Properties

Label 8925.2.a.cu.1.1
Level $8925$
Weight $2$
Character 8925.1
Self dual yes
Analytic conductor $71.266$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8925,2,Mod(1,8925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8925 = 3 \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.2664838040\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} - 18 x^{12} + 54 x^{11} + 124 x^{10} - 366 x^{9} - 416 x^{8} + 1164 x^{7} + 727 x^{6} + \cdots - 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 1785)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.80343\) of defining polynomial
Character \(\chi\) \(=\) 8925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.80343 q^{2} -1.00000 q^{3} +5.85923 q^{4} +2.80343 q^{6} -1.00000 q^{7} -10.8191 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-2.80343 q^{2} -1.00000 q^{3} +5.85923 q^{4} +2.80343 q^{6} -1.00000 q^{7} -10.8191 q^{8} +1.00000 q^{9} +3.37847 q^{11} -5.85923 q^{12} +2.98612 q^{13} +2.80343 q^{14} +18.6122 q^{16} +1.00000 q^{17} -2.80343 q^{18} -8.20136 q^{19} +1.00000 q^{21} -9.47132 q^{22} +5.84024 q^{23} +10.8191 q^{24} -8.37138 q^{26} -1.00000 q^{27} -5.85923 q^{28} +6.80762 q^{29} -0.491153 q^{31} -30.5397 q^{32} -3.37847 q^{33} -2.80343 q^{34} +5.85923 q^{36} -2.87265 q^{37} +22.9920 q^{38} -2.98612 q^{39} +8.72402 q^{41} -2.80343 q^{42} -7.93970 q^{43} +19.7953 q^{44} -16.3727 q^{46} -5.43126 q^{47} -18.6122 q^{48} +1.00000 q^{49} -1.00000 q^{51} +17.4964 q^{52} +0.419890 q^{53} +2.80343 q^{54} +10.8191 q^{56} +8.20136 q^{57} -19.0847 q^{58} -4.91201 q^{59} -2.97619 q^{61} +1.37692 q^{62} -1.00000 q^{63} +48.3918 q^{64} +9.47132 q^{66} -16.0362 q^{67} +5.85923 q^{68} -5.84024 q^{69} -9.40560 q^{71} -10.8191 q^{72} -8.53815 q^{73} +8.05329 q^{74} -48.0537 q^{76} -3.37847 q^{77} +8.37138 q^{78} +7.24024 q^{79} +1.00000 q^{81} -24.4572 q^{82} -0.00138848 q^{83} +5.85923 q^{84} +22.2584 q^{86} -6.80762 q^{87} -36.5521 q^{88} +7.58835 q^{89} -2.98612 q^{91} +34.2194 q^{92} +0.491153 q^{93} +15.2262 q^{94} +30.5397 q^{96} +10.1653 q^{97} -2.80343 q^{98} +3.37847 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 3 q^{2} - 14 q^{3} + 17 q^{4} + 3 q^{6} - 14 q^{7} - 15 q^{8} + 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 14 q - 3 q^{2} - 14 q^{3} + 17 q^{4} + 3 q^{6} - 14 q^{7} - 15 q^{8} + 14 q^{9} + 4 q^{11} - 17 q^{12} + q^{13} + 3 q^{14} + 19 q^{16} + 14 q^{17} - 3 q^{18} - 6 q^{19} + 14 q^{21} - 12 q^{22} - 7 q^{23} + 15 q^{24} - 2 q^{26} - 14 q^{27} - 17 q^{28} + 20 q^{29} - 7 q^{31} - 33 q^{32} - 4 q^{33} - 3 q^{34} + 17 q^{36} - 9 q^{37} - 18 q^{38} - q^{39} + 25 q^{41} - 3 q^{42} - 28 q^{43} + 24 q^{44} - 10 q^{46} - 29 q^{47} - 19 q^{48} + 14 q^{49} - 14 q^{51} - 4 q^{52} - 26 q^{53} + 3 q^{54} + 15 q^{56} + 6 q^{57} - 2 q^{58} + 14 q^{59} - 9 q^{61} - 28 q^{62} - 14 q^{63} + 27 q^{64} + 12 q^{66} - 32 q^{67} + 17 q^{68} + 7 q^{69} + 2 q^{71} - 15 q^{72} - 18 q^{73} + 64 q^{74} - 42 q^{76} - 4 q^{77} + 2 q^{78} - 4 q^{79} + 14 q^{81} - 42 q^{82} - 51 q^{83} + 17 q^{84} + 44 q^{86} - 20 q^{87} - 32 q^{88} + 38 q^{89} - q^{91} + 16 q^{92} + 7 q^{93} + 8 q^{94} + 33 q^{96} - 14 q^{97} - 3 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.80343 −1.98233 −0.991163 0.132649i \(-0.957652\pi\)
−0.991163 + 0.132649i \(0.957652\pi\)
\(3\) −1.00000 −0.577350
\(4\) 5.85923 2.92962
\(5\) 0 0
\(6\) 2.80343 1.14450
\(7\) −1.00000 −0.377964
\(8\) −10.8191 −3.82513
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.37847 1.01865 0.509324 0.860575i \(-0.329895\pi\)
0.509324 + 0.860575i \(0.329895\pi\)
\(12\) −5.85923 −1.69142
\(13\) 2.98612 0.828200 0.414100 0.910231i \(-0.364096\pi\)
0.414100 + 0.910231i \(0.364096\pi\)
\(14\) 2.80343 0.749249
\(15\) 0 0
\(16\) 18.6122 4.65304
\(17\) 1.00000 0.242536
\(18\) −2.80343 −0.660775
\(19\) −8.20136 −1.88152 −0.940761 0.339072i \(-0.889887\pi\)
−0.940761 + 0.339072i \(0.889887\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) −9.47132 −2.01929
\(23\) 5.84024 1.21778 0.608888 0.793257i \(-0.291616\pi\)
0.608888 + 0.793257i \(0.291616\pi\)
\(24\) 10.8191 2.20844
\(25\) 0 0
\(26\) −8.37138 −1.64176
\(27\) −1.00000 −0.192450
\(28\) −5.85923 −1.10729
\(29\) 6.80762 1.26414 0.632072 0.774910i \(-0.282205\pi\)
0.632072 + 0.774910i \(0.282205\pi\)
\(30\) 0 0
\(31\) −0.491153 −0.0882137 −0.0441069 0.999027i \(-0.514044\pi\)
−0.0441069 + 0.999027i \(0.514044\pi\)
\(32\) −30.5397 −5.39871
\(33\) −3.37847 −0.588117
\(34\) −2.80343 −0.480785
\(35\) 0 0
\(36\) 5.85923 0.976539
\(37\) −2.87265 −0.472261 −0.236131 0.971721i \(-0.575879\pi\)
−0.236131 + 0.971721i \(0.575879\pi\)
\(38\) 22.9920 3.72979
\(39\) −2.98612 −0.478161
\(40\) 0 0
\(41\) 8.72402 1.36246 0.681232 0.732068i \(-0.261445\pi\)
0.681232 + 0.732068i \(0.261445\pi\)
\(42\) −2.80343 −0.432579
\(43\) −7.93970 −1.21079 −0.605396 0.795924i \(-0.706985\pi\)
