Properties

Label 1785.2.g.f.1429.8
Level $1785$
Weight $2$
Character 1785.1429
Analytic conductor $14.253$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1785,2,Mod(1429,1785)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1785.1429");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1785 = 3 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1785.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.2532967608\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1429.8
Character \(\chi\) \(=\) 1785.1429
Dual form 1785.2.g.f.1429.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.69985i q^{2} -1.00000i q^{3} -0.889490 q^{4} +(1.47723 - 1.67863i) q^{5} -1.69985 q^{6} -1.00000i q^{7} -1.88770i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-1.69985i q^{2} -1.00000i q^{3} -0.889490 q^{4} +(1.47723 - 1.67863i) q^{5} -1.69985 q^{6} -1.00000i q^{7} -1.88770i q^{8} -1.00000 q^{9} +(-2.85341 - 2.51107i) q^{10} -1.31823 q^{11} +0.889490i q^{12} -4.26284i q^{13} -1.69985 q^{14} +(-1.67863 - 1.47723i) q^{15} -4.98779 q^{16} -1.00000i q^{17} +1.69985i q^{18} +5.21905 q^{19} +(-1.31398 + 1.49312i) q^{20} -1.00000 q^{21} +2.24079i q^{22} +2.71209i q^{23} -1.88770 q^{24} +(-0.635573 - 4.95944i) q^{25} -7.24619 q^{26} +1.00000i q^{27} +0.889490i q^{28} +0.948665 q^{29} +(-2.51107 + 2.85341i) q^{30} -2.19047 q^{31} +4.70309i q^{32} +1.31823i q^{33} -1.69985 q^{34} +(-1.67863 - 1.47723i) q^{35} +0.889490 q^{36} +3.64278i q^{37} -8.87160i q^{38} -4.26284 q^{39} +(-3.16874 - 2.78857i) q^{40} +10.0648 q^{41} +1.69985i q^{42} -1.43751i q^{43} +1.17255 q^{44} +(-1.47723 + 1.67863i) q^{45} +4.61014 q^{46} +3.21978i q^{47} +4.98779i q^{48} -1.00000 q^{49} +(-8.43031 + 1.08038i) q^{50} -1.00000 q^{51} +3.79175i q^{52} +14.1176i q^{53} +1.69985 q^{54} +(-1.94733 + 2.21282i) q^{55} -1.88770 q^{56} -5.21905i q^{57} -1.61259i q^{58} -14.0099 q^{59} +(1.49312 + 1.31398i) q^{60} +8.36086 q^{61} +3.72347i q^{62} +1.00000i q^{63} -1.98102 q^{64} +(-7.15571 - 6.29720i) q^{65} +2.24079 q^{66} -13.6284i q^{67} +0.889490i q^{68} +2.71209 q^{69} +(-2.51107 + 2.85341i) q^{70} -6.66687 q^{71} +1.88770i q^{72} -13.0816i q^{73} +6.19219 q^{74} +(-4.95944 + 0.635573i) q^{75} -4.64229 q^{76} +1.31823i q^{77} +7.24619i q^{78} +9.12564 q^{79} +(-7.36812 + 8.37263i) q^{80} +1.00000 q^{81} -17.1086i q^{82} +6.08519i q^{83} +0.889490 q^{84} +(-1.67863 - 1.47723i) q^{85} -2.44355 q^{86} -0.948665i q^{87} +2.48842i q^{88} -0.0400448 q^{89} +(2.85341 + 2.51107i) q^{90} -4.26284 q^{91} -2.41237i q^{92} +2.19047i q^{93} +5.47315 q^{94} +(7.70974 - 8.76083i) q^{95} +4.70309 q^{96} +7.33549i q^{97} +1.69985i q^{98} +1.31823 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 34 q^{4} - 6 q^{6} - 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 28 q - 34 q^{4} - 6 q^{6} - 28 q^{9} + 4 q^{10} + 8 q^{11} - 6 q^{14} - 4 q^{15} + 38 q^{16} + 12 q^{19} - 4 q^{20} - 28 q^{21} + 30 q^{24} - 8 q^{25} - 36 q^{26} - 2 q^{30} + 14 q^{31} - 6 q^{34} - 4 q^{35} + 34 q^{36} + 18 q^{39} - 62 q^{40} - 50 q^{41} - 24 q^{44} + 52 q^{46} - 28 q^{49} + 6 q^{50} - 28 q^{51} + 6 q^{54} - 14 q^{55} + 30 q^{56} + 44 q^{59} + 10 q^{60} + 26 q^{61} - 6 q^{64} + 20 q^{65} - 48 q^{66} + 38 q^{69} - 2 q^{70} + 12 q^{71} + 24 q^{74} - 16 q^{75} - 20 q^{76} - 8 q^{79} - 32 q^{80} + 28 q^{81} + 34 q^{84} - 4 q^{85} + 8 q^{86} + 84 q^{89} - 4 q^{90} + 18 q^{91} - 8 q^{94} + 4 q^{95} - 66 q^{96} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1785\mathbb{Z}\right)^\times\).

\(n\) \(596\) \(766\) \(1072\) \(1261\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.69985i 1.20198i −0.799258 0.600988i \(-0.794774\pi\)
0.799258 0.600988i \(-0.205226\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −0.889490 −0.444745
\(5\) 1.47723 1.67863i 0.660638 0.750705i
\(6\) −1.69985 −0.693961
\(7\) 1.00000i 0.377964i
\(8\) 1.88770i 0.667403i
\(9\) −1.00000 −0.333333
\(10\) −2.85341 2.51107i −0.902328 0.794071i
\(11\) −1.31823 −0.397461 −0.198731 0.980054i \(-0.563682\pi\)
−0.198731 + 0.980054i \(0.563682\pi\)
\(12\) 0.889490i 0.256774i
\(13\) 4.26284i 1.18230i −0.806562 0.591149i \(-0.798674\pi\)
0.806562 0.591149i \(-0.201326\pi\)
\(14\) −1.69985 −0.454304
\(15\) −1.67863 1.47723i −0.433419 0.381420i
\(16\) −4.98779 −1.24695
\(17\) 1.00000i 0.242536i
\(18\) 1.69985i 0.400659i
\(19\) 5.21905 1.19733 0.598666 0.800999i \(-0.295698\pi\)
0.598666 + 0.800999i \(0.295698\pi\)
\(20\) −1.31398 + 1.49312i −0.293816 + 0.333872i
\(21\) −1.00000 −0.218218
\(22\) 2.24079i 0.477739i
\(23\) 2.71209i 0.565509i 0.959192 + 0.282754i \(0.0912482\pi\)
−0.959192 + 0.282754i \(0.908752\pi\)
\(24\) −1.88770 −0.385325
\(25\) −0.635573 4.95944i −0.127115 0.991888i
\(26\) −7.24619 −1.42109
\(27\) 1.00000i 0.192450i
\(28\) 0.889490i 0.168098i
\(29\) 0.948665 0.176163 0.0880814 0.996113i \(-0.471926\pi\)
0.0880814 + 0.996113i \(0.471926\pi\)
\(30\) −2.51107 + 2.85341i −0.458457 + 0.520960i
\(31\) −2.19047 −0.393420 −0.196710 0.980462i \(-0.563026\pi\)
−0.196710 + 0.980462i \(0.563026\pi\)
\(32\) 4.70309i 0.831397i
\(33\) 1.31823i 0.229474i
\(34\) −1.69985 −0.291522
\(35\) −1.67863 1.47723i −0.283740 0.249698i
\(36\) 0.889490 0.148248
\(37\) 3.64278i 0.598870i 0.954117 + 0.299435i \(0.0967982\pi\)
−0.954117 + 0.299435i \(0.903202\pi\)
\(38\) 8.87160i 1.43916i
\(39\) −4.26284 −0.682601
\(40\) −3.16874 2.78857i −0.501022 0.440912i
\(41\) 10.0648 1.57185 0.785925 0.618321i \(-0.212187\pi\)
0.785925 + 0.618321i \(0.212187\pi\)
\(42\) 1.69985i 0.262293i
\(43\) 1.43751i 0.219218i −0.993975 0.109609i \(-0.965040\pi\)
0.993975 0.109609i \(-0.0349598\pi\)
\(44\) 1.17255 0.176769
\(45\) −1.47723 + 1.67863i −0.220213 + 0.250235i
\(46\) 4.61014 0.679728
\(47\) 3.21978i 0.469654i 0.972037 + 0.234827i \(0.0754523\pi\)
−0.972037 + 0.234827i \(0.924548\pi\)
\(48\) 4.98779i 0.719925i
\(49\) −1.00000 −0.142857
