Properties

Label 1785.2.g.f
Level $1785$
Weight $2$
Character orbit 1785.g
Analytic conductor $14.253$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1785,2,Mod(1429,1785)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1785.1429");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1785 = 3 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1785.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.2532967608\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 28 q - 34 q^{4} - 6 q^{6} - 28 q^{9} + 4 q^{10} + 8 q^{11} - 6 q^{14} - 4 q^{15} + 38 q^{16} + 12 q^{19} - 4 q^{20} - 28 q^{21} + 30 q^{24} - 8 q^{25} - 36 q^{26} - 2 q^{30} + 14 q^{31} - 6 q^{34} - 4 q^{35}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1429.1 2.75921i 1.00000i −5.61324 −2.05164 0.889262i −2.75921 1.00000i 9.96967i −1.00000 −2.45366 + 5.66089i
1429.2 2.62546i 1.00000i −4.89305 1.28265 + 1.83162i −2.62546 1.00000i 7.59560i −1.00000 4.80884 3.36754i
1429.3 2.50516i 1.00000i −4.27584 1.66676 + 1.49060i 2.50516 1.00000i 5.70136i −1.00000 3.73421 4.17551i
1429.4 2.12979i 1.00000i −2.53601 1.73253 1.41363i −2.12979 1.00000i 1.14159i −1.00000 −3.01073 3.68993i
1429.5 2.11586i 1.00000i −2.47685 −1.03691 + 1.98112i −2.11586 1.00000i 1.00894i −1.00000 4.19176 + 2.19394i
1429.6 2.05674i 1.00000i −2.23017 −2.19314 0.436033i 2.05674 1.00000i 0.473406i −1.00000 −0.896806 + 4.51072i
1429.7 1.90035i 1.00000i −1.61135 −0.880375 + 2.05547i 1.90035 1.00000i 0.738580i −1.00000 3.90611 + 1.67302i
1429.8 1.69985i 1.00000i −0.889490 1.47723 1.67863i −1.69985 1.00000i 1.88770i −1.00000 −2.85341 2.51107i
1429.9 1.61517i 1.00000i −0.608780 2.06078 0.867874i 1.61517 1.00000i 2.24706i −1.00000 −1.40177 3.32851i
1429.10 1.01664i 1.00000i 0.966449 −1.82446 1.29281i 1.01664 1.00000i 3.01580i −1.00000 −1.31431 + 1.85481i
1429.11 0.756905i 1.00000i 1.42709 −0.809090 2.08456i −0.756905 1.00000i 2.59398i −1.00000 −1.57781 + 0.612405i
1429.12 0.395643i 1.00000i 1.84347 1.54954 1.61212i 0.395643 1.00000i 1.52064i −1.00000 −0.637825 0.613063i
1429.13 0.304207i 1.00000i 1.90746 0.355135 2.20769i −0.304207 1.00000i 1.18868i −1.00000 −0.671593 0.108035i
1429.14 0.0984277i 1.00000i 1.99031 −1.32901 + 1.79826i −0.0984277 1.00000i 0.392757i −1.00000 0.176999 + 0.130811i
1429.15 0.0984277i 1.00000i 1.99031 −1.32901 1.79826i −0.0984277 1.00000i 0.392757i −1.00000 0.176999 0.130811i
1429.16 0.304207i 1.00000i 1.90746 0.355135 + 2.20769i −0.304207 1.00000i 1.18868i −1.00000 −0.671593 + 0.108035i
1429.17 0.395643i 1.00000i 1.84347 1.54954 + 1.61212i 0.395643 1.00000i 1.52064i −1.00000 −0.637825 + 0.613063i
1429.18 0.756905i 1.00000i 1.42709 −0.809090 + 2.08456i −0.756905 1.00000i 2.59398i −1.00000 −1.57781 0.612405i
1429.19 1.01664i 1.00000i 0.966449 −1.82446 + 1.29281i 1.01664 1.00000i 3.01580i −1.00000 −1.31431 1.85481i
1429.20 1.61517i 1.00000i −0.608780 2.06078 + 0.867874i 1.61517 1.00000i 2.24706i −1.00000 −1.40177 + 3.32851i
See all 28 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1429.28
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1785.2.g.f 28
5.b even 2 1 inner 1785.2.g.f 28
5.c odd 4 1 8925.2.a.cv 14
5.c odd 4 1 8925.2.a.cw 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1785.2.g.f 28 1.a even 1 1 trivial
1785.2.g.f 28 5.b even 2 1 inner
8925.2.a.cv 14 5.c odd 4 1
8925.2.a.cw 14 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{28} + 45 T_{2}^{26} + 896 T_{2}^{24} + 10400 T_{2}^{22} + 78014 T_{2}^{20} + 396062 T_{2}^{18} + \cdots + 64 \) acting on \(S_{2}^{\mathrm{new}}(1785, [\chi])\). Copy content Toggle raw display