−0.605396 + 0.795924i \(0.706985\pi\)
\(44\) 19.7953 2.98425
\(45\) 0 0
\(46\) −16.3727 −2.41403
\(47\) −5.43126 −0.792231 −0.396115 0.918201i \(-0.629642\pi\)
−0.396115 + 0.918201i \(0.629642\pi\)
\(48\) −18.6122 −2.68643
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 17.4964 2.42631
\(53\) 0.419890 0.0576763 0.0288381 0.999584i \(-0.490819\pi\)
0.0288381 + 0.999584i \(0.490819\pi\)
\(54\) 2.80343 0.381499
\(55\) 0 0
\(56\) 10.8191 1.44576
\(57\) 8.20136 1.08630
\(58\) −19.0847 −2.50595
\(59\) −4.91201 −0.639490 −0.319745 0.947504i \(-0.603597\pi\)
−0.319745 + 0.947504i \(0.603597\pi\)
\(60\) 0 0
\(61\) −2.97619 −0.381062 −0.190531 0.981681i \(-0.561021\pi\)
−0.190531 + 0.981681i \(0.561021\pi\)
\(62\) 1.37692 0.174868
\(63\) −1.00000 −0.125988
\(64\) 48.3918 6.04897
\(65\) 0 0
\(66\) 9.47132 1.16584
\(67\) −16.0362 −1.95913 −0.979566 0.201124i \(-0.935541\pi\)
−0.979566 + 0.201124i \(0.935541\pi\)
\(68\) 5.85923 0.710537
\(69\) −5.84024 −0.703083
\(70\) 0 0
\(71\) −9.40560 −1.11624 −0.558120 0.829761i \(-0.688477\pi\)
−0.558120 + 0.829761i \(0.688477\pi\)
\(72\) −10.8191 −1.27504
\(73\) −8.53815 −0.999315 −0.499657 0.866223i \(-0.666541\pi\)
−0.499657 + 0.866223i \(0.666541\pi\)
\(74\) 8.05329 0.936176
\(75\) 0 0
\(76\) −48.0537 −5.51214
\(77\) −3.37847 −0.385013
\(78\) 8.37138 0.947872
\(79\) 7.24024 0.814590 0.407295 0.913297i \(-0.366472\pi\)
0.407295 + 0.913297i \(0.366472\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −24.4572 −2.70085
\(83\) −0.00138848 −0.000152405 0 −7.62027e−5 1.00000i \(-0.500024\pi\)
−7.62027e−5 1.00000i \(0.500024\pi\)
\(84\) 5.85923 0.639295
\(85\) 0 0
\(86\) 22.2584 2.40019
\(87\) −6.80762 −0.729854
\(88\) −36.5521 −3.89646
\(89\) 7.58835 0.804364 0.402182 0.915560i \(-0.368252\pi\)
0.402182 + 0.915560i \(0.368252\pi\)
\(90\) 0 0
\(91\) −2.98612 −0.313030
\(92\) 34.2194 3.56761
\(93\) 0.491153 0.0509302
\(94\) 15.2262 1.57046
\(95\) 0 0
\(96\) 30.5397 3.11695
\(97\) 10.1653 1.03213 0.516064 0.856550i \(-0.327397\pi\)
0.516064 + 0.856550i \(0.327397\pi\)
\(98\) −2.80343 −0.283189
\(99\) 3.37847 0.339549
\(100\) 0 0
\(101\) −13.7816 −1.37132 −0.685659 0.727923i \(-0.740486\pi\)
−0.685659 + 0.727923i \(0.740486\pi\)
\(102\) 2.80343 0.277581
\(103\) 3.83305 0.377681 0.188841 0.982008i \(-0.439527\pi\)
0.188841 + 0.982008i \(0.439527\pi\)
\(104\) −32.3071 −3.16797
\(105\) 0 0
\(106\) −1.17713 −0.114333
\(107\) 3.76661 0.364132 0.182066 0.983286i \(-0.441722\pi\)
0.182066 + 0.983286i \(0.441722\pi\)
\(108\) −5.85923 −0.563805
\(109\) −13.1888 −1.26326 −0.631628 0.775272i \(-0.717613\pi\)
−0.631628 + 0.775272i \(0.717613\pi\)
\(110\) 0 0
\(111\) 2.87265 0.272660
\(112\) −18.6122 −1.75868
\(113\) 15.3505 1.44405 0.722025 0.691867i \(-0.243212\pi\)
0.722025 + 0.691867i \(0.243212\pi\)
\(114\) −22.9920 −2.15339
\(115\) 0 0
\(116\) 39.8875 3.70346
\(117\) 2.98612 0.276067
\(118\) 13.7705 1.26768
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 0.414084 0.0376440
\(122\) 8.34354 0.755389
\(123\) −8.72402 −0.786618
\(124\) −2.87778 −0.258432
\(125\) 0 0
\(126\) 2.80343 0.249750
\(127\) 11.2110 0.994815 0.497407 0.867517i \(-0.334285\pi\)
0.497407 + 0.867517i \(0.334285\pi\)
\(128\) −74.5836 −6.59232
\(129\) 7.93970 0.699052
\(130\) 0 0
\(131\) −9.55141 −0.834510 −0.417255 0.908789i \(-0.637008\pi\)
−0.417255 + 0.908789i \(0.637008\pi\)
\(132\) −19.7953 −1.72296
\(133\) 8.20136 0.711148
\(134\) 44.9564 3.88364
\(135\) 0 0
\(136\) −10.8191 −0.927731
\(137\) 12.6457 1.08040 0.540199 0.841537i \(-0.318349\pi\)
0.540199 + 0.841537i \(0.318349\pi\)
\(138\) 16.3727 1.39374
\(139\) −8.08133 −0.685449 −0.342725 0.939436i \(-0.611350\pi\)
−0.342725 + 0.939436i \(0.611350\pi\)
\(140\) 0 0
\(141\) 5.43126 0.457395
\(142\) 26.3680 2.21275
\(143\) 10.0885 0.843644
\(144\) 18.6122 1.55101
\(145\) 0 0
\(146\) 23.9361 1.98097
\(147\) −1.00000 −0.0824786
\(148\) −16.8315 −1.38354
\(149\) −14.1370 −1.15815 −0.579074 0.815275i \(-0.696586\pi\)
−0.579074 + 0.815275i \(0.696586\pi\)
\(150\) 0 0
\(151\) −13.7500 −1.11896 −0.559479 0.828845i \(-0.688999\pi\)
−0.559479 + 0.828845i \(0.688999\pi\)
\(152\) 88.7314 7.19706
\(153\) 1.00000 0.0808452
\(154\) 9.47132 0.763221
\(155\) 0 0
\(156\) −17.4964 −1.40083
\(157\) −9.26551 −0.739468 −0.369734 0.929138i \(-0.620551\pi\)
−0.369734 + 0.929138i \(0.620551\pi\)
\(158\) −20.2975 −1.61478
\(159\) −0.419890 −0.0332994
\(160\) 0 0
\(161\) −5.84024 −0.460276
\(162\) −2.80343 −0.220258
\(163\) 6.61304 0.517973 0.258987 0.965881i \(-0.416611\pi\)
0.258987 + 0.965881i \(0.416611\pi\)
\(164\) 51.1161 3.99150
\(165\) 0 0
\(166\) 0.00389251 0.000302117 0
\(167\) −5.97930 −0.462692 −0.231346 0.972872i \(-0.574313\pi\)
−0.231346 + 0.972872i \(0.574313\pi\)
\(168\) −10.8191 −0.834712
\(169\) −4.08310 −0.314085
\(170\) 0 0
\(171\) −8.20136 −0.627174
\(172\) −46.5206 −3.54716
\(173\) 9.67349 0.735462 0.367731 0.929932i \(-0.380135\pi\)
