Properties

Label 1785.2.g.f.1429.4
Level $1785$
Weight $2$
Character 1785.1429
Analytic conductor $14.253$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1785,2,Mod(1429,1785)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1785.1429");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1785 = 3 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1785.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.2532967608\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1429.4
Character \(\chi\) \(=\) 1785.1429
Dual form 1785.2.g.f.1429.25

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.12979i q^{2} -1.00000i q^{3} -2.53601 q^{4} +(1.73253 - 1.41363i) q^{5} -2.12979 q^{6} -1.00000i q^{7} +1.14159i q^{8} -1.00000 q^{9} +(-3.01073 - 3.68993i) q^{10} +6.08436 q^{11} +2.53601i q^{12} +3.34615i q^{13} -2.12979 q^{14} +(-1.41363 - 1.73253i) q^{15} -2.64067 q^{16} -1.00000i q^{17} +2.12979i q^{18} -5.68386 q^{19} +(-4.39372 + 3.58497i) q^{20} -1.00000 q^{21} -12.9584i q^{22} -3.19691i q^{23} +1.14159 q^{24} +(1.00332 - 4.89830i) q^{25} +7.12660 q^{26} +1.00000i q^{27} +2.53601i q^{28} -3.03853 q^{29} +(-3.68993 + 3.01073i) q^{30} -6.43165 q^{31} +7.90726i q^{32} -6.08436i q^{33} -2.12979 q^{34} +(-1.41363 - 1.73253i) q^{35} +2.53601 q^{36} -9.98097i q^{37} +12.1054i q^{38} +3.34615 q^{39} +(1.61378 + 1.97784i) q^{40} -7.91628 q^{41} +2.12979i q^{42} +3.05110i q^{43} -15.4300 q^{44} +(-1.73253 + 1.41363i) q^{45} -6.80876 q^{46} -11.0828i q^{47} +2.64067i q^{48} -1.00000 q^{49} +(-10.4324 - 2.13687i) q^{50} -1.00000 q^{51} -8.48587i q^{52} -8.70174i q^{53} +2.12979 q^{54} +(10.5413 - 8.60101i) q^{55} +1.14159 q^{56} +5.68386i q^{57} +6.47144i q^{58} +11.7218 q^{59} +(3.58497 + 4.39372i) q^{60} +3.88529 q^{61} +13.6981i q^{62} +1.00000i q^{63} +11.5595 q^{64} +(4.73020 + 5.79730i) q^{65} -12.9584 q^{66} -3.91084i q^{67} +2.53601i q^{68} -3.19691 q^{69} +(-3.68993 + 3.01073i) q^{70} +4.02687 q^{71} -1.14159i q^{72} +10.6661i q^{73} -21.2574 q^{74} +(-4.89830 - 1.00332i) q^{75} +14.4143 q^{76} -6.08436i q^{77} -7.12660i q^{78} -4.37814 q^{79} +(-4.57504 + 3.73292i) q^{80} +1.00000 q^{81} +16.8600i q^{82} +15.5785i q^{83} +2.53601 q^{84} +(-1.41363 - 1.73253i) q^{85} +6.49820 q^{86} +3.03853i q^{87} +6.94585i q^{88} +15.0190 q^{89} +(3.01073 + 3.68993i) q^{90} +3.34615 q^{91} +8.10741i q^{92} +6.43165i q^{93} -23.6040 q^{94} +(-9.84747 + 8.03486i) q^{95} +7.90726 q^{96} +2.14419i q^{97} +2.12979i q^{98} -6.08436 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 34 q^{4} - 6 q^{6} - 28 q^{9} + 4 q^{10} + 8 q^{11} - 6 q^{14} - 4 q^{15} + 38 q^{16} + 12 q^{19} - 4 q^{20} - 28 q^{21} + 30 q^{24} - 8 q^{25} - 36 q^{26} - 2 q^{30} + 14 q^{31} - 6 q^{34} - 4 q^{35}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1785\mathbb{Z}\right)^\times\).

\(n\) \(596\) \(766\) \(1072\) \(1261\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.12979i 1.50599i −0.658026 0.752995i \(-0.728608\pi\)
0.658026 0.752995i \(-0.271392\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −2.53601 −1.26801
\(5\) 1.73253 1.41363i 0.774811 0.632193i
\(6\) −2.12979 −0.869484
\(7\) 1.00000i 0.377964i
\(8\) 1.14159i 0.403614i
\(9\) −1.00000 −0.333333
\(10\) −3.01073 3.68993i −0.952076 1.16686i
\(11\) 6.08436 1.83450 0.917251 0.398309i \(-0.130403\pi\)
0.917251 + 0.398309i \(0.130403\pi\)
\(12\) 2.53601i 0.732083i
\(13\) 3.34615i 0.928055i 0.885821 + 0.464027i \(0.153596\pi\)
−0.885821 + 0.464027i \(0.846404\pi\)
\(14\) −2.12979 −0.569211
\(15\) −1.41363 1.73253i −0.364997 0.447337i
\(16\) −2.64067 −0.660167
\(17\) 1.00000i 0.242536i
\(18\) 2.12979i 0.501997i
\(19\) −5.68386 −1.30397 −0.651984 0.758233i \(-0.726063\pi\)
−0.651984 + 0.758233i \(0.726063\pi\)
\(20\) −4.39372 + 3.58497i −0.982465 + 0.801624i
\(21\) −1.00000 −0.218218
\(22\) 12.9584i 2.76274i
\(23\) 3.19691i 0.666603i −0.942820 0.333301i \(-0.891837\pi\)
0.942820 0.333301i \(-0.108163\pi\)
\(24\) 1.14159 0.233027
\(25\) 1.00332 4.89830i 0.200664 0.979660i
\(26\) 7.12660 1.39764
\(27\) 1.00000i 0.192450i
\(28\) 2.53601i 0.479261i
\(29\) −3.03853 −0.564241 −0.282121 0.959379i \(-0.591038\pi\)
−0.282121 + 0.959379i \(0.591038\pi\)
\(30\) −3.68993 + 3.01073i −0.673686 + 0.549681i
\(31\) −6.43165 −1.15516 −0.577580 0.816334i \(-0.696003\pi\)
−0.577580 + 0.816334i \(0.696003\pi\)
\(32\) 7.90726i 1.39782i
\(33\) 6.08436i 1.05915i
\(34\) −2.12979 −0.365256
\(35\) −1.41363 1.73253i −0.238946 0.292851i
\(36\) 2.53601 0.422669
\(37\) 9.98097i 1.64086i −0.571746 0.820431i \(-0.693734\pi\)
0.571746 0.820431i \(-0.306266\pi\)
\(38\) 12.1054i 1.96376i
\(39\) 3.34615 0.535813
\(40\) 1.61378 + 1.97784i 0.255162 + 0.312724i
\(41\) −7.91628 −1.23632 −0.618158 0.786054i \(-0.712121\pi\)
−0.618158 + 0.786054i \(0.712121\pi\)
\(42\) 2.12979i 0.328634i
\(43\) 3.05110i 0.465288i 0.972562 + 0.232644i \(0.0747377\pi\)
−0.972562 + 0.232644i \(0.925262\pi\)
\(44\) −15.4300 −2.32616
\(45\) −1.73253 + 1.41363i −0.258270 + 0.210731i
\(46\) −6.80876 −1.00390
\(47\) 11.0828i 1.61659i −0.588778 0.808294i \(-0.700391\pi\)
0.588778 0.808294i \(-0.299609\pi\)
\(48\) 2.64067i 0.381148i
\(49\) −1.00000 −0.142857
\(50\) −10.4324 2.13687i −1.47536 0.302199i
\(51\) −1.00000 −0.140028
\(52\) 8.48587i 1.17678i
\(53\) 8.70174i 1.19528i −0.801766 0.597638i \(-0.796106\pi\)
0.801766 0.597638i \(-0.203894\pi\)
\(54\) 2.12979 0.289828
\(55\) 10.5413 8.60101i 1.42139 1.15976i
\(56\) 1.14159 0.152552
\(57\) 5.68386i 0.752846i
\(58\) 6.47144i 0.849742i
\(59\) 11.7218 1.52605 0.763024 0.646371i \(-0.223714\pi\)
0.763024 + 0.646371i \(0.223714\pi\)
\(60\) 3.58497 + 4.39372i 0.462818 + 0.567226i
\(61\) 3.88529 0.497461 0.248731 0.968573i \(-0.419987\pi\)
0.248731 + 0.968573i \(0.419987\pi\)
\(62\) 13.6981i 1.73966i