\(50\) −8.43031 + 1.08038i −1.19223 + 0.152789i
\(51\) −1.00000 −0.140028
\(52\) 3.79175i 0.525822i
\(53\) 14.1176i 1.93920i 0.244701 + 0.969599i \(0.421310\pi\)
−0.244701 + 0.969599i \(0.578690\pi\)
\(54\) 1.69985 0.231320
\(55\) −1.94733 + 2.21282i −0.262578 + 0.298376i
\(56\) −1.88770 −0.252255
\(57\) 5.21905i 0.691280i
\(58\) 1.61259i 0.211743i
\(59\) −14.0099 −1.82394 −0.911968 0.410262i \(-0.865437\pi\)
−0.911968 + 0.410262i \(0.865437\pi\)
\(60\) 1.49312 + 1.31398i 0.192761 + 0.169635i
\(61\) 8.36086 1.07050 0.535249 0.844694i \(-0.320218\pi\)
0.535249 + 0.844694i \(0.320218\pi\)
\(62\) 3.72347i 0.472881i
\(63\) 1.00000i 0.125988i
\(64\) −1.98102 −0.247628
\(65\) −7.15571 6.29720i −0.887557 0.781072i
\(66\) 2.24079 0.275823
\(67\) 13.6284i 1.66497i −0.554049 0.832484i \(-0.686918\pi\)
0.554049 0.832484i \(-0.313082\pi\)
\(68\) 0.889490i 0.107867i
\(69\) 2.71209 0.326497
\(70\) −2.51107 + 2.85341i −0.300131 + 0.341048i
\(71\) −6.66687 −0.791212 −0.395606 0.918420i \(-0.629465\pi\)
−0.395606 + 0.918420i \(0.629465\pi\)
\(72\) 1.88770i 0.222468i
\(73\) 13.0816i 1.53109i −0.643383 0.765544i \(-0.722470\pi\)
0.643383 0.765544i \(-0.277530\pi\)
\(74\) 6.19219 0.719827
\(75\) −4.95944 + 0.635573i −0.572667 + 0.0733896i
\(76\) −4.64229 −0.532508
\(77\) 1.31823i 0.150226i
\(78\) 7.24619i 0.820469i
\(79\) 9.12564 1.02672 0.513358 0.858175i \(-0.328401\pi\)
0.513358 + 0.858175i \(0.328401\pi\)
\(80\) −7.36812 + 8.37263i −0.823781 + 0.936089i
\(81\) 1.00000 0.111111
\(82\) 17.1086i 1.88933i
\(83\) 6.08519i 0.667936i 0.942584 + 0.333968i \(0.108388\pi\)
−0.942584 + 0.333968i \(0.891612\pi\)
\(84\) 0.889490 0.0970514
\(85\) −1.67863 1.47723i −0.182073 0.160228i
\(86\) −2.44355 −0.263494
\(87\) 0.948665i 0.101708i
\(88\) 2.48842i 0.265267i
\(89\) −0.0400448 −0.00424474 −0.00212237 0.999998i \(-0.500676\pi\)
−0.00212237 + 0.999998i \(0.500676\pi\)
\(90\) 2.85341 + 2.51107i 0.300776 + 0.264690i
\(91\) −4.26284 −0.446867
\(92\) 2.41237i 0.251507i
\(93\) 2.19047i 0.227141i
\(94\) 5.47315 0.564512
\(95\) 7.70974 8.76083i 0.791003 0.898842i
\(96\) 4.70309 0.480007
\(97\) 7.33549i 0.744806i 0.928071 + 0.372403i \(0.121466\pi\)
−0.928071 + 0.372403i \(0.878534\pi\)
\(98\) 1.69985i 0.171711i
\(99\) 1.31823 0.132487
\(100\) 0.565336 + 4.41137i 0.0565336 + 0.441137i
\(101\) −2.66094 −0.264774 −0.132387 0.991198i \(-0.542264\pi\)
−0.132387 + 0.991198i \(0.542264\pi\)
\(102\) 1.69985i 0.168310i
\(103\) 8.62526i 0.849872i 0.905223 + 0.424936i \(0.139703\pi\)
−0.905223 + 0.424936i \(0.860297\pi\)
\(104\) −8.04696 −0.789069
\(105\) −1.47723 + 1.67863i −0.144163 + 0.163817i
\(106\) 23.9978 2.33087
\(107\) 19.2943i 1.86525i −0.360852 0.932623i \(-0.617514\pi\)
0.360852 0.932623i \(-0.382486\pi\)
\(108\) 0.889490i 0.0855913i
\(109\) −4.03341 −0.386331 −0.193166 0.981166i \(-0.561875\pi\)
−0.193166 + 0.981166i \(0.561875\pi\)
\(110\) 3.76146 + 3.31017i 0.358641 + 0.315612i
\(111\) 3.64278 0.345758
\(112\) 4.98779i 0.471302i
\(113\) 18.5353i 1.74366i 0.489810 + 0.871829i \(0.337066\pi\)
−0.489810 + 0.871829i \(0.662934\pi\)
\(114\) −8.87160 −0.830902
\(115\) 4.55258 + 4.00638i 0.424530 + 0.373597i
\(116\) −0.843829 −0.0783475
\(117\) 4.26284i 0.394100i
\(118\) 23.8148i 2.19233i
\(119\) −1.00000 −0.0916698
\(120\) −2.78857 + 3.16874i −0.254560 + 0.289265i
\(121\) −9.26227 −0.842024
\(122\) 14.2122i 1.28671i
\(123\) 10.0648i 0.907509i
\(124\) 1.94840 0.174972
\(125\) −9.26394 6.25935i −0.828592 0.559854i
\(126\) 1.69985 0.151435
\(127\) 7.03516i 0.624269i −0.950038 0.312135i \(-0.898956\pi\)
0.950038 0.312135i \(-0.101044\pi\)
\(128\) 12.7736i 1.12904i
\(129\) −1.43751 −0.126565
\(130\) −10.7043 + 12.1636i −0.938829 + 1.06682i
\(131\) −2.49412 −0.217913 −0.108956 0.994047i \(-0.534751\pi\)
−0.108956 + 0.994047i \(0.534751\pi\)
\(132\) 1.17255i 0.102058i
\(133\) 5.21905i 0.452549i
\(134\) −23.1662 −2.00125
\(135\) 1.67863 + 1.47723i 0.144473 + 0.127140i
\(136\) −1.88770 −0.161869
\(137\) 4.36841i 0.373218i 0.982434 + 0.186609i \(0.0597498\pi\)
−0.982434 + 0.186609i \(0.940250\pi\)
\(138\) 4.61014i 0.392441i
\(139\) 11.3585 0.963413 0.481707 0.876333i \(-0.340017\pi\)
0.481707 + 0.876333i \(0.340017\pi\)
\(140\) 1.49312 + 1.31398i 0.126192 + 0.111052i
\(141\) 3.21978 0.271155
\(142\) 11.3327i 0.951018i
\(143\) 5.61940i 0.469918i
\(144\) 4.98779 0.415649
\(145\) 1.40140 1.59245i 0.116380 0.132246i
\(146\) −22.2368 −1.84033
\(147\) 1.00000i 0.0824786i
\(148\) 3.24022i 0.266345i
\(149\) 15.8707 1.30018 0.650090 0.759858i \(-0.274731\pi\)
0.650090 + 0.759858i \(0.274731\pi\)
\(150\) 1.08038 + 8.43031i 0.0882125 + 0.688332i
\(151\) 10.9078 0.887667 0.443833 0.896109i \(-0.353618\pi\)
0.443833 + 0.896109i \(0.353618\pi\)
\(152\) 9.85200i 0.799103i
\(153\) 1.00000i 0.0808452i
\(154\) 2.24079 0.180568
\(155\) −3.23583 + 3.67698i −0.259908 + 0.295342i
\(156\) 3.79175 0.303583
\(157\) 5.06290i 0.404063i 0.979379 + 0.202032i \(0.0647544\pi\)
−0.979379 + 0.202032i \(0.935246\pi\)
\(158\) 15.5122i 1.23409i
\(159\) 14.1176 1.11960
\(160\) 7.89473 + 6.94756i 0.624134 + 0.549253i
\(161\) 2.71209 0.213742
\(162\) 1.69985i 0.133553i
\(163\) 13.9637i 1.09372i 0.837224 + 0.546860i \(0.184177\pi\)
−0.837224 + 0.546860i \(0.815823\pi\)
\(164\) −8.95250 −0.699073
\(165\) 2.21282 + 1.94733i 0.172267 + 0.151600i
\(166\) 10.3439 0.802843
\(167\) 20.0975i 1.55519i 0.628766 + 0.777595i \(0.283560\pi\)
−0.628766 + 0.777595i \(0.716440\pi\)
\(168\) 1.88770i 0.145639i
\(169\) −5.17180 −0.397830
\(170\) −2.51107 + 2.85341i −0.192590 + 0.218847i
\(171\) −5.21905 −0.399111
\(172\) 1.27865i 0.0974960i
\(173\) 9.66834i 0.735071i −0.930010 0.367535i \(-0.880202\pi\)
0.930010 0.367535i \(-0.119798\pi\)
\(174\) −1.61259 −0.122250
\(175\) −4.95944 + 0.635573i −0.374898 + 0.0480448i
\(176\) 6.57505 0.495613
\(177\) 14.0099i 1.05305i
\(178\) 0.0680701i 0.00510207i
\(179\) −2.03325 −0.151972 −0.0759859 0.997109i \(-0.524210\pi\)