0.367731 + 0.929932i \(0.380135\pi\)
\(174\) 19.0847 1.44681
\(175\) 0 0
\(176\) 62.8807 4.73981
\(177\) 4.91201 0.369210
\(178\) −21.2734 −1.59451
\(179\) −16.1835 −1.20961 −0.604807 0.796372i \(-0.706750\pi\)
−0.604807 + 0.796372i \(0.706750\pi\)
\(180\) 0 0
\(181\) 1.01069 0.0751243 0.0375621 0.999294i \(-0.488041\pi\)
0.0375621 + 0.999294i \(0.488041\pi\)
\(182\) 8.37138 0.620528
\(183\) 2.97619 0.220006
\(184\) −63.1862 −4.65815
\(185\) 0 0
\(186\) −1.37692 −0.100960
\(187\) 3.37847 0.247058
\(188\) −31.8230 −2.32093
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 11.2168 0.811616 0.405808 0.913958i \(-0.366990\pi\)
0.405808 + 0.913958i \(0.366990\pi\)
\(192\) −48.3918 −3.49237
\(193\) −13.0305 −0.937955 −0.468978 0.883210i \(-0.655378\pi\)
−0.468978 + 0.883210i \(0.655378\pi\)
\(194\) −28.4977 −2.04601
\(195\) 0 0
\(196\) 5.85923 0.418517
\(197\) −3.36117 −0.239473 −0.119737 0.992806i \(-0.538205\pi\)
−0.119737 + 0.992806i \(0.538205\pi\)
\(198\) −9.47132 −0.673098
\(199\) 3.11797 0.221027 0.110513 0.993875i \(-0.464751\pi\)
0.110513 + 0.993875i \(0.464751\pi\)
\(200\) 0 0
\(201\) 16.0362 1.13111
\(202\) 38.6357 2.71840
\(203\) −6.80762 −0.477802
\(204\) −5.85923 −0.410228
\(205\) 0 0
\(206\) −10.7457 −0.748688
\(207\) 5.84024 0.405925
\(208\) 55.5781 3.85365
\(209\) −27.7081 −1.91661
\(210\) 0 0
\(211\) 1.18361 0.0814831 0.0407416 0.999170i \(-0.487028\pi\)
0.0407416 + 0.999170i \(0.487028\pi\)
\(212\) 2.46023 0.168969
\(213\) 9.40560 0.644461
\(214\) −10.5594 −0.721829
\(215\) 0 0
\(216\) 10.8191 0.736147
\(217\) 0.491153 0.0333417
\(218\) 36.9739 2.50419
\(219\) 8.53815 0.576955
\(220\) 0 0
\(221\) 2.98612 0.200868
\(222\) −8.05329 −0.540501
\(223\) −0.645242 −0.0432086 −0.0216043 0.999767i \(-0.506877\pi\)
−0.0216043 + 0.999767i \(0.506877\pi\)
\(224\) 30.5397 2.04052
\(225\) 0 0
\(226\) −43.0340 −2.86258
\(227\) −20.6531 −1.37079 −0.685397 0.728170i \(-0.740371\pi\)
−0.685397 + 0.728170i \(0.740371\pi\)
\(228\) 48.0537 3.18243
\(229\) 8.46699 0.559515 0.279757 0.960071i \(-0.409746\pi\)
0.279757 + 0.960071i \(0.409746\pi\)
\(230\) 0 0
\(231\) 3.37847 0.222287
\(232\) −73.6524 −4.83552
\(233\) 24.4882 1.60427 0.802136 0.597141i \(-0.203697\pi\)
0.802136 + 0.597141i \(0.203697\pi\)
\(234\) −8.37138 −0.547254
\(235\) 0 0
\(236\) −28.7806 −1.87346
\(237\) −7.24024 −0.470304
\(238\) 2.80343 0.181720
\(239\) −21.1704 −1.36940 −0.684700 0.728825i \(-0.740067\pi\)
−0.684700 + 0.728825i \(0.740067\pi\)
\(240\) 0 0
\(241\) 9.48083 0.610714 0.305357 0.952238i \(-0.401224\pi\)
0.305357 + 0.952238i \(0.401224\pi\)
\(242\) −1.16086 −0.0746226
\(243\) −1.00000 −0.0641500
\(244\) −17.4382 −1.11637
\(245\) 0 0
\(246\) 24.4572 1.55933
\(247\) −24.4902 −1.55828
\(248\) 5.31384 0.337429
\(249\) 0.00138848 8.79912e−5 0
\(250\) 0 0
\(251\) −2.33881 −0.147624 −0.0738121 0.997272i \(-0.523517\pi\)
−0.0738121 + 0.997272i \(0.523517\pi\)
\(252\) −5.85923 −0.369097
\(253\) 19.7311 1.24048
\(254\) −31.4293 −1.97205
\(255\) 0 0
\(256\) 112.306 7.01916
\(257\) −22.9292 −1.43028 −0.715142 0.698979i \(-0.753638\pi\)
−0.715142 + 0.698979i \(0.753638\pi\)
\(258\) −22.2584 −1.38575
\(259\) 2.87265 0.178498
\(260\) 0 0
\(261\) 6.80762 0.421381
\(262\) 26.7767 1.65427
\(263\) 6.17182 0.380571 0.190285 0.981729i \(-0.439059\pi\)
0.190285 + 0.981729i \(0.439059\pi\)
\(264\) 36.5521 2.24962
\(265\) 0 0
\(266\) −22.9920 −1.40973
\(267\) −7.58835 −0.464400
\(268\) −93.9598 −5.73951
\(269\) −21.9597 −1.33891 −0.669453 0.742855i \(-0.733471\pi\)
−0.669453 + 0.742855i \(0.733471\pi\)
\(270\) 0 0
\(271\) −29.7006 −1.80418 −0.902091 0.431546i \(-0.857968\pi\)
−0.902091 + 0.431546i \(0.857968\pi\)
\(272\) 18.6122 1.12853
\(273\) 2.98612 0.180728
\(274\) −35.4515 −2.14170
\(275\) 0 0
\(276\) −34.2194 −2.05976
\(277\) 0.330767 0.0198739 0.00993694 0.999951i \(-0.496837\pi\)
0.00993694 + 0.999951i \(0.496837\pi\)
\(278\) 22.6555 1.35878
\(279\) −0.491153 −0.0294046
\(280\) 0 0
\(281\) −8.44777 −0.503952 −0.251976 0.967733i \(-0.581080\pi\)
−0.251976 + 0.967733i \(0.581080\pi\)
\(282\) −15.2262 −0.906706
\(283\) −20.5216 −1.21989 −0.609943 0.792446i \(-0.708807\pi\)
−0.609943 + 0.792446i \(0.708807\pi\)
\(284\) −55.1096 −3.27015
\(285\) 0 0
\(286\) −28.2825 −1.67238
\(287\) −8.72402 −0.514963
\(288\) −30.5397 −1.79957
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −10.1653 −0.595899
\(292\) −50.0270 −2.92761
\(293\) 17.9089 1.04625 0.523124 0.852257i \(-0.324766\pi\)
0.523124 + 0.852257i \(0.324766\pi\)
\(294\) 2.80343 0.163500
\(295\) 0 0
\(296\) 31.0795 1.80646
\(297\) −3.37847 −0.196039
\(298\) 39.6321 2.29583
\(299\) 17.4397 1.00856
\(300\) 0 0
\(301\) 7.93970 0.457637
\(302\) 38.5471 2.21814
\(303\) 13.7816 0.791731
\(304\) −152.645 −8.75479
\(305\) 0 0
\(306\) −2.80343 −0.160262
\(307\) 19.8061 1.13039 0.565196 0.824957i \(-0.308801\pi\)