\(63\) 1.00000i 0.125988i
\(64\) 11.5595 1.44493
\(65\) 4.73020 + 5.79730i 0.586709 + 0.719067i
\(66\) −12.9584 −1.59507
\(67\) 3.91084i 0.477785i −0.971046 0.238893i \(-0.923216\pi\)
0.971046 0.238893i \(-0.0767844\pi\)
\(68\) 2.53601i 0.307537i
\(69\) −3.19691 −0.384863
\(70\) −3.68993 + 3.01073i −0.441031 + 0.359851i
\(71\) 4.02687 0.477902 0.238951 0.971032i \(-0.423196\pi\)
0.238951 + 0.971032i \(0.423196\pi\)
\(72\) 1.14159i 0.134538i
\(73\) 10.6661i 1.24838i 0.781274 + 0.624188i \(0.214570\pi\)
−0.781274 + 0.624188i \(0.785430\pi\)
\(74\) −21.2574 −2.47112
\(75\) −4.89830 1.00332i −0.565607 0.115854i
\(76\) 14.4143 1.65344
\(77\) 6.08436i 0.693377i
\(78\) 7.12660i 0.806928i
\(79\) −4.37814 −0.492579 −0.246290 0.969196i \(-0.579211\pi\)
−0.246290 + 0.969196i \(0.579211\pi\)
\(80\) −4.57504 + 3.73292i −0.511505 + 0.417353i
\(81\) 1.00000 0.111111
\(82\) 16.8600i 1.86188i
\(83\) 15.5785i 1.70996i 0.518661 + 0.854980i \(0.326431\pi\)
−0.518661 + 0.854980i \(0.673569\pi\)
\(84\) 2.53601 0.276702
\(85\) −1.41363 1.73253i −0.153329 0.187919i
\(86\) 6.49820 0.700719
\(87\) 3.03853i 0.325765i
\(88\) 6.94585i 0.740431i
\(89\) 15.0190 1.59201 0.796007 0.605287i \(-0.206942\pi\)
0.796007 + 0.605287i \(0.206942\pi\)
\(90\) 3.01073 + 3.68993i 0.317359 + 0.388953i
\(91\) 3.34615 0.350772
\(92\) 8.10741i 0.845256i
\(93\) 6.43165i 0.666931i
\(94\) −23.6040 −2.43457
\(95\) −9.84747 + 8.03486i −1.01033 + 0.824359i
\(96\) 7.90726 0.807031
\(97\) 2.14419i 0.217709i 0.994058 + 0.108855i \(0.0347183\pi\)
−0.994058 + 0.108855i \(0.965282\pi\)
\(98\) 2.12979i 0.215141i
\(99\) −6.08436 −0.611501
\(100\) −2.54444 + 12.4221i −0.254444 + 1.24221i
\(101\) −13.5668 −1.34994 −0.674971 0.737844i \(-0.735844\pi\)
−0.674971 + 0.737844i \(0.735844\pi\)
\(102\) 2.12979i 0.210881i
\(103\) 13.3291i 1.31335i −0.754172 0.656677i \(-0.771962\pi\)
0.754172 0.656677i \(-0.228038\pi\)
\(104\) −3.81994 −0.374576
\(105\) −1.73253 + 1.41363i −0.169078 + 0.137956i
\(106\) −18.5329 −1.80007
\(107\) 3.68280i 0.356029i 0.984028 + 0.178015i \(0.0569675\pi\)
−0.984028 + 0.178015i \(0.943033\pi\)
\(108\) 2.53601i 0.244028i
\(109\) 4.46747 0.427906 0.213953 0.976844i \(-0.431366\pi\)
0.213953 + 0.976844i \(0.431366\pi\)
\(110\) −18.3183 22.4508i −1.74659 2.14060i
\(111\) −9.98097 −0.947352
\(112\) 2.64067i 0.249520i
\(113\) 9.26682i 0.871749i 0.900008 + 0.435874i \(0.143561\pi\)
−0.900008 + 0.435874i \(0.856439\pi\)
\(114\) 12.1054 1.13378
\(115\) −4.51924 5.53875i −0.421422 0.516491i
\(116\) 7.70575 0.715461
\(117\) 3.34615i 0.309352i
\(118\) 24.9650i 2.29821i
\(119\) −1.00000 −0.0916698
\(120\) 1.97784 1.61378i 0.180552 0.147318i
\(121\) 26.0194 2.36540
\(122\) 8.27487i 0.749171i
\(123\) 7.91628i 0.713787i
\(124\) 16.3107 1.46475
\(125\) −5.18608 9.90478i −0.463857 0.885910i
\(126\) 2.12979 0.189737
\(127\) 15.4132i 1.36770i 0.729623 + 0.683849i \(0.239695\pi\)
−0.729623 + 0.683849i \(0.760305\pi\)
\(128\) 8.80475i 0.778237i
\(129\) 3.05110 0.268634
\(130\) 12.3470 10.0743i 1.08291 0.883578i
\(131\) −7.60394 −0.664359 −0.332180 0.943216i \(-0.607784\pi\)
−0.332180 + 0.943216i \(0.607784\pi\)
\(132\) 15.4300i 1.34301i
\(133\) 5.68386i 0.492853i
\(134\) −8.32927 −0.719540
\(135\) 1.41363 + 1.73253i 0.121666 + 0.149112i
\(136\) 1.14159 0.0978907
\(137\) 12.8704i 1.09960i −0.835298 0.549798i \(-0.814705\pi\)
0.835298 0.549798i \(-0.185295\pi\)
\(138\) 6.80876i 0.579600i
\(139\) 12.9312 1.09681 0.548404 0.836213i \(-0.315236\pi\)
0.548404 + 0.836213i \(0.315236\pi\)
\(140\) 3.58497 + 4.39372i 0.302985 + 0.371337i
\(141\) −11.0828 −0.933338
\(142\) 8.57640i 0.719715i
\(143\) 20.3592i 1.70252i
\(144\) 2.64067 0.220056
\(145\) −5.26435 + 4.29535i −0.437181 + 0.356709i
\(146\) 22.7166 1.88004
\(147\) 1.00000i 0.0824786i
\(148\) 25.3119i 2.08062i
\(149\) 2.76357 0.226400 0.113200 0.993572i \(-0.463890\pi\)
0.113200 + 0.993572i \(0.463890\pi\)
\(150\) −2.13687 + 10.4324i −0.174474 + 0.851798i
\(151\) 15.2251 1.23900 0.619502 0.784995i \(-0.287335\pi\)
0.619502 + 0.784995i \(0.287335\pi\)
\(152\) 6.48865i 0.526299i
\(153\) 1.00000i 0.0808452i
\(154\) −12.9584 −1.04422
\(155\) −11.1430 + 9.09195i −0.895030 + 0.730283i
\(156\) −8.48587 −0.679413
\(157\) 12.1039i 0.965998i −0.875621 0.482999i \(-0.839547\pi\)
0.875621 0.482999i \(-0.160453\pi\)
\(158\) 9.32452i 0.741819i
\(159\) −8.70174 −0.690093
\(160\) 11.1779 + 13.6996i 0.883691 + 1.08305i
\(161\) −3.19691 −0.251952
\(162\) 2.12979i 0.167332i
\(163\) 2.11865i 0.165946i −0.996552 0.0829728i \(-0.973559\pi\)
0.996552 0.0829728i \(-0.0264415\pi\)
\(164\) 20.0758 1.56766
\(165\) −8.60101 10.5413i −0.669587 0.820642i
\(166\) 33.1789 2.57518
\(167\) 3.29364i 0.254869i 0.991847 + 0.127435i \(0.0406743\pi\)
−0.991847 + 0.127435i \(0.959326\pi\)
\(168\) 1.14159i 0.0880757i
\(169\) 1.80329 0.138715
\(170\) −3.68993 + 3.01073i −0.283005 + 0.230912i
\(171\) 5.68386 0.434656
\(172\) 7.73762i 0.589988i
\(173\) 7.87285i 0.598562i −0.954165 0.299281i \(-0.903253\pi\)
0.954165 0.299281i \(-0.0967468\pi\)
\(174\) 6.47144 0.490599
\(175\) −4.89830 1.00332i −0.370277 0.0758440i
\(176\) −16.0668 −1.21108
\(177\) 11.7218i 0.881064i
\(178\) 31.9874i 2.39756i
\(179\) 2.77830 0.207660 0.103830 0.994595i \(-0.466890\pi\)
0.103830 + 0.994595i \(0.466890\pi\)
\(180\) 4.39372 3.58497i 0.327488 0.267208i
\(181\) 24.3990 1.81356 0.906781 0.421603i \(-0.138532\pi\)
0.906781 + 0.421603i \(0.138532\pi\)
\(182\) 7.12660i 0.528259i
\(183\) 3.88529i 0.287209i
\(184\) 3.64957 0.269050
\(185\) −14.1094 17.2923i −1.03734 1.27136i
\(186\) 13.6981 1.00439
\(187\) 6.08436i 0.444932i
\(188\) 28.1060i 2.04984i
\(189\) 1.00000 0.0727393
\(190\) 17.1126 + 20.9730i 1.24148 + 1.52154i
\(191\) 18.5629 1.34317 0.671583 0.740929i \(-0.265615\pi\)