−0.0759859 + 0.997109i \(0.524210\pi\)
\(180\) 1.31398 1.49312i 0.0979385 0.111291i
\(181\) 22.0739 1.64074 0.820369 0.571835i \(-0.193768\pi\)
0.820369 + 0.571835i \(0.193768\pi\)
\(182\) 7.24619i 0.537123i
\(183\) 8.36086i 0.618052i
\(184\) 5.11960 0.377422
\(185\) 6.11487 + 5.38124i 0.449574 + 0.395636i
\(186\) 3.72347 0.273018
\(187\) 1.31823i 0.0963985i
\(188\) 2.86397i 0.208876i
\(189\) 1.00000 0.0727393
\(190\) −14.8921 13.1054i −1.08039 0.950766i
\(191\) 18.4256 1.33323 0.666614 0.745403i \(-0.267743\pi\)
0.666614 + 0.745403i \(0.267743\pi\)
\(192\) 1.98102i 0.142968i
\(193\) 20.9313i 1.50666i −0.657640 0.753332i \(-0.728445\pi\)
0.657640 0.753332i \(-0.271555\pi\)
\(194\) 12.4692 0.895239
\(195\) −6.29720 + 7.15571i −0.450952 + 0.512431i
\(196\) 0.889490 0.0635350
\(197\) 16.7970i 1.19674i −0.801221 0.598368i \(-0.795816\pi\)
0.801221 0.598368i \(-0.204184\pi\)
\(198\) 2.24079i 0.159246i
\(199\) −17.0325 −1.20740 −0.603700 0.797211i \(-0.706308\pi\)
−0.603700 + 0.797211i \(0.706308\pi\)
\(200\) −9.36193 + 1.19977i −0.661989 + 0.0848366i
\(201\) −13.6284 −0.961270
\(202\) 4.52320i 0.318252i
\(203\) 0.948665i 0.0665832i
\(204\) 0.889490 0.0622768
\(205\) 14.8680 16.8950i 1.03842 1.18000i
\(206\) 14.6616 1.02152
\(207\) 2.71209i 0.188503i
\(208\) 21.2621i 1.47426i
\(209\) −6.87991 −0.475893
\(210\) 2.85341 + 2.51107i 0.196904 + 0.173280i
\(211\) −10.1723 −0.700293 −0.350147 0.936695i \(-0.613868\pi\)
−0.350147 + 0.936695i \(0.613868\pi\)
\(212\) 12.5574i 0.862449i
\(213\) 6.66687i 0.456807i
\(214\) −32.7974 −2.24198
\(215\) −2.41304 2.12353i −0.164568 0.144824i
\(216\) 1.88770 0.128442
\(217\) 2.19047i 0.148699i
\(218\) 6.85620i 0.464361i
\(219\) −13.0816 −0.883974
\(220\) 1.73213 1.96828i 0.116780 0.132701i
\(221\) −4.26284 −0.286750
\(222\) 6.19219i 0.415592i
\(223\) 2.54258i 0.170264i 0.996370 + 0.0851320i \(0.0271312\pi\)
−0.996370 + 0.0851320i \(0.972869\pi\)
\(224\) 4.70309 0.314239
\(225\) 0.635573 + 4.95944i 0.0423715 + 0.330629i
\(226\) 31.5073 2.09583
\(227\) 10.5749i 0.701883i −0.936397 0.350942i \(-0.885862\pi\)
0.936397 0.350942i \(-0.114138\pi\)
\(228\) 4.64229i 0.307443i
\(229\) 16.7374 1.10604 0.553020 0.833168i \(-0.313475\pi\)
0.553020 + 0.833168i \(0.313475\pi\)
\(230\) 6.81024 7.73870i 0.449054 0.510275i
\(231\) 1.31823 0.0867332
\(232\) 1.79080i 0.117571i
\(233\) 5.57246i 0.365064i −0.983200 0.182532i \(-0.941571\pi\)
0.983200 0.182532i \(-0.0584293\pi\)
\(234\) 7.24619 0.473698
\(235\) 5.40481 + 4.75637i 0.352571 + 0.310271i
\(236\) 12.4617 0.811187
\(237\) 9.12564i 0.592774i
\(238\) 1.69985i 0.110185i
\(239\) −12.4766 −0.807041 −0.403521 0.914971i \(-0.632214\pi\)
−0.403521 + 0.914971i \(0.632214\pi\)
\(240\) 8.37263 + 7.36812i 0.540451 + 0.475610i
\(241\) 10.1786 0.655659 0.327829 0.944737i \(-0.393683\pi\)
0.327829 + 0.944737i \(0.393683\pi\)
\(242\) 15.7445i 1.01209i
\(243\) 1.00000i 0.0641500i
\(244\) −7.43690 −0.476099
\(245\) −1.47723 + 1.67863i −0.0943769 + 0.107244i
\(246\) −17.1086 −1.09080
\(247\) 22.2480i 1.41560i
\(248\) 4.13495i 0.262569i
\(249\) 6.08519 0.385633
\(250\) −10.6400 + 15.7473i −0.672930 + 0.995947i
\(251\) −5.67410 −0.358146 −0.179073 0.983836i \(-0.557310\pi\)
−0.179073 + 0.983836i \(0.557310\pi\)
\(252\) 0.889490i 0.0560326i
\(253\) 3.57515i 0.224768i
\(254\) −11.9587 −0.750356
\(255\) −1.47723 + 1.67863i −0.0925078 + 0.105120i
\(256\) 17.7512 1.10945
\(257\) 18.9299i 1.18082i −0.807105 0.590408i \(-0.798967\pi\)
0.807105 0.590408i \(-0.201033\pi\)
\(258\) 2.44355i 0.152129i
\(259\) 3.64278 0.226352
\(260\) 6.36494 + 5.60130i 0.394737 + 0.347378i
\(261\) −0.948665 −0.0587209
\(262\) 4.23963i 0.261926i
\(263\) 4.50632i 0.277872i 0.990301 + 0.138936i \(0.0443682\pi\)
−0.990301 + 0.138936i \(0.955632\pi\)
\(264\) 2.48842 0.153152
\(265\) 23.6981 + 20.8549i 1.45576 + 1.28111i
\(266\) −8.87160 −0.543953
\(267\) 0.0400448i 0.00245070i
\(268\) 12.1223i 0.740487i
\(269\) 6.65868 0.405987 0.202993 0.979180i \(-0.434933\pi\)
0.202993 + 0.979180i \(0.434933\pi\)
\(270\) 2.51107 2.85341i 0.152819 0.173653i
\(271\) 6.91612 0.420124 0.210062 0.977688i \(-0.432633\pi\)
0.210062 + 0.977688i \(0.432633\pi\)
\(272\) 4.98779i 0.302429i
\(273\) 4.26284i 0.257999i
\(274\) 7.42564 0.448599
\(275\) 0.837831 + 6.53768i 0.0505231 + 0.394237i
\(276\) −2.41237 −0.145208
\(277\) 8.39750i 0.504557i −0.967655 0.252278i \(-0.918820\pi\)
0.967655 0.252278i \(-0.0811799\pi\)
\(278\) 19.3077i 1.15800i
\(279\) 2.19047 0.131140
\(280\) −2.78857 + 3.16874i −0.166649 + 0.189369i
\(281\) 5.79215 0.345531 0.172765 0.984963i \(-0.444730\pi\)
0.172765 + 0.984963i \(0.444730\pi\)
\(282\) 5.47315i 0.325921i
\(283\) 25.7255i 1.52922i 0.644493 + 0.764610i \(0.277068\pi\)
−0.644493 + 0.764610i \(0.722932\pi\)
\(284\) 5.93012 0.351888
\(285\) −8.76083 7.70974i −0.518947 0.456686i
\(286\) 9.55214 0.564830
\(287\) 10.0648i 0.594104i
\(288\) 4.70309i 0.277132i
\(289\) −1.00000 −0.0588235
\(290\) −2.70693 2.38217i −0.158957 0.139886i
\(291\) 7.33549 0.430014
\(292\) 11.6360i 0.680944i
\(293\) 3.51413i 0.205298i −0.994718 0.102649i \(-0.967268\pi\)
0.994718 0.102649i \(-0.0327318\pi\)
\(294\) 1.69985 0.0991373
\(295\) −20.6959 + 23.5174i −1.20496 + 1.36924i
\(296\) 6.87648 0.399687
\(297\) 1.31823i 0.0764915i
\(298\) 26.9778i 1.56278i
\(299\) 11.5612 0.668600
\(300\) 4.41137 0.565336i 0.254691 0.0326397i
\(301\) −1.43751 −0.0828565
\(302\) 18.5417i 1.06695i
\(303\) 2.66094i 0.152867i
\(304\) −26.0315 −1.49301
\(305\) 12.3509 14.0348i 0.707212 0.803628i
\(306\) 1.69985 0.0971740
\(307\) 15.6901i 0.895481i 0.894163 + 0.447741i \(0.147771\pi\)
−0.894163 + 0.447741i \(0.852229\pi\)
\(308\) 1.17255i 0.0668124i
\(309\) 8.62526 0.490674
\(310\) 6.25031 + 5.50043i 0.354994 + 0.312403i
\(311\) −33.0126 −1.87197 −0.935987 0.352035i \(-0.885490\pi\)
−0.935987 + 0.352035i \(0.885490\pi\)
\(312\) 8.04696i 0.455569i