0.565196 + 0.824957i \(0.308801\pi\)
\(308\) −19.7953 −1.12794
\(309\) −3.83305 −0.218054
\(310\) 0 0
\(311\) −4.30912 −0.244348 −0.122174 0.992509i \(-0.538987\pi\)
−0.122174 + 0.992509i \(0.538987\pi\)
\(312\) 32.3071 1.82903
\(313\) 27.4270 1.55026 0.775131 0.631800i \(-0.217684\pi\)
0.775131 + 0.631800i \(0.217684\pi\)
\(314\) 25.9752 1.46587
\(315\) 0 0
\(316\) 42.4223 2.38644
\(317\) 22.6461 1.27193 0.635967 0.771716i \(-0.280601\pi\)
0.635967 + 0.771716i \(0.280601\pi\)
\(318\) 1.17713 0.0660103
\(319\) 22.9994 1.28772
\(320\) 0 0
\(321\) −3.76661 −0.210232
\(322\) 16.3727 0.912417
\(323\) −8.20136 −0.456336
\(324\) 5.85923 0.325513
\(325\) 0 0
\(326\) −18.5392 −1.02679
\(327\) 13.1888 0.729341
\(328\) −94.3861 −5.21160
\(329\) 5.43126 0.299435
\(330\) 0 0
\(331\) 18.3691 1.00966 0.504829 0.863219i \(-0.331555\pi\)
0.504829 + 0.863219i \(0.331555\pi\)
\(332\) −0.00813542 −0.000446489 0
\(333\) −2.87265 −0.157420
\(334\) 16.7626 0.917206
\(335\) 0 0
\(336\) 18.6122 1.01538
\(337\) 22.7393 1.23869 0.619345 0.785119i \(-0.287398\pi\)
0.619345 + 0.785119i \(0.287398\pi\)
\(338\) 11.4467 0.622618
\(339\) −15.3505 −0.833722
\(340\) 0 0
\(341\) −1.65935 −0.0898588
\(342\) 22.9920 1.24326
\(343\) −1.00000 −0.0539949
\(344\) 85.9004 4.63144
\(345\) 0 0
\(346\) −27.1190 −1.45793
\(347\) 5.38634 0.289154 0.144577 0.989494i \(-0.453818\pi\)
0.144577 + 0.989494i \(0.453818\pi\)
\(348\) −39.8875 −2.13819
\(349\) −4.94714 −0.264814 −0.132407 0.991195i \(-0.542271\pi\)
−0.132407 + 0.991195i \(0.542271\pi\)
\(350\) 0 0
\(351\) −2.98612 −0.159387
\(352\) −103.178 −5.49939
\(353\) −24.9950 −1.33035 −0.665175 0.746687i \(-0.731643\pi\)
−0.665175 + 0.746687i \(0.731643\pi\)
\(354\) −13.7705 −0.731894
\(355\) 0 0
\(356\) 44.4619 2.35648
\(357\) 1.00000 0.0529256
\(358\) 45.3694 2.39785
\(359\) 30.5447 1.61209 0.806045 0.591855i \(-0.201604\pi\)
0.806045 + 0.591855i \(0.201604\pi\)
\(360\) 0 0
\(361\) 48.2623 2.54012
\(362\) −2.83341 −0.148921
\(363\) −0.414084 −0.0217338
\(364\) −17.4964 −0.917059
\(365\) 0 0
\(366\) −8.34354 −0.436124
\(367\) −1.26006 −0.0657744 −0.0328872 0.999459i \(-0.510470\pi\)
−0.0328872 + 0.999459i \(0.510470\pi\)
\(368\) 108.700 5.66636
\(369\) 8.72402 0.454154
\(370\) 0 0
\(371\) −0.419890 −0.0217996
\(372\) 2.87778 0.149206
\(373\) −20.5582 −1.06447 −0.532233 0.846598i \(-0.678647\pi\)
−0.532233 + 0.846598i \(0.678647\pi\)
\(374\) −9.47132 −0.489750
\(375\) 0 0
\(376\) 58.7614 3.03039
\(377\) 20.3284 1.04696
\(378\) −2.80343 −0.144193
\(379\) −3.33561 −0.171339 −0.0856693 0.996324i \(-0.527303\pi\)
−0.0856693 + 0.996324i \(0.527303\pi\)
\(380\) 0 0
\(381\) −11.2110 −0.574357
\(382\) −31.4454 −1.60889
\(383\) 1.72119 0.0879485 0.0439742 0.999033i \(-0.485998\pi\)
0.0439742 + 0.999033i \(0.485998\pi\)
\(384\) 74.5836 3.80608
\(385\) 0 0
\(386\) 36.5301 1.85933
\(387\) −7.93970 −0.403598
\(388\) 59.5608 3.02374
\(389\) −20.4186 −1.03526 −0.517632 0.855603i \(-0.673186\pi\)
−0.517632 + 0.855603i \(0.673186\pi\)
\(390\) 0 0
\(391\) 5.84024 0.295354
\(392\) −10.8191 −0.546447
\(393\) 9.55141 0.481805
\(394\) 9.42281 0.474714
\(395\) 0 0
\(396\) 19.7953 0.994750
\(397\) −7.58930 −0.380896 −0.190448 0.981697i \(-0.560994\pi\)
−0.190448 + 0.981697i \(0.560994\pi\)
\(398\) −8.74101 −0.438147
\(399\) −8.20136 −0.410582
\(400\) 0 0
\(401\) −1.65683 −0.0827380 −0.0413690 0.999144i \(-0.513172\pi\)
−0.0413690 + 0.999144i \(0.513172\pi\)
\(402\) −44.9564 −2.24222
\(403\) −1.46664 −0.0730586
\(404\) −80.7495 −4.01744
\(405\) 0 0
\(406\) 19.0847 0.947159
\(407\) −9.70518 −0.481068
\(408\) 10.8191 0.535625
\(409\) −6.04520 −0.298916 −0.149458 0.988768i \(-0.547753\pi\)
−0.149458 + 0.988768i \(0.547753\pi\)
\(410\) 0 0
\(411\) −12.6457 −0.623769
\(412\) 22.4587 1.10646
\(413\) 4.91201 0.241704
\(414\) −16.3727 −0.804676
\(415\) 0 0
\(416\) −91.1952 −4.47121
\(417\) 8.08133 0.395744
\(418\) 77.6777 3.79934
\(419\) −2.06017 −0.100646 −0.0503230 0.998733i \(-0.516025\pi\)
−0.0503230 + 0.998733i \(0.516025\pi\)
\(420\) 0 0
\(421\) 9.05757 0.441439 0.220719 0.975337i \(-0.429159\pi\)
0.220719 + 0.975337i \(0.429159\pi\)
\(422\) −3.31817 −0.161526
\(423\) −5.43126 −0.264077
\(424\) −4.54283 −0.220619
\(425\) 0 0
\(426\) −26.3680 −1.27753
\(427\) 2.97619 0.144028
\(428\) 22.0695 1.06677
\(429\) −10.0885 −0.487078
\(430\) 0 0
\(431\) 13.5639 0.653348 0.326674 0.945137i \(-0.394072\pi\)
0.326674 + 0.945137i \(0.394072\pi\)
\(432\) −18.6122 −0.895478
\(433\) 5.31344 0.255348 0.127674 0.991816i \(-0.459249\pi\)
0.127674 + 0.991816i \(0.459249\pi\)
\(434\) −1.37692 −0.0660940
\(435\) 0 0
\(436\) −77.2762 −3.70086
\(437\) −47.8979 −2.29127
\(438\) −23.9361 −1.14371
\(439\) 22.5460 1.07606 0.538030 0.842926i \(-0.319169\pi\)
0.538030 + 0.842926i \(0.319169\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −8.37138 −0.398186
\(443\) −14.2922 −0.679041 −0.339521 0.940599i \(-0.610265\pi\)