0.671583 + 0.740929i \(0.265615\pi\)
\(192\) 11.5595i 0.834233i
\(193\) 6.87338i 0.494757i 0.968919 + 0.247378i \(0.0795691\pi\)
−0.968919 + 0.247378i \(0.920431\pi\)
\(194\) 4.56668 0.327868
\(195\) 5.79730 4.73020i 0.415154 0.338737i
\(196\) 2.53601 0.181144
\(197\) 4.55879i 0.324800i 0.986725 + 0.162400i \(0.0519235\pi\)
−0.986725 + 0.162400i \(0.948076\pi\)
\(198\) 12.9584i 0.920914i
\(199\) 15.1682 1.07525 0.537624 0.843185i \(-0.319322\pi\)
0.537624 + 0.843185i \(0.319322\pi\)
\(200\) 5.59186 + 1.14538i 0.395404 + 0.0809909i
\(201\) −3.91084 −0.275849
\(202\) 28.8944i 2.03300i
\(203\) 3.03853i 0.213263i
\(204\) 2.53601 0.177556
\(205\) −13.7152 + 11.1907i −0.957911 + 0.781590i
\(206\) −28.3882 −1.97790
\(207\) 3.19691i 0.222201i
\(208\) 8.83607i 0.612671i
\(209\) −34.5827 −2.39213
\(210\) 3.01073 + 3.68993i 0.207760 + 0.254629i
\(211\) 5.50247 0.378805 0.189403 0.981899i \(-0.439345\pi\)
0.189403 + 0.981899i \(0.439345\pi\)
\(212\) 22.0677i 1.51562i
\(213\) 4.02687i 0.275917i
\(214\) 7.84359 0.536177
\(215\) 4.31311 + 5.28612i 0.294152 + 0.360511i
\(216\) −1.14159 −0.0776755
\(217\) 6.43165i 0.436609i
\(218\) 9.51477i 0.644422i
\(219\) 10.6661 0.720750
\(220\) −26.7329 + 21.8122i −1.80233 + 1.47058i
\(221\) 3.34615 0.225086
\(222\) 21.2574i 1.42670i
\(223\) 17.0957i 1.14481i 0.819971 + 0.572405i \(0.193989\pi\)
−0.819971 + 0.572405i \(0.806011\pi\)
\(224\) 7.90726 0.528326
\(225\) −1.00332 + 4.89830i −0.0668882 + 0.326553i
\(226\) 19.7364 1.31284
\(227\) 12.5890i 0.835562i −0.908548 0.417781i \(-0.862808\pi\)
0.908548 0.417781i \(-0.137192\pi\)
\(228\) 14.4143i 0.954613i
\(229\) 1.85956 0.122883 0.0614417 0.998111i \(-0.480430\pi\)
0.0614417 + 0.998111i \(0.480430\pi\)
\(230\) −11.7964 + 9.62504i −0.777831 + 0.634657i
\(231\) −6.08436 −0.400321
\(232\) 3.46877i 0.227736i
\(233\) 5.36375i 0.351391i 0.984445 + 0.175696i \(0.0562174\pi\)
−0.984445 + 0.175696i \(0.943783\pi\)
\(234\) −7.12660 −0.465880
\(235\) −15.6669 19.2012i −1.02200 1.25255i
\(236\) −29.7266 −1.93504
\(237\) 4.37814i 0.284391i
\(238\) 2.12979i 0.138054i
\(239\) −10.0753 −0.651716 −0.325858 0.945419i \(-0.605653\pi\)
−0.325858 + 0.945419i \(0.605653\pi\)
\(240\) 3.73292 + 4.57504i 0.240959 + 0.295318i
\(241\) −8.68299 −0.559321 −0.279660 0.960099i \(-0.590222\pi\)
−0.279660 + 0.960099i \(0.590222\pi\)
\(242\) 55.4159i 3.56227i
\(243\) 1.00000i 0.0641500i
\(244\) −9.85315 −0.630783
\(245\) −1.73253 + 1.41363i −0.110687 + 0.0903133i
\(246\) 16.8600 1.07496
\(247\) 19.0191i 1.21015i
\(248\) 7.34233i 0.466238i
\(249\) 15.5785 0.987246
\(250\) −21.0951 + 11.0453i −1.33417 + 0.698564i
\(251\) 14.5842 0.920547 0.460273 0.887777i \(-0.347751\pi\)
0.460273 + 0.887777i \(0.347751\pi\)
\(252\) 2.53601i 0.159754i
\(253\) 19.4512i 1.22288i
\(254\) 32.8269 2.05974
\(255\) −1.73253 + 1.41363i −0.108495 + 0.0885247i
\(256\) 4.36667 0.272917
\(257\) 9.05937i 0.565108i 0.959251 + 0.282554i \(0.0911816\pi\)
−0.959251 + 0.282554i \(0.908818\pi\)
\(258\) 6.49820i 0.404561i
\(259\) −9.98097 −0.620187
\(260\) −11.9958 14.7020i −0.743951 0.911781i
\(261\) 3.03853 0.188080
\(262\) 16.1948i 1.00052i
\(263\) 11.6758i 0.719958i 0.932960 + 0.359979i \(0.117216\pi\)
−0.932960 + 0.359979i \(0.882784\pi\)
\(264\) 6.94585 0.427488
\(265\) −12.3010 15.0760i −0.755645 0.926113i
\(266\) 12.1054 0.742232
\(267\) 15.0190i 0.919150i
\(268\) 9.91793i 0.605834i
\(269\) −0.0956370 −0.00583109 −0.00291555 0.999996i \(-0.500928\pi\)
−0.00291555 + 0.999996i \(0.500928\pi\)
\(270\) 3.68993 3.01073i 0.224562 0.183227i
\(271\) −3.82150 −0.232140 −0.116070 0.993241i \(-0.537030\pi\)
−0.116070 + 0.993241i \(0.537030\pi\)
\(272\) 2.64067i 0.160114i
\(273\) 3.34615i 0.202518i
\(274\) −27.4113 −1.65598
\(275\) 6.10457 29.8030i 0.368120 1.79719i
\(276\) 8.10741 0.488009
\(277\) 25.5049i 1.53244i −0.642579 0.766219i \(-0.722136\pi\)
0.642579 0.766219i \(-0.277864\pi\)
\(278\) 27.5407i 1.65178i
\(279\) 6.43165 0.385053
\(280\) 1.97784 1.61378i 0.118199 0.0964421i
\(281\) 27.6246 1.64795 0.823974 0.566628i \(-0.191752\pi\)
0.823974 + 0.566628i \(0.191752\pi\)
\(282\) 23.6040i 1.40560i
\(283\) 12.0694i 0.717449i −0.933444 0.358724i \(-0.883212\pi\)
0.933444 0.358724i \(-0.116788\pi\)
\(284\) −10.2122 −0.605982
\(285\) 8.03486 + 9.84747i 0.475944 + 0.583314i
\(286\) 43.3608 2.56398
\(287\) 7.91628i 0.467283i
\(288\) 7.90726i 0.465940i
\(289\) −1.00000 −0.0588235
\(290\) 9.14820 + 11.2120i 0.537201 + 0.658389i
\(291\) 2.14419 0.125695
\(292\) 27.0494i 1.58295i
\(293\) 18.1684i 1.06141i 0.847558 + 0.530703i \(0.178072\pi\)
−0.847558 + 0.530703i \(0.821928\pi\)
\(294\) 2.12979 0.124212
\(295\) 20.3084 16.5702i 1.18240 0.964756i
\(296\) 11.3942 0.662274
\(297\) 6.08436i 0.353050i
\(298\) 5.88583i 0.340957i
\(299\) 10.6974 0.618644
\(300\) 12.4221 + 2.54444i 0.717193 + 0.146903i
\(301\) 3.05110 0.175862
\(302\) 32.4263i 1.86593i
\(303\) 13.5668i 0.779390i
\(304\) 15.0092 0.860837
\(305\) 6.73139 5.49235i 0.385438 0.314491i
\(306\) 2.12979 0.121752
\(307\) 7.50048i 0.428075i 0.976825 + 0.214038i \(0.0686615\pi\)
−0.976825 + 0.214038i \(0.931339\pi\)
\(308\) 15.4300i 0.879206i
\(309\) −13.3291 −0.758265
\(310\) 19.3640 + 23.7323i 1.09980 + 1.34791i
\(311\) 9.20361 0.521889 0.260944 0.965354i \(-0.415966\pi\)
0.260944 + 0.965354i \(0.415966\pi\)
\(312\) 3.81994i 0.216261i
\(313\) 26.8664i 1.51858i 0.650754 + 0.759288i \(0.274453\pi\)
−0.650754 + 0.759288i \(0.725547\pi\)
\(314\) −25.7788 −1.45478
\(315\) 1.41363 + 1.73253i 0.0796488 + 0.0976170i
\(316\) 11.1030 0.624593
\(317\) 33.5370i 1.88362i −0.336139 0.941812i \(-0.609121\pi\)
0.336139 0.941812i \(-0.390879\pi\)
\(318\) 18.5329i 1.03927i
\(319\) −18.4875 −1.03510
\(320\) 20.0271 16.3408i 1.11955 0.913477i
\(321\) 3.68280 0.205554
\(322\) 6.80876i 0.379437i