\(313\) 1.96627i 0.111140i 0.998455 + 0.0555702i \(0.0176977\pi\)
−0.998455 + 0.0555702i \(0.982302\pi\)
\(314\) 8.60617 0.485674
\(315\) 1.67863 + 1.47723i 0.0945799 + 0.0832326i
\(316\) −8.11717 −0.456627
\(317\) 29.0692i 1.63269i −0.577564 0.816345i \(-0.695997\pi\)
0.577564 0.816345i \(-0.304003\pi\)
\(318\) 23.9978i 1.34573i
\(319\) −1.25056 −0.0700179
\(320\) −2.92643 + 3.32540i −0.163593 + 0.185895i
\(321\) −19.2943 −1.07690
\(322\) 4.61014i 0.256913i
\(323\) 5.21905i 0.290396i
\(324\) −0.889490 −0.0494161
\(325\) −21.1413 + 2.70934i −1.17271 + 0.150287i
\(326\) 23.7362 1.31462
\(327\) 4.03341i 0.223048i
\(328\) 18.9992i 1.04906i
\(329\) 3.21978 0.177512
\(330\) 3.31017 3.76146i 0.182219 0.207061i
\(331\) 29.7790 1.63680 0.818401 0.574647i \(-0.194861\pi\)
0.818401 + 0.574647i \(0.194861\pi\)
\(332\) 5.41272i 0.297061i
\(333\) 3.64278i 0.199623i
\(334\) 34.1627 1.86930
\(335\) −22.8769 20.1322i −1.24990 1.09994i
\(336\) 4.98779 0.272106
\(337\) 31.8660i 1.73585i −0.496694 0.867925i \(-0.665453\pi\)
0.496694 0.867925i \(-0.334547\pi\)
\(338\) 8.79128i 0.478182i
\(339\) 18.5353 1.00670
\(340\) 1.49312 + 1.31398i 0.0809759 + 0.0712608i
\(341\) 2.88754 0.156369
\(342\) 8.87160i 0.479721i
\(343\) 1.00000i 0.0539949i
\(344\) −2.71358 −0.146306
\(345\) 4.00638 4.55258i 0.215696 0.245103i
\(346\) −16.4347 −0.883537
\(347\) 1.62114i 0.0870273i −0.999053 0.0435136i \(-0.986145\pi\)
0.999053 0.0435136i \(-0.0138552\pi\)
\(348\) 0.843829i 0.0452340i
\(349\) −24.2326 −1.29714 −0.648572 0.761153i \(-0.724633\pi\)
−0.648572 + 0.761153i \(0.724633\pi\)
\(350\) 1.08038 + 8.43031i 0.0577487 + 0.450619i
\(351\) 4.26284 0.227534
\(352\) 6.19976i 0.330448i
\(353\) 13.1172i 0.698159i −0.937093 0.349080i \(-0.886494\pi\)
0.937093 0.349080i \(-0.113506\pi\)
\(354\) 23.8148 1.26574
\(355\) −9.84851 + 11.1912i −0.522705 + 0.593967i
\(356\) 0.0356195 0.00188783
\(357\) 1.00000i 0.0529256i
\(358\) 3.45621i 0.182666i
\(359\) 0.584856 0.0308675 0.0154338 0.999881i \(-0.495087\pi\)
0.0154338 + 0.999881i \(0.495087\pi\)
\(360\) 3.16874 + 2.78857i 0.167007 + 0.146971i
\(361\) 8.23847 0.433604
\(362\) 37.5223i 1.97213i
\(363\) 9.26227i 0.486143i
\(364\) 3.79175 0.198742
\(365\) −21.9592 19.3246i −1.14940 1.01150i
\(366\) −14.2122 −0.742884
\(367\) 20.0167i 1.04486i −0.852682 0.522431i \(-0.825025\pi\)
0.852682 0.522431i \(-0.174975\pi\)
\(368\) 13.5273i 0.705160i
\(369\) −10.0648 −0.523950
\(370\) 9.14730 10.3944i 0.475545 0.540377i
\(371\) 14.1176 0.732948
\(372\) 1.94840i 0.101020i
\(373\) 18.8646i 0.976774i −0.872627 0.488387i \(-0.837585\pi\)
0.872627 0.488387i \(-0.162415\pi\)
\(374\) 2.24079 0.115869
\(375\) −6.25935 + 9.26394i −0.323232 + 0.478388i
\(376\) 6.07798 0.313448
\(377\) 4.04401i 0.208277i
\(378\) 1.69985i 0.0874309i
\(379\) 20.4953 1.05277 0.526385 0.850246i \(-0.323547\pi\)
0.526385 + 0.850246i \(0.323547\pi\)
\(380\) −6.85774 + 7.79268i −0.351795 + 0.399756i
\(381\) −7.03516 −0.360422
\(382\) 31.3207i 1.60251i
\(383\) 13.8741i 0.708935i 0.935068 + 0.354468i \(0.115338\pi\)
−0.935068 + 0.354468i \(0.884662\pi\)
\(384\) 12.7736 0.651851
\(385\) 2.21282 + 1.94733i 0.112776 + 0.0992452i
\(386\) −35.5800 −1.81097
\(387\) 1.43751i 0.0730726i
\(388\) 6.52485i 0.331249i
\(389\) 35.8144 1.81586 0.907931 0.419120i \(-0.137661\pi\)
0.907931 + 0.419120i \(0.137661\pi\)
\(390\) 12.1636 + 10.7043i 0.615930 + 0.542033i
\(391\) 2.71209 0.137156
\(392\) 1.88770i 0.0953432i
\(393\) 2.49412i 0.125812i
\(394\) −28.5524 −1.43845
\(395\) 13.4807 15.3185i 0.678287 0.770760i
\(396\) −1.17255 −0.0589230
\(397\) 16.1355i 0.809820i −0.914357 0.404910i \(-0.867303\pi\)
0.914357 0.404910i \(-0.132697\pi\)
\(398\) 28.9527i 1.45127i
\(399\) −5.21905 −0.261279
\(400\) 3.17010 + 24.7366i 0.158505 + 1.23683i
\(401\) −10.5679 −0.527736 −0.263868 0.964559i \(-0.584998\pi\)
−0.263868 + 0.964559i \(0.584998\pi\)
\(402\) 23.1662i 1.15542i
\(403\) 9.33761i 0.465140i
\(404\) 2.36688 0.117757
\(405\) 1.47723 1.67863i 0.0734042 0.0834116i
\(406\) −1.61259 −0.0800314
\(407\) 4.80203i 0.238028i
\(408\) 1.88770i 0.0934551i
\(409\) −16.7929 −0.830353 −0.415177 0.909741i \(-0.636280\pi\)
−0.415177 + 0.909741i \(0.636280\pi\)
\(410\) −28.7189 25.2733i −1.41833 1.24816i
\(411\) 4.36841 0.215478
\(412\) 7.67208i 0.377976i
\(413\) 14.0099i 0.689383i
\(414\) −4.61014 −0.226576
\(415\) 10.2148 + 8.98923i 0.501423 + 0.441264i
\(416\) 20.0485 0.982960
\(417\) 11.3585i 0.556227i
\(418\) 11.6948i 0.572012i
\(419\) −15.1395 −0.739612 −0.369806 0.929109i \(-0.620576\pi\)
−0.369806 + 0.929109i \(0.620576\pi\)
\(420\) 1.31398 1.49312i 0.0641158 0.0728569i
\(421\) 17.1786 0.837236 0.418618 0.908162i \(-0.362515\pi\)
0.418618 + 0.908162i \(0.362515\pi\)
\(422\) 17.2915i 0.841735i
\(423\) 3.21978i 0.156551i
\(424\) 26.6497 1.29423
\(425\) −4.95944 + 0.635573i −0.240568 + 0.0308298i
\(426\) 11.3327 0.549070
\(427\) 8.36086i 0.404610i
\(428\) 17.1621i 0.829559i
\(429\) 5.61940 0.271307
\(430\) −3.60968 + 4.10180i −0.174074 + 0.197806i
\(431\) −34.0312 −1.63922 −0.819612 0.572919i \(-0.805811\pi\)
−0.819612 + 0.572919i \(0.805811\pi\)
\(432\) 4.98779i 0.239975i
\(433\) 16.0610i 0.771842i −0.922532 0.385921i \(-0.873884\pi\)
0.922532 0.385921i \(-0.126116\pi\)
\(434\) 3.72347 0.178732
\(435\) −1.59245 1.40140i −0.0763523 0.0671919i
\(436\) 3.58768 0.171819
\(437\) 14.1545i 0.677102i
\(438\) 22.2368i 1.06252i
\(439\) −10.1471 −0.484293 −0.242147 0.970240i \(-0.577852\pi\)
−0.242147 + 0.970240i \(0.577852\pi\)
\(440\) 4.17713 + 3.67598i 0.199137 + 0.175245i
\(441\) 1.00000 0.0476190
\(442\) 7.24619i 0.344666i
\(443\) 20.6208i 0.979726i 0.871799 + 0.489863i \(0.162953\pi\)
−0.871799 + 0.489863i \(0.837047\pi\)
\(444\) −3.24022 −0.153774
\(445\) −0.0591554 + 0.0672202i −0.00280424 + 0.00318654i
\(446\) 4.32201 0.204653
\(447\) 15.8707i 0.750659i
\(448\) 1.98102i 0.0935946i
