Properties

Label 1785.2.g.g.1429.1
Level $1785$
Weight $2$
Character 1785.1429
Analytic conductor $14.253$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1785,2,Mod(1429,1785)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1785.1429");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1785 = 3 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1785.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.2532967608\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1429.1
Character \(\chi\) \(=\) 1785.1429
Dual form 1785.2.g.g.1429.28

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.80343i q^{2} +1.00000i q^{3} -5.85923 q^{4} +(1.01291 - 1.99350i) q^{5} +2.80343 q^{6} -1.00000i q^{7} +10.8191i q^{8} -1.00000 q^{9} +(-5.58863 - 2.83961i) q^{10} +3.37847 q^{11} -5.85923i q^{12} -2.98612i q^{13} -2.80343 q^{14} +(1.99350 + 1.01291i) q^{15} +18.6122 q^{16} +1.00000i q^{17} +2.80343i q^{18} +8.20136 q^{19} +(-5.93485 + 11.6804i) q^{20} +1.00000 q^{21} -9.47132i q^{22} -5.84024i q^{23} -10.8191 q^{24} +(-2.94805 - 4.03844i) q^{25} -8.37138 q^{26} -1.00000i q^{27} +5.85923i q^{28} -6.80762 q^{29} +(2.83961 - 5.58863i) q^{30} -0.491153 q^{31} -30.5397i q^{32} +3.37847i q^{33} +2.80343 q^{34} +(-1.99350 - 1.01291i) q^{35} +5.85923 q^{36} -2.87265i q^{37} -22.9920i q^{38} +2.98612 q^{39} +(21.5678 + 10.9587i) q^{40} +8.72402 q^{41} -2.80343i q^{42} +7.93970i q^{43} -19.7953 q^{44} +(-1.01291 + 1.99350i) q^{45} -16.3727 q^{46} -5.43126i q^{47} +18.6122i q^{48} -1.00000 q^{49} +(-11.3215 + 8.26465i) q^{50} -1.00000 q^{51} +17.4964i q^{52} -0.419890i q^{53} -2.80343 q^{54} +(3.42207 - 6.73497i) q^{55} +10.8191 q^{56} +8.20136i q^{57} +19.0847i q^{58} +4.91201 q^{59} +(-11.6804 - 5.93485i) q^{60} -2.97619 q^{61} +1.37692i q^{62} +1.00000i q^{63} -48.3918 q^{64} +(-5.95281 - 3.02465i) q^{65} +9.47132 q^{66} -16.0362i q^{67} -5.85923i q^{68} +5.84024 q^{69} +(-2.83961 + 5.58863i) q^{70} -9.40560 q^{71} -10.8191i q^{72} +8.53815i q^{73} -8.05329 q^{74} +(4.03844 - 2.94805i) q^{75} -48.0537 q^{76} -3.37847i q^{77} -8.37138i q^{78} -7.24024 q^{79} +(18.8524 - 37.1033i) q^{80} +1.00000 q^{81} -24.4572i q^{82} +0.00138848i q^{83} -5.85923 q^{84} +(1.99350 + 1.01291i) q^{85} +22.2584 q^{86} -6.80762i q^{87} +36.5521i q^{88} -7.58835 q^{89} +(5.58863 + 2.83961i) q^{90} -2.98612 q^{91} +34.2194i q^{92} -0.491153i q^{93} -15.2262 q^{94} +(8.30720 - 16.3494i) q^{95} +30.5397 q^{96} +10.1653i q^{97} +2.80343i q^{98} -3.37847 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 34 q^{4} + 6 q^{6} - 28 q^{9} + 4 q^{10} + 8 q^{11} - 6 q^{14} + 38 q^{16} + 12 q^{19} - 4 q^{20} + 28 q^{21} - 30 q^{24} - 4 q^{26} - 40 q^{29} + 10 q^{30} - 14 q^{31} + 6 q^{34} + 34 q^{36} + 2 q^{39}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1785\mathbb{Z}\right)^\times\).

\(n\) \(596\) \(766\) \(1072\) \(1261\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.80343i 1.98233i −0.132649 0.991163i \(-0.542348\pi\)
0.132649 0.991163i \(-0.457652\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −5.85923 −2.92962
\(5\) 1.01291 1.99350i 0.452985 0.891518i
\(6\) 2.80343 1.14450
\(7\) 1.00000i 0.377964i
\(8\) 10.8191i 3.82513i
\(9\) −1.00000 −0.333333
\(10\) −5.58863 2.83961i −1.76728 0.897964i
\(11\) 3.37847 1.01865 0.509324 0.860575i \(-0.329895\pi\)
0.509324 + 0.860575i \(0.329895\pi\)
\(12\) 5.85923i 1.69142i
\(13\) 2.98612i 0.828200i −0.910231 0.414100i \(-0.864096\pi\)
0.910231 0.414100i \(-0.135904\pi\)
\(14\) −2.80343 −0.749249
\(15\) 1.99350 + 1.01291i 0.514718 + 0.261531i
\(16\) 18.6122 4.65304
\(17\) 1.00000i 0.242536i
\(18\) 2.80343i 0.660775i
\(19\) 8.20136 1.88152 0.940761 0.339072i \(-0.110113\pi\)
0.940761 + 0.339072i \(0.110113\pi\)
\(20\) −5.93485 + 11.6804i −1.32707 + 2.61181i
\(21\) 1.00000 0.218218
\(22\) 9.47132i 2.01929i
\(23\) 5.84024i 1.21778i −0.793257 0.608888i \(-0.791616\pi\)
0.793257 0.608888i \(-0.208384\pi\)
\(24\) −10.8191 −2.20844
\(25\) −2.94805 4.03844i −0.589609 0.807689i
\(26\) −8.37138 −1.64176
\(27\) 1.00000i 0.192450i
\(28\) 5.85923i 1.10729i
\(29\) −6.80762 −1.26414 −0.632072 0.774910i \(-0.717795\pi\)
−0.632072 + 0.774910i \(0.717795\pi\)
\(30\) 2.83961 5.58863i 0.518440 1.02034i
\(31\) −0.491153 −0.0882137 −0.0441069 0.999027i \(-0.514044\pi\)
−0.0441069 + 0.999027i \(0.514044\pi\)
\(32\) 30.5397i 5.39871i
\(33\) 3.37847i 0.588117i
\(34\) 2.80343 0.480785
\(35\) −1.99350 1.01291i −0.336962 0.171212i
\(36\) 5.85923 0.976539
\(37\) 2.87265i 0.472261i −0.971721 0.236131i \(-0.924121\pi\)
0.971721 0.236131i \(-0.0758793\pi\)
\(38\) 22.9920i 3.72979i
\(39\) 2.98612 0.478161
\(40\) 21.5678 + 10.9587i 3.41017 + 1.73273i
\(41\) 8.72402 1.36246 0.681232 0.732068i \(-0.261445\pi\)
0.681232 + 0.732068i \(0.261445\pi\)
\(42\) 2.80343i 0.432579i
\(43\) 7.93970i 1.21079i 0.795924 + 0.605396i \(0.206985\pi\)
−0.795924 + 0.605396i \(0.793015\pi\)
\(44\) −19.7953 −2.98425
\(45\) −1.01291 + 1.99350i −0.150995 + 0.297173i
\(46\) −16.3727 −2.41403
\(47\) 5.43126i 0.792231i −0.918201 0.396115i \(-0.870358\pi\)
0.918201 0.396115i \(-0.129642\pi\)
\(48\) 18.6122i 2.68643i
\(49\) −1.00000 −0.142857
\(50\) −11.3215 + 8.26465i −1.60110 + 1.16880i
\(51\) −1.00000 −0.140028
\(52\) 17.4964i 2.42631i
\(53\) 0.419890i 0.0576763i −0.999584 0.0288381i \(-0.990819\pi\)
0.999584 0.0288381i \(-0.00918074\pi\)
\(54\) −2.80343 −0.381499
\(55\) 3.42207 6.73497i 0.461432 0.908143i
\(56\) 10.8191 1.44576
\(57\) 8.20136i 1.08630i
\(58\) 19.0847i 2.50595i
\(59\) 4.91201 0.639490 0.319745 0.947504i \(-0.396403\pi\)
0.319745 + 0.947504i \(0.396403\pi\)
\(60\) −11.6804 5.93485i −1.50793 0.766186i
\(61\) −2.97619 −0.381062 −0.190531 0.981681i \(-0.561021\pi\)
−0.190531 + 0.981681i \(0.561021\pi\)
\(62\) 1.37692i 0.174868i