\(323\) 5.68386i 0.316259i
\(324\) −2.53601 −0.140890
\(325\) 16.3904 + 3.35727i 0.909178 + 0.186228i
\(326\) −4.51229 −0.249912
\(327\) 4.46747i 0.247052i
\(328\) 9.03717i 0.498994i
\(329\) −11.0828 −0.611013
\(330\) −22.4508 + 18.3183i −1.23588 + 1.00839i
\(331\) −20.2428 −1.11265 −0.556323 0.830966i \(-0.687788\pi\)
−0.556323 + 0.830966i \(0.687788\pi\)
\(332\) 39.5072i 2.16824i
\(333\) 9.98097i 0.546954i
\(334\) 7.01476 0.383830
\(335\) −5.52847 6.77565i −0.302052 0.370193i
\(336\) 2.64067 0.144060
\(337\) 32.6592i 1.77906i −0.456876 0.889530i \(-0.651032\pi\)
0.456876 0.889530i \(-0.348968\pi\)
\(338\) 3.84063i 0.208903i
\(339\) 9.26682 0.503304
\(340\) 3.58497 + 4.39372i 0.194422 + 0.238283i
\(341\) −39.1325 −2.11914
\(342\) 12.1054i 0.654587i
\(343\) 1.00000i 0.0539949i
\(344\) −3.48311 −0.187797
\(345\) −5.53875 + 4.51924i −0.298196 + 0.243308i
\(346\) −16.7675 −0.901428
\(347\) 13.1509i 0.705980i 0.935627 + 0.352990i \(0.114835\pi\)
−0.935627 + 0.352990i \(0.885165\pi\)
\(348\) 7.70575i 0.413072i
\(349\) 22.9925 1.23076 0.615379 0.788231i \(-0.289003\pi\)
0.615379 + 0.788231i \(0.289003\pi\)
\(350\) −2.13687 + 10.4324i −0.114220 + 0.557633i
\(351\) −3.34615 −0.178604
\(352\) 48.1106i 2.56430i
\(353\) 15.3000i 0.814339i −0.913353 0.407169i \(-0.866516\pi\)
0.913353 0.407169i \(-0.133484\pi\)
\(354\) −24.9650 −1.32687
\(355\) 6.97668 5.69249i 0.370284 0.302126i
\(356\) −38.0884 −2.01868
\(357\) 1.00000i 0.0529256i
\(358\) 5.91720i 0.312734i
\(359\) −2.07549 −0.109540 −0.0547700 0.998499i \(-0.517443\pi\)
−0.0547700 + 0.998499i \(0.517443\pi\)
\(360\) −1.61378 1.97784i −0.0850539 0.104241i
\(361\) 13.3063 0.700332
\(362\) 51.9647i 2.73121i
\(363\) 26.0194i 1.36566i
\(364\) −8.48587 −0.444780
\(365\) 15.0779 + 18.4794i 0.789215 + 0.967256i
\(366\) −8.27487 −0.432534
\(367\) 35.0999i 1.83220i 0.400948 + 0.916101i \(0.368681\pi\)
−0.400948 + 0.916101i \(0.631319\pi\)
\(368\) 8.44200i 0.440069i
\(369\) 7.91628 0.412105
\(370\) −36.8291 + 30.0500i −1.91465 + 1.56223i
\(371\) −8.70174 −0.451772
\(372\) 16.3107i 0.845673i
\(373\) 32.1632i 1.66535i −0.553765 0.832673i \(-0.686809\pi\)
0.553765 0.832673i \(-0.313191\pi\)
\(374\) −12.9584 −0.670064
\(375\) −9.90478 + 5.18608i −0.511480 + 0.267808i
\(376\) 12.6520 0.652478
\(377\) 10.1674i 0.523647i
\(378\) 2.12979i 0.109545i
\(379\) −33.6964 −1.73087 −0.865435 0.501022i \(-0.832958\pi\)
−0.865435 + 0.501022i \(0.832958\pi\)
\(380\) 24.9733 20.3765i 1.28110 1.04529i
\(381\) 15.4132 0.789641
\(382\) 39.5352i 2.02279i
\(383\) 6.64402i 0.339494i 0.985488 + 0.169747i \(0.0542950\pi\)
−0.985488 + 0.169747i \(0.945705\pi\)
\(384\) −8.80475 −0.449315
\(385\) −8.60101 10.5413i −0.438348 0.537236i
\(386\) 14.6389 0.745099
\(387\) 3.05110i 0.155096i
\(388\) 5.43769i 0.276057i
\(389\) 13.8462 0.702032 0.351016 0.936369i \(-0.385836\pi\)
0.351016 + 0.936369i \(0.385836\pi\)
\(390\) −10.0743 12.3470i −0.510134 0.625217i
\(391\) −3.19691 −0.161675
\(392\) 1.14159i 0.0576591i
\(393\) 7.60394i 0.383568i
\(394\) 9.70927 0.489146
\(395\) −7.58526 + 6.18905i −0.381656 + 0.311405i
\(396\) 15.4300 0.775387
\(397\) 19.6455i 0.985979i 0.870035 + 0.492990i \(0.164096\pi\)
−0.870035 + 0.492990i \(0.835904\pi\)
\(398\) 32.3052i 1.61931i
\(399\) 5.68386 0.284549
\(400\) −2.64944 + 12.9348i −0.132472 + 0.646740i
\(401\) −23.1366 −1.15539 −0.577693 0.816254i \(-0.696047\pi\)
−0.577693 + 0.816254i \(0.696047\pi\)
\(402\) 8.32927i 0.415426i
\(403\) 21.5213i 1.07205i
\(404\) 34.4054 1.71174
\(405\) 1.73253 1.41363i 0.0860901 0.0702436i
\(406\) 6.47144 0.321172
\(407\) 60.7278i 3.01017i
\(408\) 1.14159i 0.0565172i
\(409\) −11.7237 −0.579701 −0.289851 0.957072i \(-0.593606\pi\)
−0.289851 + 0.957072i \(0.593606\pi\)
\(410\) 23.8338 + 29.2105i 1.17707 + 1.44260i
\(411\) −12.8704 −0.634852
\(412\) 33.8027i 1.66534i
\(413\) 11.7218i 0.576792i
\(414\) 6.80876 0.334632
\(415\) 22.0221 + 26.9902i 1.08102 + 1.32490i
\(416\) −26.4589 −1.29725
\(417\) 12.9312i 0.633243i
\(418\) 73.6538i 3.60253i
\(419\) −7.06198 −0.345000 −0.172500 0.985009i \(-0.555185\pi\)
−0.172500 + 0.985009i \(0.555185\pi\)
\(420\) 4.39372 3.58497i 0.214391 0.174929i
\(421\) −16.5251 −0.805385 −0.402693 0.915335i \(-0.631926\pi\)
−0.402693 + 0.915335i \(0.631926\pi\)
\(422\) 11.7191i 0.570477i
\(423\) 11.0828i 0.538863i
\(424\) 9.93384 0.482430
\(425\) −4.89830 1.00332i −0.237602 0.0486683i
\(426\) −8.57640 −0.415528
\(427\) 3.88529i 0.188023i
\(428\) 9.33961i 0.451447i
\(429\) 20.3592 0.982950
\(430\) 11.2583 9.18603i 0.542925 0.442990i
\(431\) −2.70660 −0.130372 −0.0651861 0.997873i \(-0.520764\pi\)
−0.0651861 + 0.997873i \(0.520764\pi\)
\(432\) 2.64067i 0.127049i
\(433\) 22.4228i 1.07757i −0.842444 0.538784i \(-0.818884\pi\)
0.842444 0.538784i \(-0.181116\pi\)
\(434\) 13.6981 0.657529
\(435\) 4.29535 + 5.26435i 0.205946 + 0.252406i
\(436\) −11.3295 −0.542587
\(437\) 18.1708i 0.869229i
\(438\) 22.7166i 1.08544i
\(439\) −10.2170 −0.487632 −0.243816 0.969822i \(-0.578399\pi\)
−0.243816 + 0.969822i \(0.578399\pi\)
\(440\) 9.81884 + 12.0339i 0.468095 + 0.573694i
\(441\) 1.00000 0.0476190
\(442\) 7.12660i 0.338978i
\(443\) 18.6654i 0.886822i −0.896318 0.443411i \(-0.853768\pi\)
0.896318 0.443411i \(-0.146232\pi\)
\(444\) 25.3119 1.20125
\(445\) 26.0209 21.2313i 1.23351 1.00646i
\(446\) 36.4102 1.72407
\(447\) 2.76357i 0.130712i
\(448\) 11.5595i 0.546134i
\(449\) 27.3755 1.29193 0.645966 0.763366i \(-0.276455\pi\)
0.645966 + 0.763366i \(0.276455\pi\)
\(450\) 10.4324 + 2.13687i 0.491786 + 0.100733i
\(451\) −48.1655 −2.26802
\(452\) 23.5008i 1.10538i
\(453\) 15.2251i 0.715339i
\(454\) −26.8120 −1.25835
\(455\) 5.79730 4.73020i 0.271782 0.221755i
\(456\) −6.48865 −0.303859
\(457\) 5.05328i 0.236382i −0.992991 0.118191i \(-0.962290\pi\)
