Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1785,2,Mod(1429,1785)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1785, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1785.1429");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1785 = 3 \cdot 5 \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1785.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(14.2532967608\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1429.1 | − | 2.75921i | − | 1.00000i | −5.61324 | −2.05164 | − | 0.889262i | −2.75921 | − | 1.00000i | 9.96967i | −1.00000 | −2.45366 | + | 5.66089i | |||||||||||
1429.2 | − | 2.62546i | − | 1.00000i | −4.89305 | 1.28265 | + | 1.83162i | −2.62546 | − | 1.00000i | 7.59560i | −1.00000 | 4.80884 | − | 3.36754i | |||||||||||
1429.3 | − | 2.50516i | 1.00000i | −4.27584 | 1.66676 | + | 1.49060i | 2.50516 | 1.00000i | 5.70136i | −1.00000 | 3.73421 | − | 4.17551i | |||||||||||||
1429.4 | − | 2.12979i | − | 1.00000i | −2.53601 | 1.73253 | − | 1.41363i | −2.12979 | − | 1.00000i | 1.14159i | −1.00000 | −3.01073 | − | 3.68993i | |||||||||||
1429.5 | − | 2.11586i | − | 1.00000i | −2.47685 | −1.03691 | + | 1.98112i | −2.11586 | − | 1.00000i | 1.00894i | −1.00000 | 4.19176 | + | 2.19394i | |||||||||||
1429.6 | − | 2.05674i | 1.00000i | −2.23017 | −2.19314 | − | 0.436033i | 2.05674 | 1.00000i | 0.473406i | −1.00000 | −0.896806 | + | 4.51072i | |||||||||||||
1429.7 | − | 1.90035i | 1.00000i | −1.61135 | −0.880375 | + | 2.05547i | 1.90035 | 1.00000i | − | 0.738580i | −1.00000 | 3.90611 | + | 1.67302i | ||||||||||||
1429.8 | − | 1.69985i | − | 1.00000i | −0.889490 | 1.47723 | − | 1.67863i | −1.69985 | − | 1.00000i | − | 1.88770i | −1.00000 | −2.85341 | − | 2.51107i | ||||||||||
1429.9 | − | 1.61517i | 1.00000i | −0.608780 | 2.06078 | − | 0.867874i | 1.61517 | 1.00000i | − | 2.24706i | −1.00000 | −1.40177 | − | 3.32851i | ||||||||||||
1429.10 | − | 1.01664i | 1.00000i | 0.966449 | −1.82446 | − | 1.29281i | 1.01664 | 1.00000i | − | 3.01580i | −1.00000 | −1.31431 | + | 1.85481i | ||||||||||||
1429.11 | − | 0.756905i | − | 1.00000i | 1.42709 | −0.809090 | − | 2.08456i | −0.756905 | − | 1.00000i | − | 2.59398i | −1.00000 | −1.57781 | + | 0.612405i | ||||||||||
1429.12 | − | 0.395643i | 1.00000i | 1.84347 | 1.54954 | − | 1.61212i | 0.395643 | 1.00000i | − | 1.52064i | −1.00000 | −0.637825 | − | 0.613063i | ||||||||||||
1429.13 | − | 0.304207i | − | 1.00000i | 1.90746 | 0.355135 | − | 2.20769i | −0.304207 | − | 1.00000i | − | 1.18868i | −1.00000 | −0.671593 | − | 0.108035i | ||||||||||
1429.14 | − | 0.0984277i | − | 1.00000i | 1.99031 | −1.32901 | + | 1.79826i | −0.0984277 | − | 1.00000i | − | 0.392757i | −1.00000 | 0.176999 | + | 0.130811i | ||||||||||
1429.15 | 0.0984277i | 1.00000i | 1.99031 | −1.32901 | − | 1.79826i | −0.0984277 | 1.00000i | 0.392757i | −1.00000 | 0.176999 | − | 0.130811i | ||||||||||||||
1429.16 | 0.304207i | 1.00000i | 1.90746 | 0.355135 | + | 2.20769i | −0.304207 | 1.00000i | 1.18868i | −1.00000 | −0.671593 | + | 0.108035i | ||||||||||||||
1429.17 | 0.395643i | − | 1.00000i | 1.84347 | 1.54954 | + | 1.61212i | 0.395643 | − | 1.00000i | 1.52064i | −1.00000 | −0.637825 | + | 0.613063i | ||||||||||||
1429.18 | 0.756905i | 1.00000i | 1.42709 | −0.809090 | + | 2.08456i | −0.756905 | 1.00000i | 2.59398i | −1.00000 | −1.57781 | − | 0.612405i | ||||||||||||||
1429.19 | 1.01664i | − | 1.00000i | 0.966449 | −1.82446 | + | 1.29281i | 1.01664 | − | 1.00000i | 3.01580i | −1.00000 | −1.31431 | − | 1.85481i | ||||||||||||
1429.20 | 1.61517i | − | 1.00000i | −0.608780 | 2.06078 | + | 0.867874i | 1.61517 | − | 1.00000i | 2.24706i | −1.00000 | −1.40177 | + | 3.32851i | ||||||||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1785.2.g.f | ✓ | 28 |
5.b | even | 2 | 1 | inner | 1785.2.g.f | ✓ | 28 |
5.c | odd | 4 | 1 | 8925.2.a.cv | 14 | ||
5.c | odd | 4 | 1 | 8925.2.a.cw | 14 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1785.2.g.f | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
1785.2.g.f | ✓ | 28 | 5.b | even | 2 | 1 | inner |
8925.2.a.cv | 14 | 5.c | odd | 4 | 1 | ||
8925.2.a.cw | 14 | 5.c | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{28} + 45 T_{2}^{26} + 896 T_{2}^{24} + 10400 T_{2}^{22} + 78014 T_{2}^{20} + 396062 T_{2}^{18} + \cdots + 64 \) acting on \(S_{2}^{\mathrm{new}}(1785, [\chi])\).