\(63\) 1.00000i 0.125988i
\(64\) −48.3918 −6.04897
\(65\) −5.95281 3.02465i −0.738355 0.375162i
\(66\) 9.47132 1.16584
\(67\) 16.0362i 1.95913i −0.201124 0.979566i \(-0.564459\pi\)
0.201124 0.979566i \(-0.435541\pi\)
\(68\) 5.85923i 0.710537i
\(69\) 5.84024 0.703083
\(70\) −2.83961 + 5.58863i −0.339399 + 0.667969i
\(71\) −9.40560 −1.11624 −0.558120 0.829761i \(-0.688477\pi\)
−0.558120 + 0.829761i \(0.688477\pi\)
\(72\) 10.8191i 1.27504i
\(73\) 8.53815i 0.999315i 0.866223 + 0.499657i \(0.166541\pi\)
−0.866223 + 0.499657i \(0.833459\pi\)
\(74\) −8.05329 −0.936176
\(75\) 4.03844 2.94805i 0.466319 0.340411i
\(76\) −48.0537 −5.51214
\(77\) 3.37847i 0.385013i
\(78\) 8.37138i 0.947872i
\(79\) −7.24024 −0.814590 −0.407295 0.913297i \(-0.633528\pi\)
−0.407295 + 0.913297i \(0.633528\pi\)
\(80\) 18.8524 37.1033i 2.10776 4.14827i
\(81\) 1.00000 0.111111
\(82\) 24.4572i 2.70085i
\(83\) 0.00138848i 0.000152405i 1.00000 7.62027e-5i \(2.42561e-5\pi\)
−1.00000 7.62027e-5i \(0.999976\pi\)
\(84\) −5.85923 −0.639295
\(85\) 1.99350 + 1.01291i 0.216225 + 0.109865i
\(86\) 22.2584 2.40019
\(87\) 6.80762i 0.729854i
\(88\) 36.5521i 3.89646i
\(89\) −7.58835 −0.804364 −0.402182 0.915560i \(-0.631748\pi\)
−0.402182 + 0.915560i \(0.631748\pi\)
\(90\) 5.58863 + 2.83961i 0.589093 + 0.299321i
\(91\) −2.98612 −0.313030
\(92\) 34.2194i 3.56761i
\(93\) 0.491153i 0.0509302i
\(94\) −15.2262 −1.57046
\(95\) 8.30720 16.3494i 0.852301 1.67741i
\(96\) 30.5397 3.11695
\(97\) 10.1653i 1.03213i 0.856550 + 0.516064i \(0.172603\pi\)
−0.856550 + 0.516064i \(0.827397\pi\)
\(98\) 2.80343i 0.283189i
\(99\) −3.37847 −0.339549
\(100\) 17.2733 + 23.6622i 1.72733 + 2.36622i
\(101\) −13.7816 −1.37132 −0.685659 0.727923i \(-0.740486\pi\)
−0.685659 + 0.727923i \(0.740486\pi\)
\(102\) 2.80343i 0.277581i
\(103\) 3.83305i 0.377681i −0.982008 0.188841i \(-0.939527\pi\)
0.982008 0.188841i \(-0.0604730\pi\)
\(104\) 32.3071 3.16797
\(105\) 1.01291 1.99350i 0.0988494 0.194545i
\(106\) −1.17713 −0.114333
\(107\) 3.76661i 0.364132i 0.983286 + 0.182066i \(0.0582785\pi\)
−0.983286 + 0.182066i \(0.941722\pi\)
\(108\) 5.85923i 0.563805i
\(109\) 13.1888 1.26326 0.631628 0.775272i \(-0.282387\pi\)
0.631628 + 0.775272i \(0.282387\pi\)
\(110\) −18.8810 9.59355i −1.80024 0.914709i
\(111\) 2.87265 0.272660
\(112\) 18.6122i 1.75868i
\(113\) 15.3505i 1.44405i −0.691867 0.722025i \(-0.743212\pi\)
0.691867 0.722025i \(-0.256788\pi\)
\(114\) 22.9920 2.15339
\(115\) −11.6425 5.91561i −1.08567 0.551634i
\(116\) 39.8875 3.70346
\(117\) 2.98612i 0.276067i
\(118\) 13.7705i 1.26768i
\(119\) 1.00000 0.0916698
\(120\) −10.9587 + 21.5678i −1.00039 + 1.96886i
\(121\) 0.414084 0.0376440
\(122\) 8.34354i 0.755389i
\(123\) 8.72402i 0.786618i
\(124\) 2.87778 0.258432
\(125\) −11.0367 + 1.78635i −0.987153 + 0.159776i
\(126\) 2.80343 0.249750
\(127\) 11.2110i 0.994815i 0.867517 + 0.497407i \(0.165715\pi\)
−0.867517 + 0.497407i \(0.834285\pi\)
\(128\) 74.5836i 6.59232i
\(129\) −7.93970 −0.699052
\(130\) −8.47941 + 16.6883i −0.743694 + 1.46366i
\(131\) −9.55141 −0.834510 −0.417255 0.908789i \(-0.637008\pi\)
−0.417255 + 0.908789i \(0.637008\pi\)
\(132\) 19.7953i 1.72296i
\(133\) 8.20136i 0.711148i
\(134\) −44.9564 −3.88364
\(135\) −1.99350 1.01291i −0.171573 0.0871770i
\(136\) −10.8191 −0.927731
\(137\) 12.6457i 1.08040i 0.841537 + 0.540199i \(0.181651\pi\)
−0.841537 + 0.540199i \(0.818349\pi\)
\(138\) 16.3727i 1.39374i
\(139\) 8.08133 0.685449 0.342725 0.939436i \(-0.388650\pi\)
0.342725 + 0.939436i \(0.388650\pi\)
\(140\) 11.6804 + 5.93485i 0.987170 + 0.501586i
\(141\) 5.43126 0.457395
\(142\) 26.3680i 2.21275i
\(143\) 10.0885i 0.843644i
\(144\) −18.6122 −1.55101
\(145\) −6.89548 + 13.5710i −0.572638 + 1.12701i
\(146\) 23.9361 1.98097
\(147\) 1.00000i 0.0824786i
\(148\) 16.8315i 1.38354i
\(149\) 14.1370 1.15815 0.579074 0.815275i \(-0.303414\pi\)
0.579074 + 0.815275i \(0.303414\pi\)
\(150\) −8.26465 11.3215i −0.674806 0.924397i
\(151\) −13.7500 −1.11896 −0.559479 0.828845i \(-0.688999\pi\)
−0.559479 + 0.828845i \(0.688999\pi\)
\(152\) 88.7314i 7.19706i
\(153\) 1.00000i 0.0808452i
\(154\) −9.47132 −0.763221
\(155\) −0.497492 + 0.979112i −0.0399595 + 0.0786441i
\(156\) −17.4964 −1.40083
\(157\) 9.26551i 0.739468i −0.929138 0.369734i \(-0.879449\pi\)
0.929138 0.369734i \(-0.120551\pi\)
\(158\) 20.2975i 1.61478i
\(159\) 0.419890 0.0332994
\(160\) −60.8808 30.9339i −4.81305 2.44554i
\(161\) −5.84024 −0.460276
\(162\) 2.80343i 0.220258i
\(163\) 6.61304i 0.517973i −0.965881 0.258987i \(-0.916611\pi\)
0.965881 0.258987i \(-0.0833886\pi\)
\(164\) −51.1161 −3.99150
\(165\) 6.73497 + 3.42207i 0.524317 + 0.266408i
\(166\) 0.00389251 0.000302117
\(167\) 5.97930i 0.462692i −0.972872 0.231346i \(-0.925687\pi\)
0.972872 0.231346i \(-0.0743129\pi\)
\(168\) 10.8191i 0.834712i
\(169\) 4.08310 0.314085
\(170\) 2.83961 5.58863i 0.217788 0.428628i
\(171\) −8.20136 −0.627174
\(172\) 46.5206i 3.54716i
\(173\) 9.67349i 0.735462i −0.929932 0.367731i \(-0.880135\pi\)
0.929932 0.367731i \(-0.119865\pi\)
\(174\) −19.0847 −1.44681
\(175\) −4.03844 + 2.94805i −0.305278 + 0.222851i
\(176\) 62.8807 4.73981
\(177\) 4.91201i 0.369210i
\(178\) 21.2734i 1.59451i
\(179\) 16.1835 1.20961 0.604807 0.796372i \(-0.293250\pi\)
0.604807 + 0.796372i \(0.293250\pi\)
\(180\) 5.93485 11.6804i 0.442358 0.870602i
\(181\) 1.01069 0.0751243 0.0375621 0.999294i \(-0.488041\pi\)
0.0375621 + 0.999294i \(0.488041\pi\)
\(182\) 8.37138i 0.620528i
\(183\) 2.97619i 0.220006i
\(184\) 63.1862 4.65815
\(185\) −5.72662 2.90972i −0.421029 0.213927i
\(186\) −1.37692 −0.100960
\(187\) 3.37847i 0.247058i
\(188\) 31.8230i 2.32093i
\(189\) −1.00000 −0.0727393
\(190\) −45.8344 23.2887i −3.32517 1.68954i
\(191\) 11.2168 0.811616 0.405808 0.913958i \(-0.366990\pi\)