0.992991 0.118191i \(-0.0377096\pi\)
\(458\) 3.96048i 0.185061i
\(459\) 1.00000 0.0466760
\(460\) 11.4608 + 14.0463i 0.534365 + 0.654914i
\(461\) −25.5242 −1.18878 −0.594391 0.804176i \(-0.702607\pi\)
−0.594391 + 0.804176i \(0.702607\pi\)
\(462\) 12.9584i 0.602880i
\(463\) 8.18340i 0.380315i −0.981754 0.190157i \(-0.939100\pi\)
0.981754 0.190157i \(-0.0608998\pi\)
\(464\) 8.02376 0.372494
\(465\) 9.09195 + 11.1430i 0.421629 + 0.516746i
\(466\) 11.4237 0.529192
\(467\) 13.0047i 0.601787i 0.953658 + 0.300893i \(0.0972848\pi\)
−0.953658 + 0.300893i \(0.902715\pi\)
\(468\) 8.48587i 0.392259i
\(469\) −3.91084 −0.180586
\(470\) −40.8946 + 33.3672i −1.88633 + 1.53912i
\(471\) −12.1039 −0.557719
\(472\) 13.3815i 0.615934i
\(473\) 18.5640i 0.853573i
\(474\) 9.32452 0.428290
\(475\) −5.70275 + 27.8413i −0.261660 + 1.27745i
\(476\) 2.53601 0.116238
\(477\) 8.70174i 0.398425i
\(478\) 21.4583i 0.981478i
\(479\) −8.18194 −0.373842 −0.186921 0.982375i \(-0.559851\pi\)
−0.186921 + 0.982375i \(0.559851\pi\)
\(480\) 13.6996 11.1779i 0.625297 0.510199i
\(481\) 33.3978 1.52281
\(482\) 18.4930i 0.842331i
\(483\) 3.19691i 0.145465i
\(484\) −65.9855 −2.99934
\(485\) 3.03108 + 3.71487i 0.137634 + 0.168684i
\(486\) −2.12979 −0.0966093
\(487\) 4.88443i 0.221335i 0.993858 + 0.110667i \(0.0352988\pi\)
−0.993858 + 0.110667i \(0.964701\pi\)
\(488\) 4.43542i 0.200782i
\(489\) −2.11865 −0.0958088
\(490\) 3.01073 + 3.68993i 0.136011 + 0.166694i
\(491\) −12.2582 −0.553206 −0.276603 0.960984i \(-0.589209\pi\)
−0.276603 + 0.960984i \(0.589209\pi\)
\(492\) 20.0758i 0.905086i
\(493\) 3.03853i 0.136849i
\(494\) −40.5066 −1.82248
\(495\) −10.5413 + 8.60101i −0.473798 + 0.386586i
\(496\) 16.9839 0.762598
\(497\) 4.02687i 0.180630i
\(498\) 33.1789i 1.48678i
\(499\) −26.8067 −1.20003 −0.600017 0.799987i \(-0.704840\pi\)
−0.600017 + 0.799987i \(0.704840\pi\)
\(500\) 13.1520 + 25.1186i 0.588173 + 1.12334i
\(501\) 3.29364 0.147149
\(502\) 31.0613i 1.38633i
\(503\) 9.64081i 0.429863i 0.976629 + 0.214931i \(0.0689528\pi\)
−0.976629 + 0.214931i \(0.931047\pi\)
\(504\) −1.14159 −0.0508506
\(505\) −23.5048 + 19.1783i −1.04595 + 0.853424i
\(506\) −41.4269 −1.84165
\(507\) 1.80329i 0.0800870i
\(508\) 39.0880i 1.73425i
\(509\) 39.5043 1.75100 0.875498 0.483222i \(-0.160533\pi\)
0.875498 + 0.483222i \(0.160533\pi\)
\(510\) 3.01073 + 3.68993i 0.133317 + 0.163393i
\(511\) 10.6661 0.471842
\(512\) 26.9096i 1.18925i
\(513\) 5.68386i 0.250949i
\(514\) 19.2946 0.851047
\(515\) −18.8423 23.0930i −0.830292 1.01760i
\(516\) −7.73762 −0.340630
\(517\) 67.4316i 2.96564i
\(518\) 21.2574i 0.933996i
\(519\) −7.87285 −0.345580
\(520\) −6.61816 + 5.39996i −0.290225 + 0.236804i
\(521\) −33.3440 −1.46083 −0.730413 0.683006i \(-0.760672\pi\)
−0.730413 + 0.683006i \(0.760672\pi\)
\(522\) 6.47144i 0.283247i
\(523\) 25.4059i 1.11092i 0.831543 + 0.555461i \(0.187458\pi\)
−0.831543 + 0.555461i \(0.812542\pi\)
\(524\) 19.2837 0.842412
\(525\) −1.00332 + 4.89830i −0.0437886 + 0.213779i
\(526\) 24.8669 1.08425
\(527\) 6.43165i 0.280167i
\(528\) 16.0668i 0.699217i
\(529\) 12.7797 0.555641
\(530\) −32.1088 + 26.1986i −1.39472 + 1.13799i
\(531\) −11.7218 −0.508682
\(532\) 14.4143i 0.624941i
\(533\) 26.4891i 1.14737i
\(534\) −31.9874 −1.38423
\(535\) 5.20610 + 6.38056i 0.225079 + 0.275856i
\(536\) 4.46458 0.192841
\(537\) 2.77830i 0.119893i
\(538\) 0.203687i 0.00878156i
\(539\) −6.08436 −0.262072
\(540\) −3.58497 4.39372i −0.154273 0.189075i
\(541\) 33.3675 1.43458 0.717291 0.696774i \(-0.245382\pi\)
0.717291 + 0.696774i \(0.245382\pi\)
\(542\) 8.13900i 0.349600i
\(543\) 24.3990i 1.04706i
\(544\) 7.90726 0.339021
\(545\) 7.74002 6.31533i 0.331546 0.270519i
\(546\) −7.12660 −0.304990
\(547\) 10.6343i 0.454688i 0.973814 + 0.227344i \(0.0730042\pi\)
−0.973814 + 0.227344i \(0.926996\pi\)
\(548\) 32.6396i 1.39429i
\(549\) −3.88529 −0.165820
\(550\) −63.4742 13.0015i −2.70655 0.554384i
\(551\) 17.2706 0.735753
\(552\) 3.64957i 0.155336i
\(553\) 4.37814i 0.186177i
\(554\) −54.3200 −2.30784
\(555\) −17.2923 + 14.1094i −0.734019 + 0.598909i
\(556\) −32.7936 −1.39076
\(557\) 34.3788i 1.45668i 0.685218 + 0.728338i \(0.259707\pi\)
−0.685218 + 0.728338i \(0.740293\pi\)
\(558\) 13.6981i 0.579886i
\(559\) −10.2094 −0.431813
\(560\) 3.73292 + 4.57504i 0.157745 + 0.193331i
\(561\) −6.08436 −0.256882
\(562\) 58.8347i 2.48179i
\(563\) 12.3525i 0.520595i 0.965528 + 0.260298i \(0.0838207\pi\)
−0.965528 + 0.260298i \(0.916179\pi\)
\(564\) 28.1060 1.18348
\(565\) 13.0998 + 16.0550i 0.551113 + 0.675441i
\(566\) −25.7052 −1.08047
\(567\) 1.00000i 0.0419961i
\(568\) 4.59705i 0.192888i
\(569\) 12.2532 0.513681 0.256841 0.966454i \(-0.417318\pi\)
0.256841 + 0.966454i \(0.417318\pi\)
\(570\) 20.9730 17.1126i 0.878464 0.716767i
\(571\) −9.29410 −0.388946 −0.194473 0.980908i \(-0.562300\pi\)
−0.194473 + 0.980908i \(0.562300\pi\)
\(572\) 51.6311i 2.15880i
\(573\) 18.5629i 0.775477i
\(574\) 16.8600 0.703724
\(575\) −15.6594 3.20754i −0.653044 0.133764i
\(576\) −11.5595 −0.481645
\(577\) 16.8503i 0.701486i −0.936472 0.350743i \(-0.885929\pi\)
0.936472 0.350743i \(-0.114071\pi\)
\(578\) 2.12979i 0.0885876i
\(579\) 6.87338 0.285648
\(580\) 13.3505 10.8931i 0.554347 0.452309i
\(581\) 15.5785 0.646304
\(582\) 4.56668i 0.189295i
\(583\) 52.9445i 2.19274i
\(584\) −12.1764 −0.503862
\(585\) −4.73020 5.79730i −0.195570 0.239689i
\(586\) 38.6948 1.59847
\(587\) 40.9350i 1.68957i 0.535107 + 0.844784i \(0.320271\pi\)
−0.535107 + 0.844784i \(0.679729\pi\)
\(588\) 2.53601i 0.104583i
\(589\) 36.5566 1.50629
\(590\) −35.2911 43.2526i −1.45291 1.78068i
\(591\) 4.55879 0.187524
\(592\) 26.3565i 1.08324i
\(593\) 39.9760i 1.64162i 0.571204 + 0.820808i \(0.306477\pi\)
−0.571204 + 0.820808i \(0.693523\pi\)
\(594\) 12.9584 0.531690