−0.339521 + 0.940599i \(0.610265\pi\)
\(444\) 16.8315 0.798790
\(445\) 0 0
\(446\) 1.80889 0.0856536
\(447\) 14.1370 0.668657
\(448\) −48.3918 −2.28630
\(449\) 2.03457 0.0960175 0.0480087 0.998847i \(-0.484712\pi\)
0.0480087 + 0.998847i \(0.484712\pi\)
\(450\) 0 0
\(451\) 29.4739 1.38787
\(452\) 89.9419 4.23051
\(453\) 13.7500 0.646030
\(454\) 57.8995 2.71736
\(455\) 0 0
\(456\) −88.7314 −4.15523
\(457\) −6.67114 −0.312063 −0.156031 0.987752i \(-0.549870\pi\)
−0.156031 + 0.987752i \(0.549870\pi\)
\(458\) −23.7366 −1.10914
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) 33.1967 1.54612 0.773062 0.634330i \(-0.218724\pi\)
0.773062 + 0.634330i \(0.218724\pi\)
\(462\) −9.47132 −0.440646
\(463\) −1.31144 −0.0609477 −0.0304739 0.999536i \(-0.509702\pi\)
−0.0304739 + 0.999536i \(0.509702\pi\)
\(464\) 126.705 5.88211
\(465\) 0 0
\(466\) −68.6509 −3.18019
\(467\) −35.3652 −1.63650 −0.818252 0.574859i \(-0.805057\pi\)
−0.818252 + 0.574859i \(0.805057\pi\)
\(468\) 17.4964 0.808770
\(469\) 16.0362 0.740482
\(470\) 0 0
\(471\) 9.26551 0.426932
\(472\) 53.1436 2.44613
\(473\) −26.8241 −1.23337
\(474\) 20.2975 0.932296
\(475\) 0 0
\(476\) −5.85923 −0.268558
\(477\) 0.419890 0.0192254
\(478\) 59.3498 2.71460
\(479\) 26.9709 1.23233 0.616166 0.787616i \(-0.288685\pi\)
0.616166 + 0.787616i \(0.288685\pi\)
\(480\) 0 0
\(481\) −8.57808 −0.391127
\(482\) −26.5789 −1.21063
\(483\) 5.84024 0.265740
\(484\) 2.42621 0.110282
\(485\) 0 0
\(486\) 2.80343 0.127166
\(487\) 33.3994 1.51347 0.756737 0.653720i \(-0.226792\pi\)
0.756737 + 0.653720i \(0.226792\pi\)
\(488\) 32.1997 1.45761
\(489\) −6.61304 −0.299052
\(490\) 0 0
\(491\) 31.6594 1.42877 0.714385 0.699753i \(-0.246707\pi\)
0.714385 + 0.699753i \(0.246707\pi\)
\(492\) −51.1161 −2.30449
\(493\) 6.80762 0.306600
\(494\) 68.6567 3.08901
\(495\) 0 0
\(496\) −9.14142 −0.410462
\(497\) 9.40560 0.421899
\(498\) −0.00389251 −0.000174427 0
\(499\) −7.88306 −0.352894 −0.176447 0.984310i \(-0.556460\pi\)
−0.176447 + 0.984310i \(0.556460\pi\)
\(500\) 0 0
\(501\) 5.97930 0.267135
\(502\) 6.55669 0.292639
\(503\) −14.1621 −0.631455 −0.315727 0.948850i \(-0.602249\pi\)
−0.315727 + 0.948850i \(0.602249\pi\)
\(504\) 10.8191 0.481921
\(505\) 0 0
\(506\) −55.3148 −2.45904
\(507\) 4.08310 0.181337
\(508\) 65.6878 2.91443
\(509\) −9.81696 −0.435129 −0.217565 0.976046i \(-0.569811\pi\)
−0.217565 + 0.976046i \(0.569811\pi\)
\(510\) 0 0
\(511\) 8.53815 0.377705
\(512\) −165.677 −7.32194
\(513\) 8.20136 0.362099
\(514\) 64.2805 2.83529
\(515\) 0 0
\(516\) 46.5206 2.04795
\(517\) −18.3494 −0.807005
\(518\) −8.05329 −0.353841
\(519\) −9.67349 −0.424619
\(520\) 0 0
\(521\) 26.3114 1.15272 0.576362 0.817195i \(-0.304472\pi\)
0.576362 + 0.817195i \(0.304472\pi\)
\(522\) −19.0847 −0.835315
\(523\) −34.5725 −1.51175 −0.755875 0.654716i \(-0.772788\pi\)
−0.755875 + 0.654716i \(0.772788\pi\)
\(524\) −55.9639 −2.44480
\(525\) 0 0
\(526\) −17.3023 −0.754416
\(527\) −0.491153 −0.0213950
\(528\) −62.8807 −2.73653
\(529\) 11.1085 0.482976
\(530\) 0 0
\(531\) −4.91201 −0.213163
\(532\) 48.0537 2.08339
\(533\) 26.0510 1.12839
\(534\) 21.2734 0.920592
\(535\) 0 0
\(536\) 173.497 7.49393
\(537\) 16.1835 0.698371
\(538\) 61.5625 2.65415
\(539\) 3.37847 0.145521
\(540\) 0 0
\(541\) 2.91743 0.125430 0.0627151 0.998031i \(-0.480024\pi\)
0.0627151 + 0.998031i \(0.480024\pi\)
\(542\) 83.2636 3.57648
\(543\) −1.01069 −0.0433730
\(544\) −30.5397 −1.30938
\(545\) 0 0
\(546\) −8.37138 −0.358262
\(547\) 17.4499 0.746105 0.373053 0.927810i \(-0.378311\pi\)
0.373053 + 0.927810i \(0.378311\pi\)
\(548\) 74.0944 3.16516
\(549\) −2.97619 −0.127021
\(550\) 0 0
\(551\) −55.8318 −2.37851
\(552\) 63.1862 2.68938
\(553\) −7.24024 −0.307886
\(554\) −0.927283 −0.0393965
\(555\) 0 0
\(556\) −47.3504 −2.00810
\(557\) −1.58407 −0.0671191 −0.0335596 0.999437i \(-0.510684\pi\)
−0.0335596 + 0.999437i \(0.510684\pi\)
\(558\) 1.37692 0.0582895
\(559\) −23.7089 −1.00278
\(560\) 0 0
\(561\) −3.37847 −0.142639
\(562\) 23.6828 0.998997
\(563\) −21.9428 −0.924780 −0.462390 0.886677i \(-0.653008\pi\)
−0.462390 + 0.886677i \(0.653008\pi\)
\(564\) 31.8230 1.33999
\(565\) 0 0
\(566\) 57.5310 2.41821
\(567\) −1.00000 −0.0419961
\(568\) 101.760 4.26976
\(569\) −25.0638 −1.05073 −0.525365 0.850877i \(-0.676071\pi\)
−0.525365 + 0.850877i \(0.676071\pi\)
\(570\) 0 0
\(571\) 4.84213 0.202637 0.101318 0.994854i \(-0.467694\pi\)
0.101318 + 0.994854i \(0.467694\pi\)
\(572\) 59.1110 2.47156
\(573\) −11.2168 −0.468587
\(574\) 24.4572 1.02082
\(575\) 0 0
\(576\) 48.3918 2.01632
\(577\) −21.1366 −0.879927 −0.439964 0.898016i \(-0.645009\pi\)
−0.439964 + 0.898016i \(0.645009\pi\)
\(578\) −2.80343 −0.116607
\(579\) 13.0305 0.541529
\(580\) 0 0
\(581\) 0.00138848 5.76038e−5 0
\(582\) 28.4977 1.18127
\(583\) 1.41859 0.0587518
\(584\) 92.3751 3.82251
\(585\) 0 0
\(586\) −50.2063 −2.07400