\(449\) −16.1240 −0.760940 −0.380470 0.924793i \(-0.624238\pi\)
−0.380470 + 0.924793i \(0.624238\pi\)
\(450\) 8.43031 1.08038i 0.397408 0.0509295i
\(451\) −13.2677 −0.624750
\(452\) 16.4870i 0.775484i
\(453\) 10.9078i 0.512495i
\(454\) −17.9758 −0.843646
\(455\) −6.29720 + 7.15571i −0.295217 + 0.335465i
\(456\) −9.85200 −0.461362
\(457\) 8.92593i 0.417538i −0.977965 0.208769i \(-0.933054\pi\)
0.977965 0.208769i \(-0.0669456\pi\)
\(458\) 28.4511i 1.32943i
\(459\) 1.00000 0.0466760
\(460\) −4.04947 3.56364i −0.188808 0.166155i
\(461\) −15.6712 −0.729881 −0.364941 0.931031i \(-0.618911\pi\)
−0.364941 + 0.931031i \(0.618911\pi\)
\(462\) 2.24079i 0.104251i
\(463\) 20.0753i 0.932980i −0.884526 0.466490i \(-0.845518\pi\)
0.884526 0.466490i \(-0.154482\pi\)
\(464\) −4.73174 −0.219666
\(465\) 3.67698 + 3.23583i 0.170516 + 0.150058i
\(466\) −9.47234 −0.438798
\(467\) 20.2971i 0.939239i 0.882869 + 0.469619i \(0.155609\pi\)
−0.882869 + 0.469619i \(0.844391\pi\)
\(468\) 3.79175i 0.175274i
\(469\) −13.6284 −0.629299
\(470\) 8.08511 9.18737i 0.372938 0.423782i
\(471\) 5.06290 0.233286
\(472\) 26.4465i 1.21730i
\(473\) 1.89496i 0.0871306i
\(474\) −15.5122 −0.712500
\(475\) −3.31709 25.8836i −0.152198 1.18762i
\(476\) 0.889490 0.0407697
\(477\) 14.1176i 0.646399i
\(478\) 21.2083i 0.970044i
\(479\) 40.7298 1.86099 0.930496 0.366301i \(-0.119376\pi\)
0.930496 + 0.366301i \(0.119376\pi\)
\(480\) 6.94756 7.89473i 0.317111 0.360344i
\(481\) 15.5286 0.708043
\(482\) 17.3020i 0.788086i
\(483\) 2.71209i 0.123404i
\(484\) 8.23870 0.374486
\(485\) 12.3135 + 10.8362i 0.559129 + 0.492047i
\(486\) −1.69985 −0.0771068
\(487\) 28.7836i 1.30431i −0.758085 0.652156i \(-0.773865\pi\)
0.758085 0.652156i \(-0.226135\pi\)
\(488\) 15.7828i 0.714453i
\(489\) 13.9637 0.631459
\(490\) 2.85341 + 2.51107i 0.128904 + 0.113439i
\(491\) −5.30798 −0.239546 −0.119773 0.992801i \(-0.538217\pi\)
−0.119773 + 0.992801i \(0.538217\pi\)
\(492\) 8.95250i 0.403610i
\(493\) 0.948665i 0.0427257i
\(494\) −37.8182 −1.70152
\(495\) 1.94733 2.21282i 0.0875260 0.0994587i
\(496\) 10.9256 0.490574
\(497\) 6.66687i 0.299050i
\(498\) 10.3439i 0.463522i
\(499\) −11.5574 −0.517378 −0.258689 0.965961i \(-0.583291\pi\)
−0.258689 + 0.965961i \(0.583291\pi\)
\(500\) 8.24018 + 5.56763i 0.368512 + 0.248992i
\(501\) 20.0975 0.897889
\(502\) 9.64512i 0.430483i
\(503\) 9.99769i 0.445775i −0.974844 0.222888i \(-0.928452\pi\)
0.974844 0.222888i \(-0.0715483\pi\)
\(504\) 1.88770 0.0840848
\(505\) −3.93083 + 4.46673i −0.174920 + 0.198767i
\(506\) −6.07722 −0.270166
\(507\) 5.17180i 0.229688i
\(508\) 6.25770i 0.277641i
\(509\) 31.2809 1.38650 0.693250 0.720697i \(-0.256178\pi\)
0.693250 + 0.720697i \(0.256178\pi\)
\(510\) 2.85341 + 2.51107i 0.126351 + 0.111192i
\(511\) −13.0816 −0.578697
\(512\) 4.62713i 0.204492i
\(513\) 5.21905i 0.230427i
\(514\) −32.1780 −1.41931
\(515\) 14.4786 + 12.7415i 0.638002 + 0.561458i
\(516\) 1.27865 0.0562894
\(517\) 4.24442i 0.186669i
\(518\) 6.19219i 0.272069i
\(519\) −9.66834 −0.424393
\(520\) −11.8872 + 13.5078i −0.521289 + 0.592358i
\(521\) −5.52167 −0.241909 −0.120954 0.992658i \(-0.538595\pi\)
−0.120954 + 0.992658i \(0.538595\pi\)
\(522\) 1.61259i 0.0705811i
\(523\) 32.7457i 1.43187i 0.698167 + 0.715935i \(0.253999\pi\)
−0.698167 + 0.715935i \(0.746001\pi\)
\(524\) 2.21850 0.0969155
\(525\) 0.635573 + 4.95944i 0.0277387 + 0.216448i
\(526\) 7.66007 0.333995
\(527\) 2.19047i 0.0954183i
\(528\) 6.57505i 0.286142i
\(529\) 15.6446 0.680200
\(530\) 35.4502 40.2833i 1.53986 1.74979i
\(531\) 14.0099 0.607978
\(532\) 4.64229i 0.201269i
\(533\) 42.9044i 1.85840i
\(534\) 0.0680701 0.00294568
\(535\) −32.3879 28.5021i −1.40025 1.23225i
\(536\) −25.7262 −1.11120
\(537\) 2.03325i 0.0877410i
\(538\) 11.3187i 0.487986i
\(539\) 1.31823 0.0567802
\(540\) −1.49312 1.31398i −0.0642537 0.0565448i
\(541\) 10.3254 0.443923 0.221961 0.975055i \(-0.428754\pi\)
0.221961 + 0.975055i \(0.428754\pi\)
\(542\) 11.7564i 0.504979i
\(543\) 22.0739i 0.947280i
\(544\) 4.70309 0.201643
\(545\) −5.95829 + 6.77060i −0.255225 + 0.290020i
\(546\) 7.24619 0.310108
\(547\) 14.0894i 0.602417i −0.953558 0.301209i \(-0.902610\pi\)
0.953558 0.301209i \(-0.0973901\pi\)
\(548\) 3.88566i 0.165987i
\(549\) −8.36086 −0.356833
\(550\) 11.1131 1.42419i 0.473863 0.0607276i
\(551\) 4.95113 0.210925
\(552\) 5.11960i 0.217905i
\(553\) 9.12564i 0.388062i
\(554\) −14.2745 −0.606465
\(555\) 5.38124 6.11487i 0.228421 0.259562i
\(556\) −10.1033 −0.428473
\(557\) 11.2428i 0.476374i −0.971219 0.238187i \(-0.923447\pi\)
0.971219 0.238187i \(-0.0765531\pi\)
\(558\) 3.72347i 0.157627i
\(559\) −6.12786 −0.259181
\(560\) 8.37263 + 7.36812i 0.353808 + 0.311360i
\(561\) 1.31823 0.0556557
\(562\) 9.84579i 0.415320i
\(563\) 22.1961i 0.935455i 0.883873 + 0.467727i \(0.154927\pi\)
−0.883873 + 0.467727i \(0.845073\pi\)
\(564\) −2.86397 −0.120595
\(565\) 31.1139 + 27.3810i 1.30897 + 1.15193i
\(566\) 43.7294 1.83808
\(567\) 1.00000i 0.0419961i
\(568\) 12.5851i 0.528057i
\(569\) −12.0342 −0.504500 −0.252250 0.967662i \(-0.581170\pi\)
−0.252250 + 0.967662i \(0.581170\pi\)
\(570\) −13.1054 + 14.8921i −0.548925 + 0.623762i
\(571\) −0.950397 −0.0397729 −0.0198864 0.999802i \(-0.506330\pi\)
−0.0198864 + 0.999802i \(0.506330\pi\)
\(572\) 4.99841i 0.208994i
\(573\) 18.4256i 0.769739i
\(574\) −17.1086 −0.714098
\(575\) 13.4504 1.72373i 0.560921 0.0718844i
\(576\) 1.98102 0.0825427
\(577\) 11.5643i 0.481430i 0.970596 + 0.240715i \(0.0773819\pi\)
−0.970596 + 0.240715i \(0.922618\pi\)
\(578\) 1.69985i 0.0707044i
\(579\) −20.9313 −0.869873
\(580\) −1.24653 + 1.41647i −0.0517594 + 0.0588158i
\(581\) 6.08519 0.252456
\(582\) 12.4692i 0.516866i
\(583\) 18.6102i 0.770756i
\(584\) −24.6942 −1.02185
\(585\) 7.15571 + 6.29720i 0.295852 + 0.260357i
\(586\) −5.97350 −0.246763
\(587\) 5.90911i 0.243895i −0.992537 0.121947i \(-0.961086\pi\)
0.992537 0.121947i \(-0.0389139\pi\)
\(588\) 0.889490i 0.0366820i