\(595\) −1.73253 + 1.41363i −0.0710268 + 0.0579530i
\(596\) −7.00844 −0.287077
\(597\) 15.1682i 0.620794i
\(598\) 22.7831i 0.931671i
\(599\) −29.5649 −1.20799 −0.603995 0.796988i \(-0.706425\pi\)
−0.603995 + 0.796988i \(0.706425\pi\)
\(600\) 1.14538 5.59186i 0.0467601 0.228287i
\(601\) 3.78171 0.154259 0.0771296 0.997021i \(-0.475424\pi\)
0.0771296 + 0.997021i \(0.475424\pi\)
\(602\) 6.49820i 0.264847i
\(603\) 3.91084i 0.159262i
\(604\) −38.6111 −1.57106
\(605\) 45.0794 36.7817i 1.83274 1.49539i
\(606\) 28.8944 1.17375
\(607\) 0.389196i 0.0157970i 0.999969 + 0.00789849i \(0.00251419\pi\)
−0.999969 + 0.00789849i \(0.997486\pi\)
\(608\) 44.9438i 1.82271i
\(609\) 3.03853 0.123128
\(610\) −11.6976 14.3365i −0.473621 0.580466i
\(611\) 37.0846 1.50028
\(612\) 2.53601i 0.102512i
\(613\) 8.22482i 0.332197i 0.986109 + 0.166099i \(0.0531170\pi\)
−0.986109 + 0.166099i \(0.946883\pi\)
\(614\) 15.9745 0.644677
\(615\) 11.1907 + 13.7152i 0.451251 + 0.553050i
\(616\) 6.94585 0.279856
\(617\) 14.7725i 0.594717i 0.954766 + 0.297359i \(0.0961057\pi\)
−0.954766 + 0.297359i \(0.903894\pi\)
\(618\) 28.3882i 1.14194i
\(619\) −20.7740 −0.834978 −0.417489 0.908682i \(-0.637090\pi\)
−0.417489 + 0.908682i \(0.637090\pi\)
\(620\) 28.2589 23.0573i 1.13490 0.926003i
\(621\) 3.19691 0.128288
\(622\) 19.6018i 0.785959i
\(623\) 15.0190i 0.601725i
\(624\) −8.83607 −0.353726
\(625\) −22.9867 9.82915i −0.919468 0.393166i
\(626\) 57.2197 2.28696
\(627\) 34.5827i 1.38110i
\(628\) 30.6957i 1.22489i
\(629\) −9.98097 −0.397967
\(630\) 3.68993 3.01073i 0.147010 0.119950i
\(631\) 22.9044 0.911808 0.455904 0.890029i \(-0.349316\pi\)
0.455904 + 0.890029i \(0.349316\pi\)
\(632\) 4.99805i 0.198812i
\(633\) 5.50247i 0.218703i
\(634\) −71.4268 −2.83672
\(635\) 21.7885 + 26.7038i 0.864649 + 1.05971i
\(636\) 22.0677 0.875042
\(637\) 3.34615i 0.132579i
\(638\) 39.3746i 1.55885i
\(639\) −4.02687 −0.159301
\(640\) −12.4466 15.2545i −0.491996 0.602987i
\(641\) 19.4913 0.769861 0.384930 0.922946i \(-0.374225\pi\)
0.384930 + 0.922946i \(0.374225\pi\)
\(642\) 7.84359i 0.309562i
\(643\) 4.00863i 0.158085i −0.996871 0.0790424i \(-0.974814\pi\)
0.996871 0.0790424i \(-0.0251863\pi\)
\(644\) 8.10741 0.319477
\(645\) 5.28612 4.31311i 0.208141 0.169829i
\(646\) 12.1054 0.476282
\(647\) 29.3350i 1.15328i 0.817000 + 0.576638i \(0.195636\pi\)
−0.817000 + 0.576638i \(0.804364\pi\)
\(648\) 1.14159i 0.0448460i
\(649\) 71.3196 2.79954
\(650\) 7.15028 34.9082i 0.280457 1.36921i
\(651\) 6.43165 0.252076
\(652\) 5.37293i 0.210420i
\(653\) 23.5839i 0.922908i 0.887164 + 0.461454i \(0.152672\pi\)
−0.887164 + 0.461454i \(0.847328\pi\)
\(654\) −9.51477 −0.372057
\(655\) −13.1741 + 10.7491i −0.514753 + 0.420003i
\(656\) 20.9043 0.816175
\(657\) 10.6661i 0.416125i
\(658\) 23.6040i 0.920180i
\(659\) 32.9035 1.28174 0.640869 0.767650i \(-0.278574\pi\)
0.640869 + 0.767650i \(0.278574\pi\)
\(660\) 21.8122 + 26.7329i 0.849041 + 1.04058i
\(661\) −43.5386 −1.69345 −0.846727 0.532027i \(-0.821431\pi\)
−0.846727 + 0.532027i \(0.821431\pi\)
\(662\) 43.1130i 1.67563i
\(663\) 3.34615i 0.129954i
\(664\) −17.7843 −0.690163
\(665\) 8.03486 + 9.84747i 0.311578 + 0.381868i
\(666\) 21.2574 0.823707
\(667\) 9.71393i 0.376125i
\(668\) 8.35270i 0.323176i
\(669\) 17.0957 0.660956
\(670\) −14.4307 + 11.7745i −0.557507 + 0.454888i
\(671\) 23.6395 0.912594
\(672\) 7.90726i 0.305029i
\(673\) 32.2938i 1.24483i −0.782686 0.622417i \(-0.786151\pi\)
0.782686 0.622417i \(-0.213849\pi\)
\(674\) −69.5573 −2.67925
\(675\) 4.89830 + 1.00332i 0.188536 + 0.0386179i
\(676\) −4.57317 −0.175891
\(677\) 30.7834i 1.18310i 0.806268 + 0.591551i \(0.201484\pi\)
−0.806268 + 0.591551i \(0.798516\pi\)
\(678\) 19.7364i 0.757971i
\(679\) 2.14419 0.0822864
\(680\) 1.97784 1.61378i 0.0758468 0.0618858i
\(681\) −12.5890 −0.482412
\(682\) 83.3440i 3.19141i
\(683\) 13.0232i 0.498318i −0.968463 0.249159i \(-0.919846\pi\)
0.968463 0.249159i \(-0.0801542\pi\)
\(684\) −14.4143 −0.551146
\(685\) −18.1940 22.2984i −0.695156 0.851979i
\(686\) 2.12979 0.0813158
\(687\) 1.85956i 0.0709468i
\(688\) 8.05694i 0.307168i
\(689\) 29.1173 1.10928
\(690\) 9.62504 + 11.7964i 0.366419 + 0.449081i
\(691\) 42.4075 1.61326 0.806629 0.591059i \(-0.201290\pi\)
0.806629 + 0.591059i \(0.201290\pi\)
\(692\) 19.9656i 0.758980i
\(693\) 6.08436i 0.231126i
\(694\) 28.0088 1.06320
\(695\) 22.4037 18.2799i 0.849819 0.693394i
\(696\) −3.46877 −0.131483
\(697\) 7.91628i 0.299851i
\(698\) 48.9692i 1.85351i
\(699\) 5.36375 0.202876
\(700\) 12.4221 + 2.54444i 0.469513 + 0.0961707i
\(701\) 14.0724 0.531509 0.265754 0.964041i \(-0.414379\pi\)
0.265754 + 0.964041i \(0.414379\pi\)
\(702\) 7.12660i 0.268976i
\(703\) 56.7305i 2.13963i
\(704\) 70.3320 2.65074
\(705\) −19.2012 + 15.6669i −0.723161 + 0.590050i
\(706\) −32.5859 −1.22639
\(707\) 13.5668i 0.510230i
\(708\) 29.7266i 1.11719i
\(709\) 14.0388 0.527238 0.263619 0.964627i \(-0.415084\pi\)
0.263619 + 0.964627i \(0.415084\pi\)
\(710\) −12.1238 14.8589i −0.454999 0.557644i
\(711\) 4.37814 0.164193
\(712\) 17.1456i 0.642559i
\(713\) 20.5615i 0.770032i
\(714\) 2.12979 0.0797054
\(715\) 28.7802 + 35.2729i 1.07632 + 1.31913i
\(716\) −7.04580 −0.263314
\(717\) 10.0753i 0.376269i
\(718\) 4.42035i 0.164966i
\(719\) 34.9414 1.30309 0.651547 0.758608i \(-0.274120\pi\)
0.651547 + 0.758608i \(0.274120\pi\)
\(720\) 4.57504 3.73292i 0.170502 0.139118i
\(721\) −13.3291 −0.496401
\(722\) 28.3397i 1.05469i
\(723\) 8.68299i 0.322924i
\(724\) −61.8761 −2.29961
\(725\) −3.04863 + 14.8836i −0.113223 + 0.552765i
\(726\) −55.4159 −2.05668
\(727\) 39.4810i 1.46427i 0.681161 + 0.732134i \(0.261476\pi\)
−0.681161 + 0.732134i \(0.738524\pi\)
\(728\) 3.81994i 0.141576i
\(729\) −1.00000 −0.0370370
\(730\) 39.3573 32.1128i 1.45668 1.18855i