\(587\) −9.36669 −0.386605 −0.193302 0.981139i \(-0.561920\pi\)
−0.193302 + 0.981139i \(0.561920\pi\)
\(588\) −5.85923 −0.241631
\(589\) 4.02813 0.165976
\(590\) 0 0
\(591\) 3.36117 0.138260
\(592\) −53.4663 −2.19745
\(593\) −12.1261 −0.497961 −0.248980 0.968509i \(-0.580095\pi\)
−0.248980 + 0.968509i \(0.580095\pi\)
\(594\) 9.47132 0.388613
\(595\) 0 0
\(596\) −82.8319 −3.39293
\(597\) −3.11797 −0.127610
\(598\) −48.8909 −1.99930
\(599\) 19.9848 0.816558 0.408279 0.912857i \(-0.366129\pi\)
0.408279 + 0.912857i \(0.366129\pi\)
\(600\) 0 0
\(601\) −29.9290 −1.22083 −0.610415 0.792081i \(-0.708998\pi\)
−0.610415 + 0.792081i \(0.708998\pi\)
\(602\) −22.2584 −0.907185
\(603\) −16.0362 −0.653044
\(604\) −80.5643 −3.27812
\(605\) 0 0
\(606\) −38.6357 −1.56947
\(607\) 22.5262 0.914309 0.457154 0.889387i \(-0.348869\pi\)
0.457154 + 0.889387i \(0.348869\pi\)
\(608\) 250.467 10.1578
\(609\) 6.80762 0.275859
\(610\) 0 0
\(611\) −16.2184 −0.656126
\(612\) 5.85923 0.236846
\(613\) −28.3171 −1.14372 −0.571858 0.820352i \(-0.693777\pi\)
−0.571858 + 0.820352i \(0.693777\pi\)
\(614\) −55.5249 −2.24080
\(615\) 0 0
\(616\) 36.5521 1.47272
\(617\) 25.0388 1.00802 0.504012 0.863697i \(-0.331857\pi\)
0.504012 + 0.863697i \(0.331857\pi\)
\(618\) 10.7457 0.432255
\(619\) −20.2234 −0.812847 −0.406424 0.913685i \(-0.633224\pi\)
−0.406424 + 0.913685i \(0.633224\pi\)
\(620\) 0 0
\(621\) −5.84024 −0.234361
\(622\) 12.0803 0.484377
\(623\) −7.58835 −0.304021
\(624\) −55.5781 −2.22490
\(625\) 0 0
\(626\) −76.8896 −3.07313
\(627\) 27.7081 1.10655
\(628\) −54.2888 −2.16636
\(629\) −2.87265 −0.114540
\(630\) 0 0
\(631\) 19.9504 0.794212 0.397106 0.917773i \(-0.370015\pi\)
0.397106 + 0.917773i \(0.370015\pi\)
\(632\) −78.3329 −3.11591
\(633\) −1.18361 −0.0470443
\(634\) −63.4869 −2.52139
\(635\) 0 0
\(636\) −2.46023 −0.0975545
\(637\) 2.98612 0.118314
\(638\) −64.4772 −2.55268
\(639\) −9.40560 −0.372080
\(640\) 0 0
\(641\) 24.0841 0.951264 0.475632 0.879644i \(-0.342219\pi\)
0.475632 + 0.879644i \(0.342219\pi\)
\(642\) 10.5594 0.416748
\(643\) 28.7066 1.13208 0.566039 0.824379i \(-0.308475\pi\)
0.566039 + 0.824379i \(0.308475\pi\)
\(644\) −34.2194 −1.34843
\(645\) 0 0
\(646\) 22.9920 0.904607
\(647\) 0.387706 0.0152423 0.00762116 0.999971i \(-0.497574\pi\)
0.00762116 + 0.999971i \(0.497574\pi\)
\(648\) −10.8191 −0.425015
\(649\) −16.5951 −0.651415
\(650\) 0 0
\(651\) −0.491153 −0.0192498
\(652\) 38.7473 1.51746
\(653\) 18.8767 0.738704 0.369352 0.929290i \(-0.379580\pi\)
0.369352 + 0.929290i \(0.379580\pi\)
\(654\) −36.9739 −1.44579
\(655\) 0 0
\(656\) 162.373 6.33960
\(657\) −8.53815 −0.333105
\(658\) −15.2262 −0.593578
\(659\) −1.85135 −0.0721185 −0.0360592 0.999350i \(-0.511480\pi\)
−0.0360592 + 0.999350i \(0.511480\pi\)
\(660\) 0 0
\(661\) −40.4450 −1.57313 −0.786564 0.617509i \(-0.788142\pi\)
−0.786564 + 0.617509i \(0.788142\pi\)
\(662\) −51.4966 −2.00147
\(663\) −2.98612 −0.115971
\(664\) 0.0150221 0.000582970 0
\(665\) 0 0
\(666\) 8.05329 0.312059
\(667\) 39.7582 1.53944
\(668\) −35.0341 −1.35551
\(669\) 0.645242 0.0249465
\(670\) 0 0
\(671\) −10.0550 −0.388168
\(672\) −30.5397 −1.17810
\(673\) −27.7127 −1.06825 −0.534123 0.845407i \(-0.679358\pi\)
−0.534123 + 0.845407i \(0.679358\pi\)
\(674\) −63.7482 −2.45549
\(675\) 0 0
\(676\) −23.9239 −0.920148
\(677\) 22.7354 0.873792 0.436896 0.899512i \(-0.356078\pi\)
0.436896 + 0.899512i \(0.356078\pi\)
\(678\) 43.0340 1.65271
\(679\) −10.1653 −0.390108
\(680\) 0 0
\(681\) 20.6531 0.791428
\(682\) 4.65187 0.178129
\(683\) 21.6837 0.829704 0.414852 0.909889i \(-0.363833\pi\)
0.414852 + 0.909889i \(0.363833\pi\)
\(684\) −48.0537 −1.83738
\(685\) 0 0
\(686\) 2.80343 0.107036
\(687\) −8.46699 −0.323036
\(688\) −147.775 −5.63387
\(689\) 1.25384 0.0477675
\(690\) 0 0
\(691\) 7.63112 0.290301 0.145151 0.989410i \(-0.453633\pi\)
0.145151 + 0.989410i \(0.453633\pi\)
\(692\) 56.6792 2.15462
\(693\) −3.37847 −0.128338
\(694\) −15.1002 −0.573197
\(695\) 0 0
\(696\) 73.6524 2.79179
\(697\) 8.72402 0.330446
\(698\) 13.8690 0.524948
\(699\) −24.4882 −0.926227
\(700\) 0 0
\(701\) 17.9592 0.678308 0.339154 0.940731i \(-0.389859\pi\)
0.339154 + 0.940731i \(0.389859\pi\)
\(702\) 8.37138 0.315957
\(703\) 23.5597 0.888569
\(704\) 163.490 6.16177
\(705\) 0 0
\(706\) 70.0718 2.63719
\(707\) 13.7816 0.518309
\(708\) 28.7806 1.08164
\(709\) −48.8046 −1.83290 −0.916448 0.400155i \(-0.868956\pi\)
−0.916448 + 0.400155i \(0.868956\pi\)
\(710\) 0 0
\(711\) 7.24024 0.271530
\(712\) −82.0992 −3.07680
\(713\) −2.86846 −0.107424
\(714\) −2.80343 −0.104916
\(715\) 0 0
\(716\) −94.8231 −3.54370
\(717\) 21.1704 0.790624
\(718\) −85.6301 −3.19569
\(719\) 21.4308 0.799234 0.399617 0.916682i \(-0.369143\pi\)
0.399617 + 0.916682i \(0.369143\pi\)
\(720\) 0 0
\(721\) −3.83305 −0.142750
\(722\) −135.300 −5.03535
\(723\) −9.48083 −0.352596
\(724\) 5.92189 0.220085
\(725\) 0 0