\(589\) −11.4322 −0.471054
\(590\) 39.9761 + 35.1799i 1.64579 + 1.44833i
\(591\) −16.7970 −0.690936
\(592\) 18.1694i 0.746759i
\(593\) 42.4543i 1.74339i 0.490051 + 0.871694i \(0.336978\pi\)
−0.490051 + 0.871694i \(0.663022\pi\)
\(594\) −2.24079 −0.0919409
\(595\) −1.47723 + 1.67863i −0.0605606 + 0.0688170i
\(596\) −14.1168 −0.578249
\(597\) 17.0325i 0.697093i
\(598\) 19.6523i 0.803641i
\(599\) 27.1576 1.10963 0.554815 0.831974i \(-0.312789\pi\)
0.554815 + 0.831974i \(0.312789\pi\)
\(600\) 1.19977 + 9.36193i 0.0489804 + 0.382199i
\(601\) 25.5859 1.04367 0.521836 0.853046i \(-0.325247\pi\)
0.521836 + 0.853046i \(0.325247\pi\)
\(602\) 2.44355i 0.0995915i
\(603\) 13.6284i 0.554990i
\(604\) −9.70241 −0.394786
\(605\) −13.6825 + 15.5479i −0.556273 + 0.632112i
\(606\) 4.52320 0.183743
\(607\) 23.6758i 0.960970i 0.877003 + 0.480485i \(0.159539\pi\)
−0.877003 + 0.480485i \(0.840461\pi\)
\(608\) 24.5457i 0.995458i
\(609\) −0.948665 −0.0384419
\(610\) −23.8570 20.9947i −0.965941 0.850052i
\(611\) 13.7254 0.555271
\(612\) 0.889490i 0.0359555i
\(613\) 34.1771i 1.38040i −0.723619 0.690199i \(-0.757523\pi\)
0.723619 0.690199i \(-0.242477\pi\)
\(614\) 26.6708 1.07635
\(615\) −16.8950 14.8680i −0.681271 0.599535i
\(616\) 2.48842 0.100261
\(617\) 39.7875i 1.60178i −0.598810 0.800891i \(-0.704359\pi\)
0.598810 0.800891i \(-0.295641\pi\)
\(618\) 14.6616i 0.589778i
\(619\) 41.5801 1.67125 0.835623 0.549303i \(-0.185107\pi\)
0.835623 + 0.549303i \(0.185107\pi\)
\(620\) 2.87824 3.27064i 0.115593 0.131352i
\(621\) −2.71209 −0.108832
\(622\) 56.1165i 2.25007i
\(623\) 0.0400448i 0.00160436i
\(624\) 21.2621 0.851167
\(625\) −24.1921 + 6.30417i −0.967684 + 0.252167i
\(626\) 3.34237 0.133588
\(627\) 6.87991i 0.274757i
\(628\) 4.50340i 0.179705i
\(629\) 3.64278 0.145247
\(630\) 2.51107 2.85341i 0.100044 0.113683i
\(631\) −28.5787 −1.13770 −0.568849 0.822442i \(-0.692611\pi\)
−0.568849 + 0.822442i \(0.692611\pi\)
\(632\) 17.2265i 0.685232i
\(633\) 10.1723i 0.404315i
\(634\) −49.4133 −1.96245
\(635\) −11.8094 10.3926i −0.468642 0.412416i
\(636\) −12.5574 −0.497935
\(637\) 4.26284i 0.168900i
\(638\) 2.12576i 0.0841598i
\(639\) 6.66687 0.263737
\(640\) 21.4421 + 18.8696i 0.847575 + 0.745887i
\(641\) 13.0074 0.513760 0.256880 0.966443i \(-0.417306\pi\)
0.256880 + 0.966443i \(0.417306\pi\)
\(642\) 32.7974i 1.29441i
\(643\) 0.285527i 0.0112601i −0.999984 0.00563003i \(-0.998208\pi\)
0.999984 0.00563003i \(-0.00179211\pi\)
\(644\) −2.41237 −0.0950608
\(645\) −2.12353 + 2.41304i −0.0836139 + 0.0950132i
\(646\) −8.87160 −0.349048
\(647\) 14.0337i 0.551722i −0.961198 0.275861i \(-0.911037\pi\)
0.961198 0.275861i \(-0.0889629\pi\)
\(648\) 1.88770i 0.0741559i
\(649\) 18.4683 0.724944
\(650\) 4.60548 + 35.9370i 0.180642 + 1.40957i
\(651\) 2.19047 0.0858512
\(652\) 12.4206i 0.486427i
\(653\) 23.1312i 0.905193i 0.891715 + 0.452597i \(0.149502\pi\)
−0.891715 + 0.452597i \(0.850498\pi\)
\(654\) 6.85620 0.268099
\(655\) −3.68440 + 4.18670i −0.143961 + 0.163588i
\(656\) −50.2009 −1.96001
\(657\) 13.0816i 0.510363i
\(658\) 5.47315i 0.213366i
\(659\) 20.8210 0.811072 0.405536 0.914079i \(-0.367085\pi\)
0.405536 + 0.914079i \(0.367085\pi\)
\(660\) −1.96828 1.73213i −0.0766151 0.0674232i
\(661\) −20.3681 −0.792229 −0.396114 0.918201i \(-0.629642\pi\)
−0.396114 + 0.918201i \(0.629642\pi\)
\(662\) 50.6198i 1.96740i
\(663\) 4.26284i 0.165555i
\(664\) 11.4870 0.445782
\(665\) −8.76083 7.70974i −0.339731 0.298971i
\(666\) −6.19219 −0.239942
\(667\) 2.57286i 0.0996216i
\(668\) 17.8765i 0.691663i
\(669\) 2.54258 0.0983019
\(670\) −34.2218 + 38.8873i −1.32210 + 1.50235i
\(671\) −11.0215 −0.425482
\(672\) 4.70309i 0.181426i
\(673\) 11.0671i 0.426604i 0.976986 + 0.213302i \(0.0684219\pi\)
−0.976986 + 0.213302i \(0.931578\pi\)
\(674\) −54.1674 −2.08645
\(675\) 4.95944 0.635573i 0.190889 0.0244632i
\(676\) 4.60026 0.176933
\(677\) 1.98385i 0.0762456i −0.999273 0.0381228i \(-0.987862\pi\)
0.999273 0.0381228i \(-0.0121378\pi\)
\(678\) 31.5073i 1.21003i
\(679\) 7.33549 0.281510
\(680\) −2.78857 + 3.16874i −0.106937 + 0.121516i
\(681\) −10.5749 −0.405232
\(682\) 4.90839i 0.187952i
\(683\) 45.6910i 1.74832i 0.485641 + 0.874158i \(0.338586\pi\)
−0.485641 + 0.874158i \(0.661414\pi\)
\(684\) 4.64229 0.177503
\(685\) 7.33293 + 6.45315i 0.280177 + 0.246562i
\(686\) 1.69985 0.0649006
\(687\) 16.7374i 0.638573i
\(688\) 7.16998i 0.273353i
\(689\) 60.1809 2.29271
\(690\) −7.73870 6.81024i −0.294607 0.259262i
\(691\) 0.629981 0.0239656 0.0119828 0.999928i \(-0.496186\pi\)
0.0119828 + 0.999928i \(0.496186\pi\)
\(692\) 8.59990i 0.326919i
\(693\) 1.31823i 0.0500754i
\(694\) −2.75569 −0.104605
\(695\) 16.7791 19.0666i 0.636467 0.723239i
\(696\) −1.79080 −0.0678799
\(697\) 10.0648i 0.381230i
\(698\) 41.1919i 1.55913i
\(699\) −5.57246 −0.210770
\(700\) 4.41137 0.565336i 0.166734 0.0213677i
\(701\) 10.2343 0.386545 0.193272 0.981145i \(-0.438090\pi\)
0.193272 + 0.981145i \(0.438090\pi\)
\(702\) 7.24619i 0.273490i
\(703\) 19.0119i 0.717046i
\(704\) 2.61145 0.0984226
\(705\) 4.75637 5.40481i 0.179135 0.203557i
\(706\) −22.2973 −0.839170
\(707\) 2.66094i 0.100075i
\(708\) 12.4617i 0.468339i
\(709\) −7.85615 −0.295044 −0.147522 0.989059i \(-0.547130\pi\)
−0.147522 + 0.989059i \(0.547130\pi\)
\(710\) 19.0233 + 16.7410i 0.713933 + 0.628278i
\(711\) −9.12564 −0.342238
\(712\) 0.0755925i 0.00283295i
\(713\) 5.94074i 0.222482i
\(714\) 1.69985 0.0636153
\(715\) 9.43288 + 8.30116i 0.352770 + 0.310446i
\(716\) 1.80855 0.0675888
\(717\) 12.4766i 0.465945i
\(718\) 0.994168i 0.0371020i
\(719\) −0.739304 −0.0275714 −0.0137857 0.999905i \(-0.504388\pi\)
−0.0137857 + 0.999905i \(0.504388\pi\)
\(720\) 7.36812 8.37263i 0.274594 0.312030i
\(721\) 8.62526 0.321221
\(722\) 14.0042i 0.521181i
\(723\) 10.1786i 0.378545i
\(724\) −19.6345 −0.729710
\(725\) −0.602946 4.70485i −0.0223928 0.174734i
\(726\) 15.7445 0.584332