0.405808 + 0.913958i \(0.366990\pi\)
\(192\) 48.3918i 3.49237i
\(193\) 13.0305i 0.937955i 0.883210 + 0.468978i \(0.155378\pi\)
−0.883210 + 0.468978i \(0.844622\pi\)
\(194\) 28.4977 2.04601
\(195\) 3.02465 5.95281i 0.216600 0.426290i
\(196\) 5.85923 0.418517
\(197\) 3.36117i 0.239473i −0.992806 0.119737i \(-0.961795\pi\)
0.992806 0.119737i \(-0.0382050\pi\)
\(198\) 9.47132i 0.673098i
\(199\) −3.11797 −0.221027 −0.110513 0.993875i \(-0.535249\pi\)
−0.110513 + 0.993875i \(0.535249\pi\)
\(200\) 43.6923 31.8952i 3.08952 2.25533i
\(201\) 16.0362 1.13111
\(202\) 38.6357i 2.71840i
\(203\) 6.80762i 0.477802i
\(204\) 5.85923 0.410228
\(205\) 8.83661 17.3913i 0.617175 1.21466i
\(206\) −10.7457 −0.748688
\(207\) 5.84024i 0.405925i
\(208\) 55.5781i 3.85365i
\(209\) 27.7081 1.91661
\(210\) −5.58863 2.83961i −0.385652 0.195952i
\(211\) 1.18361 0.0814831 0.0407416 0.999170i \(-0.487028\pi\)
0.0407416 + 0.999170i \(0.487028\pi\)
\(212\) 2.46023i 0.168969i
\(213\) 9.40560i 0.644461i
\(214\) 10.5594 0.721829
\(215\) 15.8278 + 8.04216i 1.07944 + 0.548471i
\(216\) 10.8191 0.736147
\(217\) 0.491153i 0.0333417i
\(218\) 36.9739i 2.50419i
\(219\) −8.53815 −0.576955
\(220\) −20.0507 + 39.4618i −1.35182 + 2.66051i
\(221\) 2.98612 0.200868
\(222\) 8.05329i 0.540501i
\(223\) 0.645242i 0.0432086i 0.999767 + 0.0216043i \(0.00687740\pi\)
−0.999767 + 0.0216043i \(0.993123\pi\)
\(224\) −30.5397 −2.04052
\(225\) 2.94805 + 4.03844i 0.196536 + 0.269230i
\(226\) −43.0340 −2.86258
\(227\) 20.6531i 1.37079i −0.728170 0.685397i \(-0.759629\pi\)
0.728170 0.685397i \(-0.240371\pi\)
\(228\) 48.0537i 3.18243i
\(229\) −8.46699 −0.559515 −0.279757 0.960071i \(-0.590254\pi\)
−0.279757 + 0.960071i \(0.590254\pi\)
\(230\) −16.5840 + 32.6390i −1.09352 + 2.15215i
\(231\) 3.37847 0.222287
\(232\) 73.6524i 4.83552i
\(233\) 24.4882i 1.60427i −0.597141 0.802136i \(-0.703697\pi\)
0.597141 0.802136i \(-0.296303\pi\)
\(234\) 8.37138 0.547254
\(235\) −10.8272 5.50135i −0.706288 0.358869i
\(236\) −28.7806 −1.87346
\(237\) 7.24024i 0.470304i
\(238\) 2.80343i 0.181720i
\(239\) 21.1704 1.36940 0.684700 0.728825i \(-0.259933\pi\)
0.684700 + 0.728825i \(0.259933\pi\)
\(240\) 37.1033 + 18.8524i 2.39500 + 1.21691i
\(241\) 9.48083 0.610714 0.305357 0.952238i \(-0.401224\pi\)
0.305357 + 0.952238i \(0.401224\pi\)
\(242\) 1.16086i 0.0746226i
\(243\) 1.00000i 0.0641500i
\(244\) 17.4382 1.11637
\(245\) −1.01291 + 1.99350i −0.0647121 + 0.127360i
\(246\) 24.4572 1.55933
\(247\) 24.4902i 1.55828i
\(248\) 5.31384i 0.337429i
\(249\) −0.00138848 −8.79912e−5
\(250\) 5.00792 + 30.9407i 0.316729 + 1.95686i
\(251\) −2.33881 −0.147624 −0.0738121 0.997272i \(-0.523517\pi\)
−0.0738121 + 0.997272i \(0.523517\pi\)
\(252\) 5.85923i 0.369097i
\(253\) 19.7311i 1.24048i
\(254\) 31.4293 1.97205
\(255\) −1.01291 + 1.99350i −0.0634306 + 0.124838i
\(256\) 112.306 7.01916
\(257\) 22.9292i 1.43028i −0.698979 0.715142i \(-0.746362\pi\)
0.698979 0.715142i \(-0.253638\pi\)
\(258\) 22.2584i 1.38575i
\(259\) −2.87265 −0.178498
\(260\) 34.8789 + 17.7222i 2.16310 + 1.09908i
\(261\) 6.80762 0.421381
\(262\) 26.7767i 1.65427i
\(263\) 6.17182i 0.380571i −0.981729 0.190285i \(-0.939059\pi\)
0.981729 0.190285i \(-0.0609414\pi\)
\(264\) −36.5521 −2.24962
\(265\) −0.837048 0.425308i −0.0514194 0.0261265i
\(266\) −22.9920 −1.40973
\(267\) 7.58835i 0.464400i
\(268\) 93.9598i 5.73951i
\(269\) 21.9597 1.33891 0.669453 0.742855i \(-0.266529\pi\)
0.669453 + 0.742855i \(0.266529\pi\)
\(270\) −2.83961 + 5.58863i −0.172813 + 0.340113i
\(271\) −29.7006 −1.80418 −0.902091 0.431546i \(-0.857968\pi\)
−0.902091 + 0.431546i \(0.857968\pi\)
\(272\) 18.6122i 1.12853i
\(273\) 2.98612i 0.180728i
\(274\) 35.4515 2.14170
\(275\) −9.95989 13.6438i −0.600604 0.822751i
\(276\) −34.2194 −2.05976
\(277\) 0.330767i 0.0198739i 0.999951 + 0.00993694i \(0.00316308\pi\)
−0.999951 + 0.00993694i \(0.996837\pi\)
\(278\) 22.6555i 1.35878i
\(279\) 0.491153 0.0294046
\(280\) 10.9587 21.5678i 0.654909 1.28892i
\(281\) −8.44777 −0.503952 −0.251976 0.967733i \(-0.581080\pi\)
−0.251976 + 0.967733i \(0.581080\pi\)
\(282\) 15.2262i 0.906706i
\(283\) 20.5216i 1.21989i 0.792446 + 0.609943i \(0.208807\pi\)
−0.792446 + 0.609943i \(0.791193\pi\)
\(284\) 55.1096 3.27015
\(285\) 16.3494 + 8.30720i 0.968453 + 0.492076i
\(286\) −28.2825 −1.67238
\(287\) 8.72402i 0.514963i
\(288\) 30.5397i 1.79957i
\(289\) −1.00000 −0.0588235
\(290\) 38.0453 + 19.3310i 2.23410 + 1.13516i
\(291\) −10.1653 −0.595899
\(292\) 50.0270i 2.92761i
\(293\) 17.9089i 1.04625i −0.852257 0.523124i \(-0.824766\pi\)
0.852257 0.523124i \(-0.175234\pi\)
\(294\) −2.80343 −0.163500
\(295\) 4.97541 9.79208i 0.289679 0.570117i
\(296\) 31.0795 1.80646
\(297\) 3.37847i 0.196039i
\(298\) 39.6321i 2.29583i
\(299\) −17.4397 −1.00856
\(300\) −23.6622 + 17.2733i −1.36614 + 0.997274i
\(301\) 7.93970 0.457637
\(302\) 38.5471i 2.21814i
\(303\) 13.7816i 0.791731i
\(304\) 152.645 8.75479
\(305\) −3.01460 + 5.93302i −0.172615 + 0.339724i
\(306\) −2.80343 −0.160262
\(307\) 19.8061i 1.13039i 0.824957 + 0.565196i \(0.191199\pi\)
−0.824957 + 0.565196i \(0.808801\pi\)
\(308\) 19.7953i 1.12794i
\(309\) 3.83305 0.218054
\(310\) 2.74487 + 1.39468i 0.155898 + 0.0792128i
\(311\) −4.30912 −0.244348 −0.122174 0.992509i \(-0.538987\pi\)
−0.122174 + 0.992509i \(0.538987\pi\)
\(312\) 32.3071i 1.82903i
\(313\) 27.4270i 1.55026i −0.631800 0.775131i \(-0.717684\pi\)
0.631800 0.775131i \(-0.282316\pi\)
\(314\) −25.9752 −1.46587
\(315\) 1.99350 + 1.01291i 0.112321 + 0.0570707i
\(316\) 42.4223 2.38644
\(317\) 22.6461i 1.27193i 0.771716 + 0.635967i \(0.219399\pi\)
−0.771716 + 0.635967i \(0.780601\pi\)
\(318\) 1.17713i 0.0660103i
\(319\) −22.9994 −1.28772
\(320\) −49.0163 + 96.4687i −2.74009 + 5.39277i
\(321\) −3.76661 −0.210232
\(322\) 16.3727i 0.912417i