\(726\) 1.16086 0.0430834
\(727\) −10.3818 −0.385038 −0.192519 0.981293i \(-0.561666\pi\)
−0.192519 + 0.981293i \(0.561666\pi\)
\(728\) 32.3071 1.19738
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −7.93970 −0.293660
\(732\) 17.4382 0.644534
\(733\) −44.0321 −1.62636 −0.813181 0.582011i \(-0.802266\pi\)
−0.813181 + 0.582011i \(0.802266\pi\)
\(734\) 3.53249 0.130386
\(735\) 0 0
\(736\) −178.359 −6.57442
\(737\) −54.1778 −1.99567
\(738\) −24.4572 −0.900282
\(739\) −18.5124 −0.680989 −0.340494 0.940247i \(-0.610594\pi\)
−0.340494 + 0.940247i \(0.610594\pi\)
\(740\) 0 0
\(741\) 24.4902 0.899671
\(742\) 1.17713 0.0432139
\(743\) −16.9028 −0.620103 −0.310051 0.950720i \(-0.600346\pi\)
−0.310051 + 0.950720i \(0.600346\pi\)
\(744\) −5.31384 −0.194815
\(745\) 0 0
\(746\) 57.6336 2.11012
\(747\) −0.00138848 −5.08018e−5 0
\(748\) 19.7953 0.723787
\(749\) −3.76661 −0.137629
\(750\) 0 0
\(751\) −2.02812 −0.0740073 −0.0370037 0.999315i \(-0.511781\pi\)
−0.0370037 + 0.999315i \(0.511781\pi\)
\(752\) −101.088 −3.68628
\(753\) 2.33881 0.0852309
\(754\) −56.9892 −2.07542
\(755\) 0 0
\(756\) 5.85923 0.213098
\(757\) 13.1802 0.479042 0.239521 0.970891i \(-0.423010\pi\)
0.239521 + 0.970891i \(0.423010\pi\)
\(758\) 9.35115 0.339649
\(759\) −19.7311 −0.716194
\(760\) 0 0
\(761\) 7.26906 0.263503 0.131752 0.991283i \(-0.457940\pi\)
0.131752 + 0.991283i \(0.457940\pi\)
\(762\) 31.4293 1.13856
\(763\) 13.1888 0.477466
\(764\) 65.7216 2.37773
\(765\) 0 0
\(766\) −4.82523 −0.174343
\(767\) −14.6679 −0.529625
\(768\) −112.306 −4.05251
\(769\) 20.8807 0.752977 0.376488 0.926421i \(-0.377132\pi\)
0.376488 + 0.926421i \(0.377132\pi\)
\(770\) 0 0
\(771\) 22.9292 0.825775
\(772\) −76.3487 −2.74785
\(773\) −41.1634 −1.48054 −0.740272 0.672307i \(-0.765303\pi\)
−0.740272 + 0.672307i \(0.765303\pi\)
\(774\) 22.2584 0.800062
\(775\) 0 0
\(776\) −109.979 −3.94802
\(777\) −2.87265 −0.103056
\(778\) 57.2422 2.05223
\(779\) −71.5488 −2.56350
\(780\) 0 0
\(781\) −31.7766 −1.13705
\(782\) −16.3727 −0.585488
\(783\) −6.80762 −0.243285
\(784\) 18.6122 0.664720
\(785\) 0 0
\(786\) −26.7767 −0.955094
\(787\) 37.7603 1.34601 0.673004 0.739639i \(-0.265004\pi\)
0.673004 + 0.739639i \(0.265004\pi\)
\(788\) −19.6939 −0.701565
\(789\) −6.17182 −0.219723
\(790\) 0 0
\(791\) −15.3505 −0.545799
\(792\) −36.5521 −1.29882
\(793\) −8.88725 −0.315595
\(794\) 21.2761 0.755061
\(795\) 0 0
\(796\) 18.2689 0.647524
\(797\) −45.9127 −1.62631 −0.813155 0.582047i \(-0.802252\pi\)
−0.813155 + 0.582047i \(0.802252\pi\)
\(798\) 22.9920 0.813907
\(799\) −5.43126 −0.192144
\(800\) 0 0
\(801\) 7.58835 0.268121
\(802\) 4.64480 0.164014
\(803\) −28.8459 −1.01795
\(804\) 93.9598 3.31371
\(805\) 0 0
\(806\) 4.11163 0.144826
\(807\) 21.9597 0.773018
\(808\) 149.104 5.24547
\(809\) 28.9703 1.01854 0.509270 0.860607i \(-0.329915\pi\)
0.509270 + 0.860607i \(0.329915\pi\)
\(810\) 0 0
\(811\) −28.6073 −1.00454 −0.502270 0.864711i \(-0.667502\pi\)
−0.502270 + 0.864711i \(0.667502\pi\)
\(812\) −39.8875 −1.39978
\(813\) 29.7006 1.04164
\(814\) 27.2078 0.953633
\(815\) 0 0
\(816\) −18.6122 −0.651556
\(817\) 65.1163 2.27813
\(818\) 16.9473 0.592549
\(819\) −2.98612 −0.104343
\(820\) 0 0
\(821\) −21.6958 −0.757188 −0.378594 0.925563i \(-0.623592\pi\)
−0.378594 + 0.925563i \(0.623592\pi\)
\(822\) 35.4515 1.23651
\(823\) −33.1277 −1.15476 −0.577379 0.816476i \(-0.695925\pi\)
−0.577379 + 0.816476i \(0.695925\pi\)
\(824\) −41.4701 −1.44468
\(825\) 0 0
\(826\) −13.7705 −0.479137
\(827\) −31.8796 −1.10856 −0.554280 0.832330i \(-0.687006\pi\)
−0.554280 + 0.832330i \(0.687006\pi\)
\(828\) 34.2194 1.18920
\(829\) 12.0622 0.418937 0.209469 0.977815i \(-0.432827\pi\)
0.209469 + 0.977815i \(0.432827\pi\)
\(830\) 0 0
\(831\) −0.330767 −0.0114742
\(832\) 144.503 5.00976
\(833\) 1.00000 0.0346479
\(834\) −22.6555 −0.784495
\(835\) 0 0
\(836\) −162.348 −5.61493
\(837\) 0.491153 0.0169767
\(838\) 5.77555 0.199513
\(839\) −31.0708 −1.07268 −0.536342 0.844001i \(-0.680194\pi\)
−0.536342 + 0.844001i \(0.680194\pi\)
\(840\) 0 0
\(841\) 17.3438 0.598060
\(842\) −25.3923 −0.875076
\(843\) 8.44777 0.290957
\(844\) 6.93505 0.238714
\(845\) 0 0
\(846\) 15.2262 0.523487
\(847\) −0.414084 −0.0142281
\(848\) 7.81505 0.268370
\(849\) 20.5216 0.704301
\(850\) 0 0
\(851\) −16.7770 −0.575108
\(852\) 55.1096 1.88802
\(853\) −0.590902 −0.0202321 −0.0101161 0.999949i \(-0.503220\pi\)
−0.0101161 + 0.999949i \(0.503220\pi\)
\(854\) −8.34354 −0.285510
\(855\) 0 0
\(856\) −40.7514 −1.39285
\(857\) 27.9253 0.953909 0.476955 0.878928i \(-0.341741\pi\)
0.476955 + 0.878928i \(0.341741\pi\)
\(858\) 28.2825 0.965548
\(859\) 10.1726 0.347084 0.173542 0.984826i \(-0.444479\pi\)
0.173542 + 0.984826i \(0.444479\pi\)
\(860\) 0 0
\(861\) 8.72402 0.297314
\(862\) −38.0254 −1.29515
\(863\) 29.5369 1.00545 0.502723 0.864447i \(-0.332331\pi\)
0.502723 + 0.864447i \(0.332331\pi\)