\(727\) 34.2680i 1.27093i 0.772129 + 0.635465i \(0.219192\pi\)
−0.772129 + 0.635465i \(0.780808\pi\)
\(728\) 8.04696i 0.298240i
\(729\) −1.00000 −0.0370370
\(730\) −32.8489 + 37.3273i −1.21579 + 1.38154i
\(731\) −1.43751 −0.0531681
\(732\) 7.43690i 0.274876i
\(733\) 32.0094i 1.18229i 0.806564 + 0.591147i \(0.201325\pi\)
−0.806564 + 0.591147i \(0.798675\pi\)
\(734\) −34.0253 −1.25590
\(735\) 1.67863 + 1.47723i 0.0619171 + 0.0544885i
\(736\) −12.7552 −0.470162
\(737\) 17.9653i 0.661761i
\(738\) 17.1086i 0.629775i
\(739\) −37.4413 −1.37730 −0.688650 0.725094i \(-0.741796\pi\)
−0.688650 + 0.725094i \(0.741796\pi\)
\(740\) −5.43912 4.78656i −0.199946 0.175957i
\(741\) −22.2480 −0.817299
\(742\) 23.9978i 0.880985i
\(743\) 49.8815i 1.82997i 0.403484 + 0.914987i \(0.367799\pi\)
−0.403484 + 0.914987i \(0.632201\pi\)
\(744\) 4.13495 0.151595
\(745\) 23.4447 26.6410i 0.858948 0.976050i
\(746\) −32.0671 −1.17406
\(747\) 6.08519i 0.222645i
\(748\) 1.17255i 0.0428728i
\(749\) −19.2943 −0.704997
\(750\) 15.7473 + 10.6400i 0.575010 + 0.388516i
\(751\) 27.9959 1.02158 0.510792 0.859704i \(-0.329352\pi\)
0.510792 + 0.859704i \(0.329352\pi\)
\(752\) 16.0596i 0.585633i
\(753\) 5.67410i 0.206776i
\(754\) −6.87421 −0.250344
\(755\) 16.1134 18.3102i 0.586427 0.666376i
\(756\) −0.889490 −0.0323505
\(757\) 39.6490i 1.44107i 0.693419 + 0.720534i \(0.256103\pi\)
−0.693419 + 0.720534i \(0.743897\pi\)
\(758\) 34.8389i 1.26540i
\(759\) −3.57515 −0.129770
\(760\) −16.5378 14.5537i −0.599890 0.527918i
\(761\) 25.0189 0.906933 0.453467 0.891273i \(-0.350187\pi\)
0.453467 + 0.891273i \(0.350187\pi\)
\(762\) 11.9587i 0.433218i
\(763\) 4.03341i 0.146019i
\(764\) −16.3894 −0.592947
\(765\) 1.67863 + 1.47723i 0.0606909 + 0.0534094i
\(766\) 23.5840 0.852123
\(767\) 59.7220i 2.15644i
\(768\) 17.7512i 0.640541i
\(769\) 39.9051 1.43901 0.719507 0.694486i \(-0.244368\pi\)
0.719507 + 0.694486i \(0.244368\pi\)
\(770\) 3.31017 3.76146i 0.119290 0.135553i
\(771\) −18.9299 −0.681744
\(772\) 18.6182i 0.670082i
\(773\) 31.4649i 1.13171i 0.824503 + 0.565857i \(0.191455\pi\)
−0.824503 + 0.565857i \(0.808545\pi\)
\(774\) 2.44355 0.0878314
\(775\) 1.39220 + 10.8635i 0.0500094 + 0.390228i
\(776\) 13.8472 0.497086
\(777\) 3.64278i 0.130684i
\(778\) 60.8791i 2.18262i
\(779\) 52.5285 1.88203
\(780\) 5.60130 6.36494i 0.200559 0.227901i
\(781\) 8.78847 0.314476
\(782\) 4.61014i 0.164858i
\(783\) 0.948665i 0.0339025i
\(784\) 4.98779 0.178135
\(785\) 8.49872 + 7.47908i 0.303332 + 0.266940i
\(786\) 4.23963 0.151223
\(787\) 3.16406i 0.112787i 0.998409 + 0.0563933i \(0.0179601\pi\)
−0.998409 + 0.0563933i \(0.982040\pi\)
\(788\) 14.9408i 0.532243i
\(789\) 4.50632 0.160429
\(790\) −26.0392 22.9152i −0.926434 0.815284i
\(791\) 18.5353 0.659041
\(792\) 2.48842i 0.0884223i
\(793\) 35.6410i 1.26565i
\(794\) −27.4280 −0.973384
\(795\) 20.8549 23.6981i 0.739648 0.840486i
\(796\) 15.1502 0.536986
\(797\) 53.2495i 1.88619i 0.332519 + 0.943097i \(0.392102\pi\)
−0.332519 + 0.943097i \(0.607898\pi\)
\(798\) 8.87160i 0.314051i
\(799\) 3.21978 0.113908
\(800\) 23.3247 2.98916i 0.824653 0.105683i
\(801\) 0.0400448 0.00141491
\(802\) 17.9639i 0.634326i
\(803\) 17.2446i 0.608549i
\(804\) 12.1223 0.427520
\(805\) 4.00638 4.55258i 0.141206 0.160457i
\(806\) 15.8725 0.559087
\(807\) 6.65868i 0.234396i
\(808\) 5.02306i 0.176711i
\(809\) −44.4117 −1.56143 −0.780716 0.624886i \(-0.785145\pi\)
−0.780716 + 0.624886i \(0.785145\pi\)
\(810\) −2.85341 2.51107i −0.100259 0.0882301i
\(811\) 12.0589 0.423445 0.211723 0.977330i \(-0.432093\pi\)
0.211723 + 0.977330i \(0.432093\pi\)
\(812\) 0.843829i 0.0296126i
\(813\) 6.91612i 0.242559i
\(814\) −8.16273 −0.286103
\(815\) 23.4398 + 20.6276i 0.821060 + 0.722553i
\(816\) 4.98779 0.174607
\(817\) 7.50242i 0.262476i
\(818\) 28.5453i 0.998064i
\(819\) 4.26284 0.148956
\(820\) −13.2249 + 15.0279i −0.461834 + 0.524797i
\(821\) 34.5235 1.20488 0.602440 0.798165i \(-0.294195\pi\)
0.602440 + 0.798165i \(0.294195\pi\)
\(822\) 7.42564i 0.258999i
\(823\) 7.07375i 0.246576i 0.992371 + 0.123288i \(0.0393438\pi\)
−0.992371 + 0.123288i \(0.960656\pi\)
\(824\) 16.2819 0.567207
\(825\) 6.53768 0.837831i 0.227613 0.0291695i
\(826\) 23.8148 0.828621
\(827\) 26.2151i 0.911589i −0.890085 0.455795i \(-0.849355\pi\)
0.890085 0.455795i \(-0.150645\pi\)
\(828\) 2.41237i 0.0838358i
\(829\) −21.0062 −0.729577 −0.364788 0.931090i \(-0.618859\pi\)
−0.364788 + 0.931090i \(0.618859\pi\)
\(830\) 15.2803 17.3636i 0.530389 0.602698i
\(831\) −8.39750 −0.291306
\(832\) 8.44479i 0.292770i
\(833\) 1.00000i 0.0346479i
\(834\) −19.3077 −0.668571
\(835\) 33.7362 + 29.6886i 1.16749 + 1.02742i
\(836\) 6.11961 0.211651
\(837\) 2.19047i 0.0757137i
\(838\) 25.7348i 0.888995i
\(839\) 33.1058 1.14294 0.571469 0.820624i \(-0.306374\pi\)
0.571469 + 0.820624i \(0.306374\pi\)
\(840\) 3.16874 + 2.78857i 0.109332 + 0.0962148i
\(841\) −28.1000 −0.968967
\(842\) 29.2011i 1.00634i
\(843\) 5.79215i 0.199492i
\(844\) 9.04821 0.311452
\(845\) −7.63994 + 8.68151i −0.262822 + 0.298653i
\(846\) −5.47315 −0.188171
\(847\) 9.26227i 0.318255i
\(848\) 70.4154i 2.41808i
\(849\) 25.7255 0.882895
\(850\) 1.08038 + 8.43031i 0.0370567 + 0.289157i
\(851\) −9.87954 −0.338666
\(852\) 5.93012i 0.203163i
\(853\) 30.3394i 1.03880i −0.854531 0.519401i \(-0.826155\pi\)
0.854531 0.519401i \(-0.173845\pi\)
\(854\) −14.2122 −0.486332
\(855\) −7.70974 + 8.76083i −0.263668 + 0.299614i
\(856\) −36.4218 −1.24487
\(857\) 21.2155i 0.724708i 0.932041 + 0.362354i \(0.118027\pi\)
−0.932041 + 0.362354i \(0.881973\pi\)
\(858\) 9.55214i 0.326105i
\(859\) 9.64903 0.329221 0.164610 0.986359i \(-0.447363\pi\)
0.164610 + 0.986359i \(0.447363\pi\)
\(860\) 2.14637 + 1.88886i 0.0731907 + 0.0644096i
\(861\) −10.0648 −0.343006
\(862\) 57.8479i 1.97031i
\(863\) 15.2145i 0.517906i −0.965890 0.258953i \(-0.916622\pi\)
0.965890 0.258953i \(-0.0833776\pi\)
\(864\) −4.70309 −0.160002