\(323\) 8.20136i 0.456336i
\(324\) −5.85923 −0.325513
\(325\) −12.0593 + 8.80321i −0.668928 + 0.488314i
\(326\) −18.5392 −1.02679
\(327\) 13.1888i 0.729341i
\(328\) 94.3861i 5.21160i
\(329\) −5.43126 −0.299435
\(330\) 9.59355 18.8810i 0.528108 1.03937i
\(331\) 18.3691 1.00966 0.504829 0.863219i \(-0.331555\pi\)
0.504829 + 0.863219i \(0.331555\pi\)
\(332\) 0.00813542i 0.000446489i
\(333\) 2.87265i 0.157420i
\(334\) −16.7626 −0.917206
\(335\) −31.9681 16.2431i −1.74660 0.887457i
\(336\) 18.6122 1.01538
\(337\) 22.7393i 1.23869i 0.785119 + 0.619345i \(0.212602\pi\)
−0.785119 + 0.619345i \(0.787398\pi\)
\(338\) 11.4467i 0.622618i
\(339\) 15.3505 0.833722
\(340\) −11.6804 5.93485i −0.633456 0.321862i
\(341\) −1.65935 −0.0898588
\(342\) 22.9920i 1.24326i
\(343\) 1.00000i 0.0539949i
\(344\) −85.9004 −4.63144
\(345\) 5.91561 11.6425i 0.318486 0.626811i
\(346\) −27.1190 −1.45793
\(347\) 5.38634i 0.289154i 0.989494 + 0.144577i \(0.0461821\pi\)
−0.989494 + 0.144577i \(0.953818\pi\)
\(348\) 39.8875i 2.13819i
\(349\) 4.94714 0.264814 0.132407 0.991195i \(-0.457729\pi\)
0.132407 + 0.991195i \(0.457729\pi\)
\(350\) 8.26465 + 11.3215i 0.441764 + 0.605160i
\(351\) −2.98612 −0.159387
\(352\) 103.178i 5.49939i
\(353\) 24.9950i 1.33035i 0.746687 + 0.665175i \(0.231643\pi\)
−0.746687 + 0.665175i \(0.768357\pi\)
\(354\) 13.7705 0.731894
\(355\) −9.52698 + 18.7500i −0.505640 + 0.995147i
\(356\) 44.4619 2.35648
\(357\) 1.00000i 0.0529256i
\(358\) 45.3694i 2.39785i
\(359\) −30.5447 −1.61209 −0.806045 0.591855i \(-0.798396\pi\)
−0.806045 + 0.591855i \(0.798396\pi\)
\(360\) −21.5678 10.9587i −1.13672 0.577576i
\(361\) 48.2623 2.54012
\(362\) 2.83341i 0.148921i
\(363\) 0.414084i 0.0217338i
\(364\) 17.4964 0.917059
\(365\) 17.0208 + 8.64833i 0.890907 + 0.452675i
\(366\) −8.34354 −0.436124
\(367\) 1.26006i 0.0657744i −0.999459 0.0328872i \(-0.989530\pi\)
0.999459 0.0328872i \(-0.0104702\pi\)
\(368\) 108.700i 5.66636i
\(369\) −8.72402 −0.454154
\(370\) −8.15722 + 16.0542i −0.424074 + 0.834617i
\(371\) −0.419890 −0.0217996
\(372\) 2.87778i 0.149206i
\(373\) 20.5582i 1.06447i 0.846598 + 0.532233i \(0.178647\pi\)
−0.846598 + 0.532233i \(0.821353\pi\)
\(374\) 9.47132 0.489750
\(375\) −1.78635 11.0367i −0.0922469 0.569933i
\(376\) 58.7614 3.03039
\(377\) 20.3284i 1.04696i
\(378\) 2.80343i 0.144193i
\(379\) 3.33561 0.171339 0.0856693 0.996324i \(-0.472697\pi\)
0.0856693 + 0.996324i \(0.472697\pi\)
\(380\) −48.6738 + 95.7948i −2.49692 + 4.91417i
\(381\) −11.2110 −0.574357
\(382\) 31.4454i 1.60889i
\(383\) 1.72119i 0.0879485i −0.999033 0.0439742i \(-0.985998\pi\)
0.999033 0.0439742i \(-0.0140020\pi\)
\(384\) −74.5836 −3.80608
\(385\) −6.73497 3.42207i −0.343246 0.174405i
\(386\) 36.5301 1.85933
\(387\) 7.93970i 0.403598i
\(388\) 59.5608i 3.02374i
\(389\) 20.4186 1.03526 0.517632 0.855603i \(-0.326814\pi\)
0.517632 + 0.855603i \(0.326814\pi\)
\(390\) −16.6883 8.47941i −0.845045 0.429372i
\(391\) 5.84024 0.295354
\(392\) 10.8191i 0.546447i
\(393\) 9.55141i 0.481805i
\(394\) −9.42281 −0.474714
\(395\) −7.33368 + 14.4334i −0.368997 + 0.726222i
\(396\) 19.7953 0.994750
\(397\) 7.58930i 0.380896i −0.981697 0.190448i \(-0.939006\pi\)
0.981697 0.190448i \(-0.0609941\pi\)
\(398\) 8.74101i 0.438147i
\(399\) 8.20136 0.410582
\(400\) −54.8695 75.1642i −2.74347 3.75821i
\(401\) −1.65683 −0.0827380 −0.0413690 0.999144i \(-0.513172\pi\)
−0.0413690 + 0.999144i \(0.513172\pi\)
\(402\) 44.9564i 2.24222i
\(403\) 1.46664i 0.0730586i
\(404\) 80.7495 4.01744
\(405\) 1.01291 1.99350i 0.0503317 0.0990576i
\(406\) 19.0847 0.947159
\(407\) 9.70518i 0.481068i
\(408\) 10.8191i 0.535625i
\(409\) 6.04520 0.298916 0.149458 0.988768i \(-0.452247\pi\)
0.149458 + 0.988768i \(0.452247\pi\)
\(410\) −48.7553 24.7728i −2.40785 1.22344i
\(411\) −12.6457 −0.623769
\(412\) 22.4587i 1.10646i
\(413\) 4.91201i 0.241704i
\(414\) 16.3727 0.804676
\(415\) 0.00276792 + 0.00140640i 0.000135872 + 6.90373e-5i
\(416\) −91.1952 −4.47121
\(417\) 8.08133i 0.395744i
\(418\) 77.6777i 3.79934i
\(419\) 2.06017 0.100646 0.0503230 0.998733i \(-0.483975\pi\)
0.0503230 + 0.998733i \(0.483975\pi\)
\(420\) −5.93485 + 11.6804i −0.289591 + 0.569943i
\(421\) 9.05757 0.441439 0.220719 0.975337i \(-0.429159\pi\)
0.220719 + 0.975337i \(0.429159\pi\)
\(422\) 3.31817i 0.161526i
\(423\) 5.43126i 0.264077i
\(424\) 4.54283 0.220619
\(425\) 4.03844 2.94805i 0.195893 0.143001i
\(426\) −26.3680 −1.27753
\(427\) 2.97619i 0.144028i
\(428\) 22.0695i 1.06677i
\(429\) 10.0885 0.487078
\(430\) 22.5457 44.3720i 1.08725 2.13981i
\(431\) 13.5639 0.653348 0.326674 0.945137i \(-0.394072\pi\)
0.326674 + 0.945137i \(0.394072\pi\)
\(432\) 18.6122i 0.895478i
\(433\) 5.31344i 0.255348i −0.991816 0.127674i \(-0.959249\pi\)
0.991816 0.127674i \(-0.0407511\pi\)
\(434\) 1.37692 0.0660940
\(435\) −13.5710 6.89548i −0.650678 0.330613i
\(436\) −77.2762 −3.70086
\(437\) 47.8979i 2.29127i
\(438\) 23.9361i 1.14371i
\(439\) −22.5460 −1.07606 −0.538030 0.842926i \(-0.680831\pi\)
−0.538030 + 0.842926i \(0.680831\pi\)
\(440\) 72.8663 + 37.0238i 3.47377 + 1.76504i
\(441\) 1.00000 0.0476190
\(442\) 8.37138i 0.398186i
\(443\) 14.2922i 0.679041i 0.940599 + 0.339521i \(0.110265\pi\)
−0.940599 + 0.339521i \(0.889735\pi\)
\(444\) −16.8315 −0.798790
\(445\) −7.68628 + 15.1273i −0.364365 + 0.717105i
\(446\) 1.80889 0.0856536
\(447\) 14.1370i 0.668657i
\(448\) 48.3918i 2.28630i
\(449\) −2.03457 −0.0960175 −0.0480087 0.998847i \(-0.515288\pi\)
−0.0480087 + 0.998847i \(0.515288\pi\)
\(450\) 11.3215 8.26465i 0.533701 0.389599i
\(451\) 29.4739 1.38787
\(452\) 89.9419i 4.23051i
\(453\) 13.7500i 0.646030i
\(454\) −57.8995 −2.71736
\(455\) −3.02465 + 5.95281i −0.141798 + 0.279072i
\(456\) −88.7314 −4.15523
\(457\) 6.67114i 0.312063i −0.987752 0.156031i \(-0.950130\pi\)