\(864\) 30.5397 1.03898
\(865\) 0 0
\(866\) −14.8959 −0.506182
\(867\) −1.00000 −0.0339618
\(868\) 2.87778 0.0976783
\(869\) 24.4610 0.829781
\(870\) 0 0
\(871\) −47.8859 −1.62255
\(872\) 142.691 4.83212
\(873\) 10.1653 0.344043
\(874\) 134.279 4.54204
\(875\) 0 0
\(876\) 50.0270 1.69026
\(877\) −23.9038 −0.807173 −0.403587 0.914941i \(-0.632237\pi\)
−0.403587 + 0.914941i \(0.632237\pi\)
\(878\) −63.2061 −2.13310
\(879\) −17.9089 −0.604052
\(880\) 0 0
\(881\) 38.0782 1.28289 0.641443 0.767170i \(-0.278336\pi\)
0.641443 + 0.767170i \(0.278336\pi\)
\(882\) −2.80343 −0.0943965
\(883\) −17.5620 −0.591007 −0.295503 0.955342i \(-0.595487\pi\)
−0.295503 + 0.955342i \(0.595487\pi\)
\(884\) 17.4964 0.588466
\(885\) 0 0
\(886\) 40.0671 1.34608
\(887\) −35.3014 −1.18530 −0.592652 0.805459i \(-0.701919\pi\)
−0.592652 + 0.805459i \(0.701919\pi\)
\(888\) −31.0795 −1.04296
\(889\) −11.2110 −0.376005
\(890\) 0 0
\(891\) 3.37847 0.113183
\(892\) −3.78062 −0.126585
\(893\) 44.5437 1.49060
\(894\) −39.6321 −1.32550
\(895\) 0 0
\(896\) 74.5836 2.49166
\(897\) −17.4397 −0.582293
\(898\) −5.70379 −0.190338
\(899\) −3.34359 −0.111515
\(900\) 0 0
\(901\) 0.419890 0.0139886
\(902\) −82.6280 −2.75121
\(903\) −7.93970 −0.264217
\(904\) −166.078 −5.52368
\(905\) 0 0
\(906\) −38.5471 −1.28064
\(907\) 33.4468 1.11058 0.555292 0.831656i \(-0.312607\pi\)
0.555292 + 0.831656i \(0.312607\pi\)
\(908\) −121.011 −4.01590
\(909\) −13.7816 −0.457106
\(910\) 0 0
\(911\) −16.4216 −0.544071 −0.272036 0.962287i \(-0.587697\pi\)
−0.272036 + 0.962287i \(0.587697\pi\)
\(912\) 152.645 5.05458
\(913\) −0.00469094 −0.000155247 0
\(914\) 18.7021 0.618610
\(915\) 0 0
\(916\) 49.6101 1.63916
\(917\) 9.55141 0.315415
\(918\) 2.80343 0.0925271
\(919\) −44.7007 −1.47454 −0.737271 0.675598i \(-0.763886\pi\)
−0.737271 + 0.675598i \(0.763886\pi\)
\(920\) 0 0
\(921\) −19.8061 −0.652632
\(922\) −93.0647 −3.06492
\(923\) −28.0862 −0.924469
\(924\) 19.7953 0.651217
\(925\) 0 0
\(926\) 3.67653 0.120818
\(927\) 3.83305 0.125894
\(928\) −207.903 −6.82475
\(929\) −45.7602 −1.50134 −0.750672 0.660676i \(-0.770270\pi\)
−0.750672 + 0.660676i \(0.770270\pi\)
\(930\) 0 0
\(931\) −8.20136 −0.268789
\(932\) 143.482 4.69991
\(933\) 4.30912 0.141074
\(934\) 99.1438 3.24409
\(935\) 0 0
\(936\) −32.3071 −1.05599
\(937\) −21.8797 −0.714779 −0.357390 0.933955i \(-0.616333\pi\)
−0.357390 + 0.933955i \(0.616333\pi\)
\(938\) −44.9564 −1.46788
\(939\) −27.4270 −0.895045
\(940\) 0 0
\(941\) 21.9504 0.715563 0.357782 0.933805i \(-0.383533\pi\)
0.357782 + 0.933805i \(0.383533\pi\)
\(942\) −25.9752 −0.846318
\(943\) 50.9504 1.65917
\(944\) −91.4232 −2.97557
\(945\) 0 0
\(946\) 75.1995 2.44495
\(947\) 6.14205 0.199590 0.0997949 0.995008i \(-0.468181\pi\)
0.0997949 + 0.995008i \(0.468181\pi\)
\(948\) −42.4223 −1.37781
\(949\) −25.4959 −0.827632
\(950\) 0 0
\(951\) −22.6461 −0.734352
\(952\) 10.8191 0.350649
\(953\) −51.4151 −1.66550 −0.832750 0.553650i \(-0.813235\pi\)
−0.832750 + 0.553650i \(0.813235\pi\)
\(954\) −1.17713 −0.0381111
\(955\) 0 0
\(956\) −124.042 −4.01182
\(957\) −22.9994 −0.743464
\(958\) −75.6112 −2.44289
\(959\) −12.6457 −0.408352
\(960\) 0 0
\(961\) −30.7588 −0.992218
\(962\) 24.0481 0.775341
\(963\) 3.76661 0.121377
\(964\) 55.5504 1.78916
\(965\) 0 0
\(966\) −16.3727 −0.526784
\(967\) −19.1624 −0.616221 −0.308110 0.951351i \(-0.599697\pi\)
−0.308110 + 0.951351i \(0.599697\pi\)
\(968\) −4.48001 −0.143993
\(969\) 8.20136 0.263466
\(970\) 0 0
\(971\) 30.0374 0.963946 0.481973 0.876186i \(-0.339920\pi\)
0.481973 + 0.876186i \(0.339920\pi\)
\(972\) −5.85923 −0.187935
\(973\) 8.08133 0.259076
\(974\) −93.6331 −3.00020
\(975\) 0 0
\(976\) −55.3933 −1.77310
\(977\) −55.6869 −1.78158 −0.890792 0.454412i \(-0.849849\pi\)
−0.890792 + 0.454412i \(0.849849\pi\)
\(978\) 18.5392 0.592819
\(979\) 25.6371 0.819364
\(980\) 0 0
\(981\) −13.1888 −0.421085
\(982\) −88.7550 −2.83229
\(983\) 33.8445 1.07947 0.539736 0.841835i \(-0.318524\pi\)
0.539736 + 0.841835i \(0.318524\pi\)
\(984\) 94.3861 3.00892
\(985\) 0 0
\(986\) −19.0847 −0.607781
\(987\) −5.43126 −0.172879
\(988\) −143.494 −4.56515
\(989\) −46.3698 −1.47447
\(990\) 0 0
\(991\) −32.8709 −1.04418 −0.522089 0.852891i \(-0.674847\pi\)
−0.522089 + 0.852891i \(0.674847\pi\)
\(992\) 14.9997 0.476241
\(993\) −18.3691 −0.582927
\(994\) −26.3680 −0.836341
\(995\) 0 0
\(996\) 0.00813542 0.000257781 0
\(997\) 17.3006 0.547915 0.273958 0.961742i \(-0.411667\pi\)
0.273958 + 0.961742i \(0.411667\pi\)
\(998\) 22.0996 0.699551
\(999\) 2.87265 0.0908867
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8925.2.a.cu.1.1 14
5.2 odd 4 1785.2.g.g.1429.1 28
5.3 odd 4 1785.2.g.g.1429.28 yes 28
5.4 even 2 8925.2.a.cx.1.14 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.g.g.1429.1 28 5.2 odd 4
1785.2.g.g.1429.28 yes 28 5.3 odd 4
8925.2.a.cu.1.1 14 1.1 even 1 trivial
8925.2.a.cx.1.14 14 5.4 even 2