\(731\) 3.05110 0.112849
\(732\) 9.85315i 0.364183i
\(733\) 32.3767i 1.19586i −0.801548 0.597930i \(-0.795990\pi\)
0.801548 0.597930i \(-0.204010\pi\)
\(734\) 74.7555 2.75928
\(735\) 1.41363 + 1.73253i 0.0521424 + 0.0639053i
\(736\) 25.2788 0.931790
\(737\) 23.7949i 0.876498i
\(738\) 16.8600i 0.620626i
\(739\) −11.4901 −0.422671 −0.211335 0.977414i \(-0.567781\pi\)
−0.211335 + 0.977414i \(0.567781\pi\)
\(740\) 35.7815 + 43.8536i 1.31535 + 1.61209i
\(741\) −19.0191 −0.698682
\(742\) 18.5329i 0.680364i
\(743\) 35.4594i 1.30088i −0.759558 0.650439i \(-0.774585\pi\)
0.759558 0.650439i \(-0.225415\pi\)
\(744\) −7.34233 −0.269183
\(745\) 4.78797 3.90665i 0.175418 0.143129i
\(746\) −68.5009 −2.50799
\(747\) 15.5785i 0.569987i
\(748\) 15.4300i 0.564177i
\(749\) 3.68280 0.134566
\(750\) 11.0453 + 21.0951i 0.403316 + 0.770284i
\(751\) −39.2058 −1.43064 −0.715320 0.698797i \(-0.753719\pi\)
−0.715320 + 0.698797i \(0.753719\pi\)
\(752\) 29.2659i 1.06722i
\(753\) 14.5842i 0.531478i
\(754\) −21.6544 −0.788607
\(755\) 26.3780 21.5226i 0.959993 0.783289i
\(756\) −2.53601 −0.0922338
\(757\) 4.59281i 0.166929i 0.996511 + 0.0834643i \(0.0265984\pi\)
−0.996511 + 0.0834643i \(0.973402\pi\)
\(758\) 71.7664i 2.60667i
\(759\) −19.4512 −0.706033
\(760\) −9.17253 11.2418i −0.332723 0.407783i
\(761\) −50.6303 −1.83535 −0.917674 0.397335i \(-0.869935\pi\)
−0.917674 + 0.397335i \(0.869935\pi\)
\(762\) 32.8269i 1.18919i
\(763\) 4.46747i 0.161733i
\(764\) −47.0758 −1.70314
\(765\) 1.41363 + 1.73253i 0.0511098 + 0.0626398i
\(766\) 14.1504 0.511274
\(767\) 39.2228i 1.41626i
\(768\) 4.36667i 0.157569i
\(769\) 2.97711 0.107357 0.0536787 0.998558i \(-0.482905\pi\)
0.0536787 + 0.998558i \(0.482905\pi\)
\(770\) −22.4508 + 18.3183i −0.809072 + 0.660147i
\(771\) 9.05937 0.326265
\(772\) 17.4310i 0.627354i
\(773\) 43.6865i 1.57130i −0.618674 0.785648i \(-0.712330\pi\)
0.618674 0.785648i \(-0.287670\pi\)
\(774\) −6.49820 −0.233573
\(775\) −6.45302 + 31.5042i −0.231799 + 1.13166i
\(776\) −2.44779 −0.0878705
\(777\) 9.98097i 0.358065i
\(778\) 29.4896i 1.05725i
\(779\) 44.9951 1.61212
\(780\) −14.7020 + 11.9958i −0.526417 + 0.429520i
\(781\) 24.5009 0.876712
\(782\) 6.80876i 0.243481i
\(783\) 3.03853i 0.108588i
\(784\) 2.64067 0.0943096
\(785\) −17.1104 20.9704i −0.610697 0.748466i
\(786\) 16.1948 0.577650
\(787\) 7.76874i 0.276926i −0.990368 0.138463i \(-0.955784\pi\)
0.990368 0.138463i \(-0.0442161\pi\)
\(788\) 11.5611i 0.411849i
\(789\) 11.6758 0.415668
\(790\) 13.1814 + 16.1550i 0.468973 + 0.574770i
\(791\) 9.26682 0.329490
\(792\) 6.94585i 0.246810i
\(793\) 13.0008i 0.461671i
\(794\) 41.8408 1.48487
\(795\) −15.0760 + 12.3010i −0.534692 + 0.436272i
\(796\) −38.4668 −1.36342
\(797\) 11.4325i 0.404959i 0.979286 + 0.202480i \(0.0649000\pi\)
−0.979286 + 0.202480i \(0.935100\pi\)
\(798\) 12.1054i 0.428528i
\(799\) −11.0828 −0.392080
\(800\) 38.7321 + 7.93353i 1.36939 + 0.280493i
\(801\) −15.0190 −0.530671
\(802\) 49.2761i 1.74000i
\(803\) 64.8966i 2.29015i
\(804\) 9.91793 0.349779
\(805\) −5.53875 + 4.51924i −0.195215 + 0.159282i
\(806\) −45.8358 −1.61450
\(807\) 0.0956370i 0.00336658i
\(808\) 15.4877i 0.544855i
\(809\) 52.9093 1.86019 0.930096 0.367316i \(-0.119723\pi\)
0.930096 + 0.367316i \(0.119723\pi\)
\(810\) −3.01073 3.68993i −0.105786 0.129651i
\(811\) −28.4663 −0.999587 −0.499794 0.866145i \(-0.666591\pi\)
−0.499794 + 0.866145i \(0.666591\pi\)
\(812\) 7.70575i 0.270419i
\(813\) 3.82150i 0.134026i
\(814\) −129.338 −4.53328
\(815\) −2.99498 3.67063i −0.104910 0.128577i
\(816\) 2.64067 0.0924419
\(817\) 17.3420i 0.606721i
\(818\) 24.9691i 0.873024i
\(819\) −3.34615 −0.116924
\(820\) 34.7819 28.3797i 1.21464 0.991061i
\(821\) 53.4777 1.86638 0.933192 0.359377i \(-0.117011\pi\)
0.933192 + 0.359377i \(0.117011\pi\)
\(822\) 27.4113i 0.956080i
\(823\) 27.6936i 0.965337i 0.875803 + 0.482669i \(0.160332\pi\)
−0.875803 + 0.482669i \(0.839668\pi\)
\(824\) 15.2164 0.530087
\(825\) −29.8030 6.10457i −1.03761 0.212534i
\(826\) −24.9650 −0.868642
\(827\) 7.36209i 0.256005i 0.991774 + 0.128002i \(0.0408565\pi\)
−0.991774 + 0.128002i \(0.959143\pi\)
\(828\) 8.10741i 0.281752i
\(829\) 12.8531 0.446406 0.223203 0.974772i \(-0.428349\pi\)
0.223203 + 0.974772i \(0.428349\pi\)
\(830\) 57.4835 46.9026i 1.99528 1.62801i
\(831\) −25.5049 −0.884754
\(832\) 38.6797i 1.34098i
\(833\) 1.00000i 0.0346479i
\(834\) −27.5407 −0.953657
\(835\) 4.65597 + 5.70632i 0.161126 + 0.197475i
\(836\) 87.7020 3.03324
\(837\) 6.43165i 0.222310i
\(838\) 15.0405i 0.519567i
\(839\) −0.507889 −0.0175343 −0.00876714 0.999962i \(-0.502791\pi\)
−0.00876714 + 0.999962i \(0.502791\pi\)
\(840\) −1.61378 1.97784i −0.0556809 0.0682421i
\(841\) −19.7673 −0.681632
\(842\) 35.1951i 1.21290i
\(843\) 27.6246i 0.951443i
\(844\) −13.9543 −0.480327
\(845\) 3.12426 2.54918i 0.107478 0.0876944i
\(846\) 23.6040 0.811522
\(847\) 26.0194i 0.894037i
\(848\) 22.9784i 0.789082i
\(849\) −12.0694 −0.414219
\(850\) −2.13687 + 10.4324i −0.0732939 + 0.357827i
\(851\) −31.9083 −1.09380
\(852\) 10.2122i 0.349864i
\(853\) 27.6786i 0.947696i −0.880607 0.473848i \(-0.842865\pi\)
0.880607 0.473848i \(-0.157135\pi\)
\(854\) −8.27487 −0.283160
\(855\) 9.84747 8.03486i 0.336776 0.274786i
\(856\) −4.20425 −0.143698
\(857\) 54.8479i 1.87357i −0.349908 0.936784i \(-0.613787\pi\)
0.349908 0.936784i \(-0.386213\pi\)
\(858\) 43.3608i 1.48031i
\(859\) 29.9224 1.02094 0.510470 0.859896i \(-0.329472\pi\)
0.510470 + 0.859896i \(0.329472\pi\)
\(860\) −10.9381 13.4057i −0.372986 0.457129i
\(861\) 7.91628 0.269786
\(862\) 5.76448i 0.196339i
\(863\) 25.3937i 0.864411i 0.901775 + 0.432206i \(0.142265\pi\)
−0.901775 + 0.432206i \(0.857735\pi\)
\(864\) −7.90726 −0.269010
\(865\) −11.1293 13.6400i −0.378406 0.463772i
\(866\) −47.7558 −1.62281