0.987752 0.156031i \(-0.0498701\pi\)
\(458\) 23.7366i 1.10914i
\(459\) 1.00000 0.0466760
\(460\) 68.2161 + 34.6610i 3.18059 + 1.61608i
\(461\) 33.1967 1.54612 0.773062 0.634330i \(-0.218724\pi\)
0.773062 + 0.634330i \(0.218724\pi\)
\(462\) 9.47132i 0.440646i
\(463\) 1.31144i 0.0609477i 0.999536 + 0.0304739i \(0.00970163\pi\)
−0.999536 + 0.0304739i \(0.990298\pi\)
\(464\) −126.705 −5.88211
\(465\) −0.979112 0.497492i −0.0454052 0.0230706i
\(466\) −68.6509 −3.18019
\(467\) 35.3652i 1.63650i −0.574859 0.818252i \(-0.694943\pi\)
0.574859 0.818252i \(-0.305057\pi\)
\(468\) 17.4964i 0.808770i
\(469\) −16.0362 −0.740482
\(470\) −15.4227 + 30.3533i −0.711395 + 1.40009i
\(471\) 9.26551 0.426932
\(472\) 53.1436i 2.44613i
\(473\) 26.8241i 1.23337i
\(474\) −20.2975 −0.932296
\(475\) −24.1780 33.1207i −1.10936 1.51968i
\(476\) −5.85923 −0.268558
\(477\) 0.419890i 0.0192254i
\(478\) 59.3498i 2.71460i
\(479\) −26.9709 −1.23233 −0.616166 0.787616i \(-0.711315\pi\)
−0.616166 + 0.787616i \(0.711315\pi\)
\(480\) 30.9339 60.8808i 1.41193 2.77882i
\(481\) −8.57808 −0.391127
\(482\) 26.5789i 1.21063i
\(483\) 5.84024i 0.265740i
\(484\) −2.42621 −0.110282
\(485\) 20.2644 + 10.2965i 0.920161 + 0.467539i
\(486\) 2.80343 0.127166
\(487\) 33.3994i 1.51347i 0.653720 + 0.756737i \(0.273208\pi\)
−0.653720 + 0.756737i \(0.726792\pi\)
\(488\) 32.1997i 1.45761i
\(489\) 6.61304 0.299052
\(490\) 5.58863 + 2.83961i 0.252469 + 0.128281i
\(491\) 31.6594 1.42877 0.714385 0.699753i \(-0.246707\pi\)
0.714385 + 0.699753i \(0.246707\pi\)
\(492\) 51.1161i 2.30449i
\(493\) 6.80762i 0.306600i
\(494\) −68.6567 −3.08901
\(495\) −3.42207 + 6.73497i −0.153811 + 0.302714i
\(496\) −9.14142 −0.410462
\(497\) 9.40560i 0.421899i
\(498\) 0.00389251i 0.000174427i
\(499\) 7.88306 0.352894 0.176447 0.984310i \(-0.443540\pi\)
0.176447 + 0.984310i \(0.443540\pi\)
\(500\) 64.6667 10.4667i 2.89198 0.468083i
\(501\) 5.97930 0.267135
\(502\) 6.55669i 0.292639i
\(503\) 14.1621i 0.631455i 0.948850 + 0.315727i \(0.102249\pi\)
−0.948850 + 0.315727i \(0.897751\pi\)
\(504\) −10.8191 −0.481921
\(505\) −13.9594 + 27.4735i −0.621186 + 1.22255i
\(506\) −55.3148 −2.45904
\(507\) 4.08310i 0.181337i
\(508\) 65.6878i 2.91443i
\(509\) 9.81696 0.435129 0.217565 0.976046i \(-0.430189\pi\)
0.217565 + 0.976046i \(0.430189\pi\)
\(510\) 5.58863 + 2.83961i 0.247469 + 0.125740i
\(511\) 8.53815 0.377705
\(512\) 165.677i 7.32194i
\(513\) 8.20136i 0.362099i
\(514\) −64.2805 −2.83529
\(515\) −7.64116 3.88251i −0.336710 0.171084i
\(516\) 46.5206 2.04795
\(517\) 18.3494i 0.807005i
\(518\) 8.05329i 0.353841i
\(519\) 9.67349 0.424619
\(520\) 32.7240 64.4041i 1.43504 2.82431i
\(521\) 26.3114 1.15272 0.576362 0.817195i \(-0.304472\pi\)
0.576362 + 0.817195i \(0.304472\pi\)
\(522\) 19.0847i 0.835315i
\(523\) 34.5725i 1.51175i 0.654716 + 0.755875i \(0.272788\pi\)
−0.654716 + 0.755875i \(0.727212\pi\)
\(524\) 55.9639 2.44480
\(525\) −2.94805 4.03844i −0.128663 0.176252i
\(526\) −17.3023 −0.754416
\(527\) 0.491153i 0.0213950i
\(528\) 62.8807i 2.73653i
\(529\) −11.1085 −0.482976
\(530\) −1.19232 + 2.34661i −0.0517912 + 0.101930i
\(531\) −4.91201 −0.213163
\(532\) 48.0537i 2.08339i
\(533\) 26.0510i 1.12839i
\(534\) −21.2734 −0.920592
\(535\) 7.50872 + 3.81522i 0.324630 + 0.164946i
\(536\) 173.497 7.49393
\(537\) 16.1835i 0.698371i
\(538\) 61.5625i 2.65415i
\(539\) −3.37847 −0.145521
\(540\) 11.6804 + 5.93485i 0.502642 + 0.255395i
\(541\) 2.91743 0.125430 0.0627151 0.998031i \(-0.480024\pi\)
0.0627151 + 0.998031i \(0.480024\pi\)
\(542\) 83.2636i 3.57648i
\(543\) 1.01069i 0.0433730i
\(544\) 30.5397 1.30938
\(545\) 13.3590 26.2918i 0.572236 1.12622i
\(546\) −8.37138 −0.358262
\(547\) 17.4499i 0.746105i 0.927810 + 0.373053i \(0.121689\pi\)
−0.927810 + 0.373053i \(0.878311\pi\)
\(548\) 74.0944i 3.16516i
\(549\) 2.97619 0.127021
\(550\) −38.2494 + 27.9219i −1.63096 + 1.19059i
\(551\) −55.8318 −2.37851
\(552\) 63.1862i 2.68938i
\(553\) 7.24024i 0.307886i
\(554\) 0.927283 0.0393965
\(555\) 2.90972 5.72662i 0.123511 0.243081i
\(556\) −47.3504 −2.00810
\(557\) 1.58407i 0.0671191i −0.999437 0.0335596i \(-0.989316\pi\)
0.999437 0.0335596i \(-0.0106843\pi\)
\(558\) 1.37692i 0.0582895i
\(559\) 23.7089 1.00278
\(560\) −37.1033 18.8524i −1.56790 0.796657i
\(561\) −3.37847 −0.142639
\(562\) 23.6828i 0.998997i
\(563\) 21.9428i 0.924780i 0.886677 + 0.462390i \(0.153008\pi\)
−0.886677 + 0.462390i \(0.846992\pi\)
\(564\) −31.8230 −1.33999
\(565\) −30.6011 15.5486i −1.28740 0.654133i
\(566\) 57.5310 2.41821
\(567\) 1.00000i 0.0419961i
\(568\) 101.760i 4.26976i
\(569\) 25.0638 1.05073 0.525365 0.850877i \(-0.323929\pi\)
0.525365 + 0.850877i \(0.323929\pi\)
\(570\) 23.2887 45.8344i 0.975455 1.91979i
\(571\) 4.84213 0.202637 0.101318 0.994854i \(-0.467694\pi\)
0.101318 + 0.994854i \(0.467694\pi\)
\(572\) 59.1110i 2.47156i
\(573\) 11.2168i 0.468587i
\(574\) −24.4572 −1.02082
\(575\) −23.5855 + 17.2173i −0.983583 + 0.718011i
\(576\) 48.3918 2.01632
\(577\) 21.1366i 0.879927i −0.898016 0.439964i \(-0.854991\pi\)
0.898016 0.439964i \(-0.145009\pi\)
\(578\) 2.80343i 0.116607i
\(579\) −13.0305 −0.541529
\(580\) 40.4022 79.5155i 1.67761 3.30170i
\(581\) 0.00138848 5.76038e−5
\(582\) 28.4977i 1.18127i
\(583\) 1.41859i 0.0587518i
\(584\) −92.3751 −3.82251
\(585\) 5.95281 + 3.02465i 0.246118 + 0.125054i
\(586\) −50.2063 −2.07400
\(587\) 9.36669i 0.386605i −0.981139 0.193302i \(-0.938080\pi\)
0.981139 0.193302i \(-0.0619198\pi\)
\(588\) 5.85923i 0.241631i
\(589\) −4.02813 −0.165976
\(590\) −27.4514 13.9482i −1.13016 0.574239i
\(591\) 3.36117 0.138260
\(592\) 53.4663i 2.19745i
\(593\) 12.1261i 0.497961i 0.968509 + 0.248980i \(0.0800955\pi\)
−0.968509 + 0.248980i \(0.919905\pi\)
\(594\) −9.47132 −0.388613