\(865\) −16.2295 14.2824i −0.551821 0.485616i
\(866\) −27.3013 −0.927735
\(867\) 1.00000i 0.0339618i
\(868\) 1.94840i 0.0661330i
\(869\) −12.0297 −0.408080
\(870\) −2.38217 + 2.70693i −0.0807630 + 0.0917737i
\(871\) −58.0955 −1.96849
\(872\) 7.61388i 0.257838i
\(873\) 7.33549i 0.248269i
\(874\) 24.0605 0.813860
\(875\) −6.25935 + 9.26394i −0.211605 + 0.313178i
\(876\) 11.6360 0.393143
\(877\) 53.5867i 1.80949i −0.425949 0.904747i \(-0.640060\pi\)
0.425949 0.904747i \(-0.359940\pi\)
\(878\) 17.2485i 0.582109i
\(879\) −3.51413 −0.118529
\(880\) 9.71288 11.0371i 0.327421 0.372059i
\(881\) −24.1273 −0.812870 −0.406435 0.913680i \(-0.633228\pi\)
−0.406435 + 0.913680i \(0.633228\pi\)
\(882\) 1.69985i 0.0572369i
\(883\) 41.1894i 1.38614i −0.720873 0.693068i \(-0.756259\pi\)
0.720873 0.693068i \(-0.243741\pi\)
\(884\) 3.79175 0.127531
\(885\) 23.5174 + 20.6959i 0.790529 + 0.695685i
\(886\) 35.0523 1.17761
\(887\) 13.5093i 0.453599i 0.973942 + 0.226799i \(0.0728261\pi\)
−0.973942 + 0.226799i \(0.927174\pi\)
\(888\) 6.87648i 0.230760i
\(889\) −7.03516 −0.235952
\(890\) 0.114264 + 0.100555i 0.00383015 + 0.00337062i
\(891\) −1.31823 −0.0441624
\(892\) 2.26160i 0.0757241i
\(893\) 16.8042i 0.562331i
\(894\) −26.9778 −0.902274
\(895\) −3.00357 + 3.41306i −0.100398 + 0.114086i
\(896\) 12.7736 0.426737
\(897\) 11.5612i 0.386017i
\(898\) 27.4084i 0.914631i
\(899\) −2.07802 −0.0693059
\(900\) −0.565336 4.41137i −0.0188445 0.147046i
\(901\) 14.1176 0.470324
\(902\) 22.5530i 0.750934i
\(903\) 1.43751i 0.0478372i
\(904\) 34.9892 1.16372
\(905\) 32.6082 37.0538i 1.08393 1.23171i
\(906\) −18.5417 −0.616006
\(907\) 47.6075i 1.58078i 0.612603 + 0.790391i \(0.290123\pi\)
−0.612603 + 0.790391i \(0.709877\pi\)
\(908\) 9.40630i 0.312159i
\(909\) 2.66094 0.0882579
\(910\) 12.1636 + 10.7043i 0.403221 + 0.354844i
\(911\) 22.5367 0.746674 0.373337 0.927696i \(-0.378214\pi\)
0.373337 + 0.927696i \(0.378214\pi\)
\(912\) 26.0315i 0.861989i
\(913\) 8.02168i 0.265479i
\(914\) −15.1727 −0.501870
\(915\) −14.0348 12.3509i −0.463975 0.408309i
\(916\) −14.8878 −0.491906
\(917\) 2.49412i 0.0823632i
\(918\) 1.69985i 0.0561034i
\(919\) −21.8566 −0.720982 −0.360491 0.932763i \(-0.617391\pi\)
−0.360491 + 0.932763i \(0.617391\pi\)
\(920\) 7.56284 8.59390i 0.249339 0.283333i
\(921\) 15.6901 0.517006
\(922\) 26.6387i 0.877299i
\(923\) 28.4198i 0.935449i
\(924\) −1.17255 −0.0385742
\(925\) 18.0662 2.31525i 0.594012 0.0761251i
\(926\) −34.1251 −1.12142
\(927\) 8.62526i 0.283291i
\(928\) 4.46166i 0.146461i
\(929\) 34.2174 1.12264 0.561318 0.827600i \(-0.310294\pi\)
0.561318 + 0.827600i \(0.310294\pi\)
\(930\) 5.50043 6.25031i 0.180366 0.204956i
\(931\) −5.21905 −0.171047
\(932\) 4.95665i 0.162360i
\(933\) 33.0126i 1.08078i
\(934\) 34.5021 1.12894
\(935\) 2.21282 + 1.94733i 0.0723668 + 0.0636846i
\(936\) 8.04696 0.263023
\(937\) 31.9632i 1.04419i 0.852887 + 0.522095i \(0.174849\pi\)
−0.852887 + 0.522095i \(0.825151\pi\)
\(938\) 23.1662i 0.756402i
\(939\) 1.96627 0.0641669
\(940\) −4.80753 4.23074i −0.156804 0.137992i
\(941\) −7.31089 −0.238328 −0.119164 0.992875i \(-0.538021\pi\)
−0.119164 + 0.992875i \(0.538021\pi\)
\(942\) 8.60617i 0.280404i
\(943\) 27.2965i 0.888896i
\(944\) 69.8785 2.27435
\(945\) 1.47723 1.67863i 0.0480544 0.0546057i
\(946\) 3.22116 0.104729
\(947\) 19.7154i 0.640664i −0.947305 0.320332i \(-0.896205\pi\)
0.947305 0.320332i \(-0.103795\pi\)
\(948\) 8.11717i 0.263633i
\(949\) −55.7649 −1.81020
\(950\) −43.9982 + 5.63855i −1.42749 + 0.182939i
\(951\) −29.0692 −0.942635
\(952\) 1.88770i 0.0611807i
\(953\) 36.8324i 1.19312i 0.802569 + 0.596560i \(0.203466\pi\)
−0.802569 + 0.596560i \(0.796534\pi\)
\(954\) −23.9978 −0.776956
\(955\) 27.2188 30.9297i 0.880781 1.00086i
\(956\) 11.0978 0.358928
\(957\) 1.25056i 0.0404248i
\(958\) 69.2346i 2.23687i
\(959\) 4.36841 0.141063
\(960\) 3.32540 + 2.92643i 0.107327 + 0.0944502i
\(961\) −26.2018 −0.845221
\(962\) 26.3963i 0.851051i
\(963\) 19.2943i 0.621749i
\(964\) −9.05373 −0.291601
\(965\) −35.1358 30.9203i −1.13106 0.995360i
\(966\) −4.61014 −0.148329
\(967\) 24.8807i 0.800109i −0.916491 0.400054i \(-0.868991\pi\)
0.916491 0.400054i \(-0.131009\pi\)
\(968\) 17.4844i 0.561969i
\(969\) −5.21905 −0.167660
\(970\) 18.4199 20.9312i 0.591429 0.672060i
\(971\) −37.8289 −1.21399 −0.606993 0.794707i \(-0.707625\pi\)
−0.606993 + 0.794707i \(0.707625\pi\)
\(972\) 0.889490i 0.0285304i
\(973\) 11.3585i 0.364136i
\(974\) −48.9279 −1.56775
\(975\) 2.70934 + 21.1413i 0.0867685 + 0.677063i
\(976\) −41.7022 −1.33485
\(977\) 59.8958i 1.91624i 0.286374 + 0.958118i \(0.407550\pi\)
−0.286374 + 0.958118i \(0.592450\pi\)
\(978\) 23.7362i 0.758999i
\(979\) 0.0527883 0.00168712
\(980\) 1.31398 1.49312i 0.0419737 0.0476960i
\(981\) 4.03341 0.128777
\(982\) 9.02276i 0.287928i
\(983\) 40.5495i 1.29333i −0.762775 0.646664i \(-0.776164\pi\)
0.762775 0.646664i \(-0.223836\pi\)
\(984\) −18.9992 −0.605674
\(985\) −28.1959 24.8131i −0.898396 0.790610i
\(986\) −1.61259 −0.0513553
\(987\) 3.21978i 0.102487i
\(988\) 19.7894i 0.629583i
\(989\) 3.89864 0.123970
\(990\) −3.76146 3.31017i −0.119547 0.105204i
\(991\) −38.2772 −1.21591 −0.607957 0.793970i \(-0.708011\pi\)
−0.607957 + 0.793970i \(0.708011\pi\)
\(992\) 10.3020i 0.327088i
\(993\) 29.7790i 0.945008i
\(994\) 11.3327 0.359451
\(995\) −25.1609 + 28.5912i −0.797655 + 0.906401i
\(996\) −5.41272 −0.171508
\(997\) 27.4621i 0.869732i −0.900495 0.434866i \(-0.856796\pi\)
0.900495 0.434866i \(-0.143204\pi\)
\(998\) 19.6458i 0.621876i
\(999\) −3.64278 −0.115253
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1785.2.g.f.1429.8 28
5.2 odd 4 8925.2.a.cw.1.10 14
5.3 odd 4 8925.2.a.cv.1.5 14
5.4 even 2 inner 1785.2.g.f.1429.21 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.g.f.1429.8 28 1.1 even 1 trivial
1785.2.g.f.1429.21 yes 28 5.4 even 2 inner
8925.2.a.cv.1.5 14 5.3 odd 4
8925.2.a.cw.1.10 14 5.2 odd 4