\(867\) 1.00000i 0.0339618i
\(868\) 16.3107i 0.553623i
\(869\) −26.6382 −0.903638
\(870\) 11.2120 9.14820i 0.380121 0.310153i
\(871\) 13.0863 0.443411
\(872\) 5.10003i 0.172709i
\(873\) 2.14419i 0.0725698i
\(874\) 38.7001 1.30905
\(875\) −9.90478 + 5.18608i −0.334843 + 0.175321i
\(876\) −27.0494 −0.913916
\(877\) 47.1727i 1.59291i −0.604699 0.796454i \(-0.706707\pi\)
0.604699 0.796454i \(-0.293293\pi\)
\(878\) 21.7601i 0.734368i
\(879\) 18.1684 0.612803
\(880\) −27.8362 + 22.7124i −0.938357 + 0.765635i
\(881\) −12.9987 −0.437938 −0.218969 0.975732i \(-0.570269\pi\)
−0.218969 + 0.975732i \(0.570269\pi\)
\(882\) 2.12979i 0.0717138i
\(883\) 8.36834i 0.281617i 0.990037 + 0.140808i \(0.0449702\pi\)
−0.990037 + 0.140808i \(0.955030\pi\)
\(884\) −8.48587 −0.285411
\(885\) −16.5702 20.3084i −0.557002 0.682658i
\(886\) −39.7535 −1.33555
\(887\) 26.4628i 0.888534i −0.895894 0.444267i \(-0.853464\pi\)
0.895894 0.444267i \(-0.146536\pi\)
\(888\) 11.3942i 0.382364i
\(889\) 15.4132 0.516941
\(890\) −45.2182 55.4191i −1.51572 1.85765i
\(891\) 6.08436 0.203834
\(892\) 43.3548i 1.45163i
\(893\) 62.9930i 2.10798i
\(894\) −5.88583 −0.196851
\(895\) 4.81349 3.92748i 0.160897 0.131281i
\(896\) −8.80475 −0.294146
\(897\) 10.6974i 0.357174i
\(898\) 58.3042i 1.94564i
\(899\) 19.5428 0.651789
\(900\) 2.54444 12.4221i 0.0848146 0.414071i
\(901\) −8.70174 −0.289897
\(902\) 102.582i 3.41562i
\(903\) 3.05110i 0.101534i
\(904\) −10.5789 −0.351850
\(905\) 42.2720 34.4910i 1.40517 1.14652i
\(906\) −32.4263 −1.07729
\(907\) 30.3041i 1.00623i −0.864219 0.503116i \(-0.832187\pi\)
0.864219 0.503116i \(-0.167813\pi\)
\(908\) 31.9259i 1.05950i
\(909\) 13.5668 0.449981
\(910\) −10.0743 12.3470i −0.333961 0.409301i
\(911\) −50.8332 −1.68418 −0.842089 0.539338i \(-0.818674\pi\)
−0.842089 + 0.539338i \(0.818674\pi\)
\(912\) 15.0092i 0.497004i
\(913\) 94.7850i 3.13693i
\(914\) −10.7624 −0.355989
\(915\) −5.49235 6.73139i −0.181572 0.222533i
\(916\) −4.71587 −0.155817
\(917\) 7.60394i 0.251104i
\(918\) 2.12979i 0.0702936i
\(919\) 18.2329 0.601446 0.300723 0.953711i \(-0.402772\pi\)
0.300723 + 0.953711i \(0.402772\pi\)
\(920\) 6.32300 5.15913i 0.208463 0.170092i
\(921\) 7.50048 0.247149
\(922\) 54.3613i 1.79029i
\(923\) 13.4745i 0.443519i
\(924\) 15.4300 0.507610
\(925\) −48.8898 10.0141i −1.60749 0.329263i
\(926\) −17.4289 −0.572750
\(927\) 13.3291i 0.437784i
\(928\) 24.0265i 0.788707i
\(929\) −8.61416 −0.282621 −0.141311 0.989965i \(-0.545132\pi\)
−0.141311 + 0.989965i \(0.545132\pi\)
\(930\) 23.7323 19.3640i 0.778214 0.634969i
\(931\) 5.68386 0.186281
\(932\) 13.6025i 0.445566i
\(933\) 9.20361i 0.301313i
\(934\) 27.6973 0.906284
\(935\) −8.60101 10.5413i −0.281283 0.344738i
\(936\) 3.81994 0.124859
\(937\) 23.1892i 0.757559i 0.925487 + 0.378779i \(0.123656\pi\)
−0.925487 + 0.378779i \(0.876344\pi\)
\(938\) 8.32927i 0.271960i
\(939\) 26.8664 0.876751
\(940\) 39.7314 + 48.6946i 1.29590 + 1.58824i
\(941\) −8.51852 −0.277696 −0.138848 0.990314i \(-0.544340\pi\)
−0.138848 + 0.990314i \(0.544340\pi\)
\(942\) 25.7788i 0.839920i
\(943\) 25.3077i 0.824132i
\(944\) −30.9534 −1.00745
\(945\) 1.73253 1.41363i 0.0563592 0.0459853i
\(946\) 39.5374 1.28547
\(947\) 8.54242i 0.277591i 0.990321 + 0.138796i \(0.0443231\pi\)
−0.990321 + 0.138796i \(0.955677\pi\)
\(948\) 11.1030i 0.360609i
\(949\) −35.6905 −1.15856
\(950\) 59.2961 + 12.1457i 1.92382 + 0.394057i
\(951\) −33.5370 −1.08751
\(952\) 1.14159i 0.0369992i
\(953\) 4.02491i 0.130380i 0.997873 + 0.0651898i \(0.0207653\pi\)
−0.997873 + 0.0651898i \(0.979235\pi\)
\(954\) 18.5329 0.600025
\(955\) 32.1608 26.2410i 1.04070 0.849140i
\(956\) 25.5510 0.826380
\(957\) 18.4875i 0.597617i
\(958\) 17.4258i 0.563003i
\(959\) −12.8704 −0.415608
\(960\) −16.3408 20.0271i −0.527396 0.646373i
\(961\) 10.3662 0.334393
\(962\) 71.1304i 2.29334i
\(963\) 3.68280i 0.118676i
\(964\) 22.0202 0.709222
\(965\) 9.71639 + 11.9083i 0.312782 + 0.383343i
\(966\) 6.80876 0.219068
\(967\) 2.23083i 0.0717388i 0.999356 + 0.0358694i \(0.0114200\pi\)
−0.999356 + 0.0358694i \(0.988580\pi\)
\(968\) 29.7035i 0.954708i
\(969\) 5.68386 0.182592
\(970\) 7.91190 6.45557i 0.254036 0.207276i
\(971\) −50.8051 −1.63041 −0.815207 0.579170i \(-0.803377\pi\)
−0.815207 + 0.579170i \(0.803377\pi\)
\(972\) 2.53601i 0.0813426i
\(973\) 12.9312i 0.414555i
\(974\) 10.4028 0.333328
\(975\) 3.35727 16.3904i 0.107519 0.524914i
\(976\) −10.2598 −0.328408
\(977\) 15.6347i 0.500197i 0.968220 + 0.250099i \(0.0804631\pi\)
−0.968220 + 0.250099i \(0.919537\pi\)
\(978\) 4.51229i 0.144287i
\(979\) 91.3811 2.92055
\(980\) 4.39372 3.58497i 0.140352 0.114518i
\(981\) −4.46747 −0.142635
\(982\) 26.1075i 0.833123i
\(983\) 5.96705i 0.190319i 0.995462 + 0.0951597i \(0.0303362\pi\)
−0.995462 + 0.0951597i \(0.969664\pi\)
\(984\) −9.03717 −0.288094
\(985\) 6.44442 + 7.89824i 0.205336 + 0.251659i
\(986\) 6.47144 0.206093
\(987\) 11.0828i 0.352769i
\(988\) 48.2325i 1.53448i
\(989\) 9.75410 0.310162
\(990\) 18.3183 + 22.4508i 0.582195 + 0.713535i
\(991\) −6.08005 −0.193139 −0.0965696 0.995326i \(-0.530787\pi\)
−0.0965696 + 0.995326i \(0.530787\pi\)
\(992\) 50.8568i 1.61470i
\(993\) 20.2428i 0.642387i
\(994\) −8.57640 −0.272027
\(995\) 26.2794 21.4422i 0.833113 0.679764i
\(996\) −39.5072 −1.25183
\(997\) 12.1266i 0.384052i 0.981390 + 0.192026i \(0.0615058\pi\)
−0.981390 + 0.192026i \(0.938494\pi\)
\(998\) 57.0927i 1.80724i
\(999\) 9.98097 0.315784
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1785.2.g.f.1429.4 28
5.2 odd 4 8925.2.a.cw.1.12 14
5.3 odd 4 8925.2.a.cv.1.3 14
5.4 even 2 inner 1785.2.g.f.1429.25 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.g.f.1429.4 28 1.1 even 1 trivial
1785.2.g.f.1429.25 yes 28 5.4 even 2 inner
8925.2.a.cv.1.3 14 5.3 odd 4
8925.2.a.cw.1.12 14 5.2 odd 4