\(595\) 1.01291 1.99350i 0.0415251 0.0817253i
\(596\) −82.8319 −3.39293
\(597\) 3.11797i 0.127610i
\(598\) 48.8909i 1.99930i
\(599\) −19.9848 −0.816558 −0.408279 0.912857i \(-0.633871\pi\)
−0.408279 + 0.912857i \(0.633871\pi\)
\(600\) 31.8952 + 43.6923i 1.30212 + 1.78373i
\(601\) −29.9290 −1.22083 −0.610415 0.792081i \(-0.708998\pi\)
−0.610415 + 0.792081i \(0.708998\pi\)
\(602\) 22.2584i 0.907185i
\(603\) 16.0362i 0.653044i
\(604\) 80.5643 3.27812
\(605\) 0.419428 0.825474i 0.0170522 0.0335603i
\(606\) −38.6357 −1.56947
\(607\) 22.5262i 0.914309i 0.889387 + 0.457154i \(0.151131\pi\)
−0.889387 + 0.457154i \(0.848869\pi\)
\(608\) 250.467i 10.1578i
\(609\) −6.80762 −0.275859
\(610\) 16.6328 + 8.45122i 0.673443 + 0.342180i
\(611\) −16.2184 −0.656126
\(612\) 5.85923i 0.236846i
\(613\) 28.3171i 1.14372i 0.820352 + 0.571858i \(0.193777\pi\)
−0.820352 + 0.571858i \(0.806223\pi\)
\(614\) 55.5249 2.24080
\(615\) 17.3913 + 8.83661i 0.701285 + 0.356326i
\(616\) 36.5521 1.47272
\(617\) 25.0388i 1.00802i 0.863697 + 0.504012i \(0.168143\pi\)
−0.863697 + 0.504012i \(0.831857\pi\)
\(618\) 10.7457i 0.432255i
\(619\) 20.2234 0.812847 0.406424 0.913685i \(-0.366776\pi\)
0.406424 + 0.913685i \(0.366776\pi\)
\(620\) 2.91492 5.73684i 0.117066 0.230397i
\(621\) −5.84024 −0.234361
\(622\) 12.0803i 0.484377i
\(623\) 7.58835i 0.304021i
\(624\) 55.5781 2.22490
\(625\) −7.61805 + 23.8110i −0.304722 + 0.952441i
\(626\) −76.8896 −3.07313
\(627\) 27.7081i 1.10655i
\(628\) 54.2888i 2.16636i
\(629\) 2.87265 0.114540
\(630\) 2.83961 5.58863i 0.113133 0.222656i
\(631\) 19.9504 0.794212 0.397106 0.917773i \(-0.370015\pi\)
0.397106 + 0.917773i \(0.370015\pi\)
\(632\) 78.3329i 3.11591i
\(633\) 1.18361i 0.0470443i
\(634\) 63.4869 2.52139
\(635\) 22.3491 + 11.3557i 0.886895 + 0.450636i
\(636\) −2.46023 −0.0975545
\(637\) 2.98612i 0.118314i
\(638\) 64.4772i 2.55268i
\(639\) 9.40560 0.372080
\(640\) 148.682 + 75.5461i 5.87717 + 2.98622i
\(641\) 24.0841 0.951264 0.475632 0.879644i \(-0.342219\pi\)
0.475632 + 0.879644i \(0.342219\pi\)
\(642\) 10.5594i 0.416748i
\(643\) 28.7066i 1.13208i −0.824379 0.566039i \(-0.808475\pi\)
0.824379 0.566039i \(-0.191525\pi\)
\(644\) 34.2194 1.34843
\(645\) −8.04216 + 15.8278i −0.316660 + 0.623217i
\(646\) 22.9920 0.904607
\(647\) 0.387706i 0.0152423i 0.999971 + 0.00762116i \(0.00242591\pi\)
−0.999971 + 0.00762116i \(0.997574\pi\)
\(648\) 10.8191i 0.425015i
\(649\) 16.5951 0.651415
\(650\) 24.6792 + 33.8073i 0.967998 + 1.32603i
\(651\) −0.491153 −0.0192498
\(652\) 38.7473i 1.51746i
\(653\) 18.8767i 0.738704i −0.929290 0.369352i \(-0.879580\pi\)
0.929290 0.369352i \(-0.120420\pi\)
\(654\) 36.9739 1.44579
\(655\) −9.67467 + 19.0407i −0.378021 + 0.743981i
\(656\) 162.373 6.33960
\(657\) 8.53815i 0.333105i
\(658\) 15.2262i 0.593578i
\(659\) 1.85135 0.0721185 0.0360592 0.999350i \(-0.488520\pi\)
0.0360592 + 0.999350i \(0.488520\pi\)
\(660\) −39.4618 20.0507i −1.53605 0.780474i
\(661\) −40.4450 −1.57313 −0.786564 0.617509i \(-0.788142\pi\)
−0.786564 + 0.617509i \(0.788142\pi\)
\(662\) 51.4966i 2.00147i
\(663\) 2.98612i 0.115971i
\(664\) −0.0150221 −0.000582970
\(665\) −16.3494 8.30720i −0.634001 0.322139i
\(666\) 8.05329 0.312059
\(667\) 39.7582i 1.53944i
\(668\) 35.0341i 1.35551i
\(669\) −0.645242 −0.0249465
\(670\) −45.5365 + 89.6203i −1.75923 + 3.46233i
\(671\) −10.0550 −0.388168
\(672\) 30.5397i 1.17810i
\(673\) 27.7127i 1.06825i 0.845407 + 0.534123i \(0.179358\pi\)
−0.845407 + 0.534123i \(0.820642\pi\)
\(674\) 63.7482 2.45549
\(675\) −4.03844 + 2.94805i −0.155440 + 0.113470i
\(676\) −23.9239 −0.920148
\(677\) 22.7354i 0.873792i 0.899512 + 0.436896i \(0.143922\pi\)
−0.899512 + 0.436896i \(0.856078\pi\)
\(678\) 43.0340i 1.65271i
\(679\) 10.1653 0.390108
\(680\) −10.9587 + 21.5678i −0.420248 + 0.827089i
\(681\) 20.6531 0.791428
\(682\) 4.65187i 0.178129i
\(683\) 21.6837i 0.829704i −0.909889 0.414852i \(-0.863833\pi\)
0.909889 0.414852i \(-0.136167\pi\)
\(684\) 48.0537 1.83738
\(685\) 25.2092 + 12.8089i 0.963195 + 0.489405i
\(686\) 2.80343 0.107036
\(687\) 8.46699i 0.323036i
\(688\) 147.775i 5.63387i
\(689\) −1.25384 −0.0477675
\(690\) −32.6390 16.5840i −1.24254 0.631343i
\(691\) 7.63112 0.290301 0.145151 0.989410i \(-0.453633\pi\)
0.145151 + 0.989410i \(0.453633\pi\)
\(692\) 56.6792i 2.15462i
\(693\) 3.37847i 0.128338i
\(694\) 15.1002 0.573197
\(695\) 8.18562 16.1101i 0.310498 0.611091i
\(696\) 73.6524 2.79179
\(697\) 8.72402i 0.330446i
\(698\) 13.8690i 0.524948i
\(699\) 24.4882 0.926227
\(700\) 23.6622 17.2733i 0.894347 0.652869i
\(701\) 17.9592 0.678308 0.339154 0.940731i \(-0.389859\pi\)
0.339154 + 0.940731i \(0.389859\pi\)
\(702\) 8.37138i 0.315957i
\(703\) 23.5597i 0.888569i
\(704\) −163.490 −6.16177
\(705\) 5.50135 10.8272i 0.207193 0.407776i
\(706\) 70.0718 2.63719
\(707\) 13.7816i 0.518309i
\(708\) 28.7806i 1.08164i
\(709\) 48.8046 1.83290 0.916448 0.400155i \(-0.131044\pi\)
0.916448 + 0.400155i \(0.131044\pi\)
\(710\) 52.5644 + 26.7082i 1.97271 + 1.00234i
\(711\) 7.24024 0.271530
\(712\) 82.0992i 3.07680i
\(713\) 2.86846i 0.107424i
\(714\) 2.80343 0.104916
\(715\) −20.1114 10.2187i −0.752124 0.382158i
\(716\) −94.8231 −3.54370
\(717\) 21.1704i 0.790624i
\(718\) 85.6301i 3.19569i
\(719\) −21.4308 −0.799234 −0.399617 0.916682i \(-0.630857\pi\)
−0.399617 + 0.916682i \(0.630857\pi\)
\(720\) −18.8524 + 37.1033i −0.702586 + 1.38276i
\(721\) −3.83305 −0.142750
\(722\) 135.300i 5.03535i
\(723\) 9.48083i 0.352596i
\(724\) −5.92189 −0.220085
\(725\) 20.0692 + 27.4922i 0.745351 + 1.02103i
\(726\) 1.16086 0.0430834
\(727\) 10.3818i 0.385038i −0.981293 0.192519i \(-0.938334\pi\)
0.981293 0.192519i \(-0.0616657\pi\)
\(728\) 32.3071i 1.19738i
\(729\) −1.00000 −0.0370370
\(730\) 24.2450 47.7165i 0.897349 1.76607i
\(731\) −7.93970 −0.293660
