 4
21.20 even 2 inner 2268.2.x.i.1889.2 8
36.7 odd 6 1008.2.k.b.881.3 4
36.11 even 6 1008.2.k.b.881.1 4
45.2 even 12 6300.2.f.b.3149.2 8
45.7 odd 12 6300.2.f.b.3149.1 8
45.29 odd 6 6300.2.d.c.3401.2 4
45.34 even 6 6300.2.d.c.3401.1 4
45.38 even 12 6300.2.f.b.3149.8 8
45.43 odd 12 6300.2.f.b.3149.7 8
63.2 odd 6 1764.2.t.b.521.3 8
63.11 odd 6 1764.2.t.b.1097.4 8
63.13 odd 6 inner 2268.2.x.i.377.3 8
63.16 even 3 1764.2.t.b.521.2 8
63.20 even 6 252.2.f.a.125.3 yes 4
63.25 even 3 1764.2.t.b.1097.1 8
63.34 odd 6 252.2.f.a.125.1 4
63.38 even 6 1764.2.t.b.1097.2 8
63.41 even 6 inner 2268.2.x.i.377.1 8
63.47 even 6 1764.2.t.b.521.1 8
63.52 odd 6 1764.2.t.b.1097.3 8
63.61 odd 6 1764.2.t.b.521.4 8
72.11 even 6 4032.2.k.d.3905.3 4
72.29 odd 6 4032.2.k.a.3905.4 4
72.43 odd 6 4032.2.k.d.3905.1 4
72.61 even 6 4032.2.k.a.3905.2 4
252.83 odd 6 1008.2.k.b.881.4 4
252.223 even 6 1008.2.k.b.881.2 4
315.34 odd 6 6300.2.d.c.3401.3 4
315.83 odd 12 6300.2.f.b.3149.4 8
315.97 even 12 6300.2.f.b.3149.5 8
315.209 even 6 6300.2.d.c.3401.4 4
315.223 even 12 6300.2.f.b.3149.3 8
315.272 odd 12 6300.2.f.b.3149.6 8
504.83 odd 6 4032.2.k.d.3905.2 4
504.349 odd 6 4032.2.k.a.3905.3 4
504.461 even 6 4032.2.k.a.3905.1 4
504.475 even 6 4032.2.k.d.3905.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.f.a.125.1 4 63.34 odd 6
252.2.f.a.125.2 yes 4 9.2 odd 6
252.2.f.a.125.3 yes 4 63.20 even 6
252.2.f.a.125.4 yes 4 9.7 even 3
1008.2.k.b.881.1 4 36.11 even 6
1008.2.k.b.881.2 4 252.223 even 6
1008.2.k.b.881.3 4 36.7 odd 6
1008.2.k.b.881.4 4 252.83 odd 6
1764.2.t.b.521.1 8 63.47 even 6
1764.2.t.b.521.2 8 63.16 even 3
1764.2.t.b.521.3 8 63.2 odd 6
1764.2.t.b.521.4 8 63.61 odd 6
1764.2.t.b.1097.1 8 63.25 even 3
1764.2.t.b.1097.2 8 63.38 even 6
1764.2.t.b.1097.3 8 63.52 odd 6
1764.2.t.b.1097.4 8 63.11 odd 6
2268.2.x.i.377.1 8 63.41 even 6 inner
2268.2.x.i.377.2 8 9.4 even 3 inner
2268.2.x.i.377.3 8 63.13 odd 6 inner
2268.2.x.i.377.4 8 9.5 odd 6 inner
2268.2.x.i.1889.1 8 1.1 even 1 trivial
2268.2.x.i.1889.2 8 21.20 even 2 inner
2268.2.x.i.1889.3 8 3.2 odd 2 inner
2268.2.x.i.1889.4 8 7.6 odd 2 inner
4032.2.k.a.3905.1 4 504.461 even 6
4032.2.k.a.3905.2 4 72.61 even 6
4032.2.k.a.3905.3 4 504.349 odd 6
4032.2.k.a.3905.4 4 72.29 odd 6
4032.2.k.d.3905.1 4 72.43 odd 6
4032.2.k.d.3905.2 4 504.83 odd 6
4032.2.k.d.3905.3 4 72.11 even 6
4032.2.k.d.3905.4 4 504.475 even 6
6300.2.d.c.3401.1 4 45.34 even 6
6300.2.d.c.3401.2 4 45.29 odd 6
6300.2.d.c.3401.3 4 315.34 odd 6
6300.2.d.c.3401.4 4 315.209 even 6
6300.2.f.b.3149.1 8 45.7 odd 12
6300.2.f.b.3149.2 8 45.2 even 12
6300.2.f.b.3149.3 8 315.223 even 12
6300.2.f.b.3149.4 8 315.83 odd 12
6300.2.f.b.3149.5 8 315.97 even 12
6300.2.f.b.3149.6 8 315.272 odd 12
6300.2.f.b.3149.7 8 45.43 odd 12
6300.2.f.b.3149.8 8 45.38 even 12