\(732\) 17.4382i 0.644534i
\(733\) 44.0321i 1.62636i 0.582011 + 0.813181i \(0.302266\pi\)
−0.582011 + 0.813181i \(0.697734\pi\)
\(734\) −3.53249 −0.130386
\(735\) −1.99350 1.01291i −0.0735312 0.0373616i
\(736\) −178.359 −6.57442
\(737\) 54.1778i 1.99567i
\(738\) 24.4572i 0.900282i
\(739\) 18.5124 0.680989 0.340494 0.940247i \(-0.389406\pi\)
0.340494 + 0.940247i \(0.389406\pi\)
\(740\) 33.5536 + 17.0488i 1.23345 + 0.626725i
\(741\) 24.4902 0.899671
\(742\) 1.17713i 0.0432139i
\(743\) 16.9028i 0.620103i 0.950720 + 0.310051i \(0.100346\pi\)
−0.950720 + 0.310051i \(0.899654\pi\)
\(744\) 5.31384 0.194815
\(745\) 14.3194 28.1820i 0.524623 1.03251i
\(746\) 57.6336 2.11012
\(747\) 0.00138848i 5.08018e-5i
\(748\) 19.7953i 0.723787i
\(749\) 3.76661 0.137629
\(750\) −30.9407 + 5.00792i −1.12979 + 0.182863i
\(751\) −2.02812 −0.0740073 −0.0370037 0.999315i \(-0.511781\pi\)
−0.0370037 + 0.999315i \(0.511781\pi\)
\(752\) 101.088i 3.68628i
\(753\) 2.33881i 0.0852309i
\(754\) 56.9892 2.07542
\(755\) −13.9274 + 27.4105i −0.506871 + 0.997571i
\(756\) 5.85923 0.213098
\(757\) 13.1802i 0.479042i 0.970891 + 0.239521i \(0.0769905\pi\)
−0.970891 + 0.239521i \(0.923010\pi\)
\(758\) 9.35115i 0.339649i
\(759\) 19.7311 0.716194
\(760\) 176.886 + 89.8765i 6.41631 + 3.26016i
\(761\) 7.26906 0.263503 0.131752 0.991283i \(-0.457940\pi\)
0.131752 + 0.991283i \(0.457940\pi\)
\(762\) 31.4293i 1.13856i
\(763\) 13.1888i 0.477466i
\(764\) −65.7216 −2.37773
\(765\) −1.99350 1.01291i −0.0720750 0.0366217i
\(766\) −4.82523 −0.174343
\(767\) 14.6679i 0.529625i
\(768\) 112.306i 4.05251i
\(769\) −20.8807 −0.752977 −0.376488 0.926421i \(-0.622868\pi\)
−0.376488 + 0.926421i \(0.622868\pi\)
\(770\) −9.59355 + 18.8810i −0.345728 + 0.680425i
\(771\) 22.9292 0.825775
\(772\) 76.3487i 2.74785i
\(773\) 41.1634i 1.48054i 0.672307 + 0.740272i \(0.265303\pi\)
−0.672307 + 0.740272i \(0.734697\pi\)
\(774\) −22.2584 −0.800062
\(775\) 1.44794 + 1.98349i 0.0520116 + 0.0712492i
\(776\) −109.979 −3.94802
\(777\) 2.87265i 0.103056i
\(778\) 57.2422i 2.05223i
\(779\) 71.5488 2.56350
\(780\) −17.7222 + 34.8789i −0.634555 + 1.24887i
\(781\) −31.7766 −1.13705
\(782\) 16.3727i 0.585488i
\(783\) 6.80762i 0.243285i
\(784\) −18.6122 −0.664720
\(785\) −18.4707 9.38508i −0.659249 0.334968i
\(786\) −26.7767 −0.955094
\(787\) 37.7603i 1.34601i 0.739639 + 0.673004i \(0.234996\pi\)
−0.739639 + 0.673004i \(0.765004\pi\)
\(788\) 19.6939i 0.701565i
\(789\) 6.17182 0.219723
\(790\) 40.4630 + 20.5595i 1.43961 + 0.731473i
\(791\) −15.3505 −0.545799
\(792\) 36.5521i 1.29882i
\(793\) 8.88725i 0.315595i
\(794\) −21.2761 −0.755061
\(795\) 0.425308 0.837048i 0.0150841 0.0296870i
\(796\) 18.2689 0.647524
\(797\) 45.9127i 1.62631i −0.582047 0.813155i \(-0.697748\pi\)
0.582047 0.813155i \(-0.302252\pi\)
\(798\) 22.9920i 0.813907i
\(799\) 5.43126 0.192144
\(800\) −123.333 + 90.0325i −4.36048 + 3.18313i
\(801\) 7.58835 0.268121
\(802\) 4.64480i 0.164014i
\(803\) 28.8459i 1.01795i
\(804\) −93.9598 −3.31371
\(805\) −5.91561 + 11.6425i −0.208498 + 0.410344i
\(806\) 4.11163 0.144826
\(807\) 21.9597i 0.773018i
\(808\) 149.104i 5.24547i
\(809\) −28.9703 −1.01854 −0.509270 0.860607i \(-0.670085\pi\)
−0.509270 + 0.860607i \(0.670085\pi\)
\(810\) −5.58863 2.83961i −0.196364 0.0997738i
\(811\) −28.6073 −1.00454 −0.502270 0.864711i \(-0.667502\pi\)
−0.502270 + 0.864711i \(0.667502\pi\)
\(812\) 39.8875i 1.39978i
\(813\) 29.7006i 1.04164i
\(814\) −27.2078 −0.953633
\(815\) −13.1831 6.69838i −0.461783 0.234634i
\(816\) −18.6122 −0.651556
\(817\) 65.1163i 2.27813i
\(818\) 16.9473i 0.592549i
\(819\) 2.98612 0.104343
\(820\) −51.7758 + 101.900i −1.80809 + 3.55849i
\(821\) −21.6958 −0.757188 −0.378594 0.925563i \(-0.623592\pi\)
−0.378594 + 0.925563i \(0.623592\pi\)
\(822\) 35.4515i 1.23651i
\(823\) 33.1277i 1.15476i 0.816476 + 0.577379i \(0.195925\pi\)
−0.816476 + 0.577379i \(0.804075\pi\)
\(824\) 41.4701 1.44468
\(825\) 13.6438 9.95989i 0.475015 0.346759i
\(826\) −13.7705 −0.479137
\(827\) 31.8796i 1.10856i −0.832330 0.554280i \(-0.812994\pi\)
0.832330 0.554280i \(-0.187006\pi\)
\(828\) 34.2194i 1.18920i
\(829\) −12.0622 −0.418937 −0.209469 0.977815i \(-0.567173\pi\)
−0.209469 + 0.977815i \(0.567173\pi\)
\(830\) 0.00394274 0.00775969i 0.000136854 0.000269343i
\(831\) −0.330767 −0.0114742
\(832\) 144.503i 5.00976i
\(833\) 1.00000i 0.0346479i
\(834\) 22.6555 0.784495
\(835\) −11.9197 6.05646i −0.412498 0.209593i
\(836\) −162.348 −5.61493
\(837\) 0.491153i 0.0169767i
\(838\) 5.77555i 0.199513i
\(839\) 31.0708 1.07268 0.536342 0.844001i \(-0.319806\pi\)
0.536342 + 0.844001i \(0.319806\pi\)
\(840\) 21.5678 + 10.9587i 0.744161 + 0.378112i
\(841\) 17.3438 0.598060
\(842\) 25.3923i 0.875076i
\(843\) 8.44777i 0.290957i
\(844\) −6.93505 −0.238714
\(845\) 4.13580 8.13964i 0.142276 0.280012i
\(846\) 15.2262 0.523487
\(847\) 0.414084i 0.0142281i
\(848\) 7.81505i 0.268370i
\(849\) −20.5216 −0.704301
\(850\) −8.26465 11.3215i −0.283475 0.388324i
\(851\) −16.7770 −0.575108
\(852\) 55.1096i 1.88802i
\(853\) 0.590902i 0.0202321i 0.999949 + 0.0101161i \(0.00322010\pi\)
−0.999949 + 0.0101161i \(0.996780\pi\)
\(854\) 8.34354 0.285510
\(855\) −8.30720 + 16.3494i −0.284100 + 0.559137i
\(856\) −40.7514 −1.39285
\(857\) 27.9253i 0.953909i 0.878928 + 0.476955i \(0.158259\pi\)
−0.878928 + 0.476955i \(0.841741\pi\)
\(858\) 28.2825i 0.965548i
\(859\) −10.1726 −0.347084 −0.173542 0.984826i \(-0.555521\pi\)
−0.173542 + 0.984826i \(0.555521\pi\)
\(860\) −92.7385 47.1209i −3.16236 1.60681i
\(861\) 8.72402 0.297314
\(862\) 38.0254i 1.29515i
\(863\) 29.5369i 1.00545i −0.864447 0.502723i \(-0.832331\pi\)
0.864447 0.502723i \(-0.167669\pi\)
\(864\) −30.5397 −1.03898
\(865\) −19.2841 9.79833i −0.655678 0.333153i
\(866\) −14.8959 −0.506182
\(867\) 1.00000i 0.0339618i
\(868\) 2.87778i 0.0976783i
\(869\) −24.4610 −0.829781
\(870\) −19.3310 + 38.0453i −0.655383 + 1.28986i
\(871\) −47.8859 −1.62255
\(872\) 142.691i 4.83212i
\(873\) 10.1653i 0.344043i
\(874\) −134.279 −4.54204
\(875\) 1.78635 + 11.0367i 0.0603898 + 0.373109i
\(876\) 50.0270 1.69026
\(877\) 23.9038i 0.807173i −0.914941 0.403587i \(-0.867763\pi\)
0.914941 0.403587i \(-0.132237\pi\)
\(878\) 63.2061i 2.13310i
\(879\) 17.9089 0.604052
\(880\) 63.6922 125.352i 2.14706 4.22563i
\(881\) 38.0782 1.28289 0.641443 0.767170i \(-0.278336\pi\)
0.641443 + 0.767170i \(0.278336\pi\)
\(882\) 2.80343i 0.0943965i
\(883\) 17.5620i 0.591007i 0.955342 + 0.295503i \(0.0954874\pi\)
−0.955342 + 0.295503i \(0.904513\pi\)
\(884\) −17.4964 −0.588466
\(885\) 9.79208 + 4.97541i 0.329157 + 0.167246i
\(886\) 40.0671 1.34608
\(887\) 35.3014i 1.18530i −0.805459 0.592652i \(-0.798081\pi\)
0.805459 0.592652i \(-0.201919\pi\)
\(888\) 31.0795i 1.04296i
\(889\) 11.2110 0.376005
\(890\) 42.4085 + 21.5480i 1.42154 + 0.722290i
\(891\) 3.37847 0.113183
\(892\) 3.78062i 0.126585i
\(893\) 44.5437i 1.49060i
\(894\) 39.6321 1.32550
\(895\) 16.3924 32.2618i 0.547937 1.07839i
\(896\) 74.5836 2.49166
\(897\) 17.4397i 0.582293i
\(898\) 5.70379i 0.190338i
\(899\) 3.34359 0.111515
\(900\) −17.2733 23.6622i −0.575776 0.788740i
\(901\) 0.419890 0.0139886
\(902\) 82.6280i 2.75121i
\(903\) 7.93970i 0.264217i
\(904\) 166.078 5.52368
\(905\) 1.02374 2.01481i 0.0340302 0.0669747i
\(906\) −38.5471 −1.28064
\(907\) 33.4468i 1.11058i 0.831656 + 0.555292i \(0.187393\pi\)
−0.831656 + 0.555292i \(0.812607\pi\)
\(908\) 121.011i 4.01590i
\(909\) 13.7816 0.457106
\(910\) 16.6883 + 8.47941i 0.553212 + 0.281090i
\(911\) −16.4216 −0.544071 −0.272036 0.962287i \(-0.587697\pi\)
−0.272036 + 0.962287i \(0.587697\pi\)
\(912\) 152.645i 5.05458i
\(913\) 0.00469094i 0.000155247i
\(914\) −18.7021 −0.618610
\(915\) −5.93302 3.01460i −0.196140 0.0996595i
\(916\) 49.6101 1.63916
\(917\) 9.55141i 0.315415i
\(918\) 2.80343i 0.0925271i
\(919\) 44.7007 1.47454 0.737271 0.675598i \(-0.236114\pi\)
0.737271 + 0.675598i \(0.236114\pi\)
\(920\) 64.0016 125.961i 2.11007 4.15282i
\(921\) −19.8061 −0.652632
\(922\) 93.0647i 3.06492i
\(923\) 28.0862i 0.924469i
\(924\) −19.7953 −0.651217
\(925\) −11.6010 + 8.46871i −0.381440 + 0.278449i
\(926\) 3.67653 0.120818
\(927\) 3.83305i 0.125894i
\(928\) 207.903i 6.82475i
\(929\) 45.7602 1.50134 0.750672 0.660676i \(-0.229730\pi\)
0.750672 + 0.660676i \(0.229730\pi\)
\(930\) −1.39468 + 2.74487i −0.0457335 + 0.0900080i
\(931\) −8.20136 −0.268789
\(932\) 143.482i 4.69991i
\(933\) 4.30912i 0.141074i
\(934\) −99.1438 −3.24409
\(935\) 6.73497 + 3.42207i 0.220257 + 0.111914i
\(936\) −32.3071 −1.05599
\(937\) 21.8797i 0.714779i −0.933955 0.357390i \(-0.883667\pi\)
0.933955 0.357390i \(-0.116333\pi\)
\(938\) 44.9564i 1.46788i
\(939\) 27.4270 0.895045
\(940\) 63.4391 + 32.2337i 2.06915 + 1.05135i
\(941\) 21.9504 0.715563 0.357782 0.933805i \(-0.383533\pi\)
0.357782 + 0.933805i \(0.383533\pi\)
\(942\) 25.9752i 0.846318i
\(943\) 50.9504i 1.65917i
\(944\) 91.4232 2.97557
\(945\) −1.01291 + 1.99350i −0.0329498 + 0.0648484i
\(946\) 75.1995 2.44495
\(947\) 6.14205i 0.199590i 0.995008 + 0.0997949i \(0.0318187\pi\)
−0.995008 + 0.0997949i \(0.968181\pi\)
\(948\) 42.4223i 1.37781i
\(949\) 25.4959 0.827632
\(950\) −92.8517 + 67.7814i −3.01251 + 2.19912i
\(951\) −22.6461 −0.734352
\(952\) 10.8191i 0.350649i
\(953\) 51.4151i 1.66550i 0.553650 + 0.832750i \(0.313235\pi\)
−0.553650 + 0.832750i \(0.686765\pi\)
\(954\) 1.17713 0.0381111
\(955\) 11.3615 22.3606i 0.367650 0.723571i
\(956\) −124.042 −4.01182
\(957\) 22.9994i 0.743464i
\(958\) 75.6112i 2.44289i
\(959\) 12.6457 0.408352
\(960\) −96.4687 49.0163i −3.11351 1.58199i
\(961\) −30.7588 −0.992218
\(962\) 24.0481i 0.775341i
\(963\) 3.76661i 0.121377i
\(964\) −55.5504 −1.78916
\(965\) 25.9762 + 13.1987i 0.836204 + 0.424880i
\(966\) −16.3727 −0.526784
\(967\) 19.1624i 0.616221i −0.951351 0.308110i \(-0.900303\pi\)
0.951351 0.308110i \(-0.0996966\pi\)
\(968\) 4.48001i 0.143993i
\(969\) −8.20136 −0.263466
\(970\) 28.8655 56.8100i 0.926814 1.82406i
\(971\) 30.0374 0.963946 0.481973 0.876186i \(-0.339920\pi\)
0.481973 + 0.876186i \(0.339920\pi\)
\(972\) 5.85923i 0.187935i
\(973\) 8.08133i 0.259076i
\(974\) 93.6331 3.00020
\(975\) −8.80321 12.0593i −0.281928 0.386206i
\(976\) −55.3933 −1.77310
\(977\) 55.6869i 1.78158i −0.454412 0.890792i \(-0.650151\pi\)
0.454412 0.890792i \(-0.349849\pi\)
\(978\) 18.5392i 0.592819i
\(979\) −25.6371 −0.819364
\(980\) 5.93485 11.6804i 0.189582 0.373115i
\(981\) −13.1888 −0.421085
\(982\) 88.7550i 2.83229i
\(983\) 33.8445i 1.07947i −0.841835 0.539736i \(-0.818524\pi\)
0.841835 0.539736i \(-0.181476\pi\)
\(984\) −94.3861 −3.00892
\(985\) −6.70047 3.40454i −0.213495 0.108478i
\(986\) −19.0847 −0.607781
\(987\) 5.43126i 0.172879i
\(988\) 143.494i 4.56515i
\(989\) 46.3698 1.47447
\(990\) 18.8810 + 9.59355i 0.600079 + 0.304903i
\(991\) −32.8709 −1.04418 −0.522089 0.852891i \(-0.674847\pi\)
−0.522089 + 0.852891i \(0.674847\pi\)
\(992\) 14.9997i 0.476241i
\(993\) 18.3691i 0.582927i
\(994\) 26.3680 0.836341
\(995\) −3.15820 + 6.21565i −0.100122 + 0.197049i
\(996\) 0.00813542 0.000257781
\(997\) 17.3006i 0.547915i 0.961742 + 0.273958i \(0.0883328\pi\)
−0.961742 + 0.273958i \(0.911667\pi\)
\(998\) 22.0996i 0.699551i
\(999\) −2.87265 −0.0908867
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1785.2.g.g.1429.1 28
5.2 odd 4 8925.2.a.cx.1.14 14
5.3 odd 4 8925.2.a.cu.1.1 14
5.4 even 2 inner 1785.2.g.g.1429.28 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.g.g.1429.1 28 1.1 even 1 trivial
1785.2.g.g.1429.28 yes 28 5.4 even 2 inner
8925.2.a.cu.1.1 14 5.3 odd 4
8925.2.a.cx.1.14 14 5.2 odd 4