Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1792,2,Mod(897,1792)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1792, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1792.897");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1792 = 2^{8} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1792.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(14.3091920422\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 14) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 897.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1792.897 |
Dual form | 1792.2.b.g.897.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1792\mathbb{Z}\right)^\times\).
\(n\) | \(1023\) | \(1025\) | \(1541\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | − 2.00000i | − 1.15470i | −0.816497 | − | 0.577350i | \(-0.804087\pi\) | ||||
0.816497 | − | 0.577350i | \(-0.195913\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 1.00000 | 0.377964 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −1.00000 | −0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 4.00000i | 1.10940i | 0.832050 | + | 0.554700i | \(0.187167\pi\) | ||||
−0.832050 | + | 0.554700i | \(0.812833\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000 | 1.45521 | 0.727607 | − | 0.685994i | \(-0.240633\pi\) | ||||
0.727607 | + | 0.685994i | \(0.240633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 2.00000i | 0.458831i | 0.973329 | + | 0.229416i | \(0.0736815\pi\) | ||||
−0.973329 | + | 0.229416i | \(0.926318\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | − 2.00000i | − 0.436436i | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 5.00000 | 1.00000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | − 4.00000i | − 0.769800i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000i | 1.11417i | 0.830455 | + | 0.557086i | \(0.188081\pi\) | ||||
−0.830455 | + | 0.557086i | \(0.811919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 4.00000 | 0.718421 | 0.359211 | − | 0.933257i | \(-0.383046\pi\) | ||||
0.359211 | + | 0.933257i | \(0.383046\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.00000i | 0.328798i | 0.986394 | + | 0.164399i | \(0.0525685\pi\) | ||||
−0.986394 | + | 0.164399i | \(0.947432\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 8.00000 | 1.28103 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −6.00000 | −0.937043 | −0.468521 | − | 0.883452i | \(-0.655213\pi\) | ||||
−0.468521 | + | 0.883452i | \(0.655213\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 8.00000i | − 1.21999i | −0.792406 | − | 0.609994i | \(-0.791172\pi\) | ||||
0.792406 | − | 0.609994i | \(-0.208828\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 12.0000 | 1.75038 | 0.875190 | − | 0.483779i | \(-0.160736\pi\) | ||||
0.875190 | + | 0.483779i | \(0.160736\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 1.00000 | 0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | − 12.0000i | − 1.68034i | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 6.00000i | 0.824163i | 0.911147 | + | 0.412082i | \(0.135198\pi\) | ||||
−0.911147 | + | 0.412082i | \(0.864802\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 4.00000 | 0.529813 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 6.00000i | 0.781133i | 0.920575 | + | 0.390567i | \(0.127721\pi\) | ||||
−0.920575 | + | 0.390567i | \(0.872279\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | − 8.00000i | − 1.02430i | −0.858898 | − | 0.512148i | \(-0.828850\pi\) | ||||
0.858898 | − | 0.512148i | \(-0.171150\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | −1.00000 | −0.125988 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 4.00000i | − 0.488678i | −0.969690 | − | 0.244339i | \(-0.921429\pi\) | ||||
0.969690 | − | 0.244339i | \(-0.0785709\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −2.00000 | −0.234082 | −0.117041 | − | 0.993127i | \(-0.537341\pi\) | ||||
−0.117041 | + | 0.993127i | \(0.537341\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | − 10.0000i | − 1.15470i | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −8.00000 | −0.900070 | −0.450035 | − | 0.893011i | \(-0.648589\pi\) | ||||
−0.450035 | + | 0.893011i | \(0.648589\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | −11.0000 | −1.22222 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 6.00000i | − 0.658586i | −0.944228 | − | 0.329293i | \(-0.893190\pi\) | ||||
0.944228 | − | 0.329293i | \(-0.106810\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 12.0000 | 1.28654 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 6.00000 | 0.635999 | 0.317999 | − | 0.948091i | \(-0.396989\pi\) | ||||
0.317999 | + | 0.948091i | \(0.396989\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 4.00000i | 0.419314i | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | − 8.00000i | − 0.829561i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −10.0000 | −1.01535 | −0.507673 | − | 0.861550i | \(-0.669494\pi\) | ||||
−0.507673 | + | 0.861550i | \(0.669494\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −4.00000 | −0.394132 | −0.197066 | − | 0.980390i | \(-0.563141\pi\) | ||||
−0.197066 | + | 0.980390i | \(0.563141\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 12.0000i | − 1.16008i | −0.814587 | − | 0.580042i | \(-0.803036\pi\) | ||||
0.814587 | − | 0.580042i | \(-0.196964\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | − 2.00000i | − 0.191565i | −0.995402 | − | 0.0957826i | \(-0.969465\pi\) | ||||
0.995402 | − | 0.0957826i | \(-0.0305354\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 4.00000 | 0.379663 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 6.00000 | 0.564433 | 0.282216 | − | 0.959351i | \(-0.408930\pi\) | ||||
0.282216 | + | 0.959351i | \(0.408930\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | − 4.00000i | − 0.369800i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 6.00000 | 0.550019 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 11.0000 | 1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 12.0000i | 1.08200i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 16.0000 | 1.41977 | 0.709885 | − | 0.704317i | \(-0.248747\pi\) | ||||
0.709885 | + | 0.704317i | \(0.248747\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | −16.0000 | −1.40872 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 18.0000i | 1.57267i | 0.617802 | + | 0.786334i | \(0.288023\pi\) | ||||
−0.617802 | + | 0.786334i | \(0.711977\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 2.00000i | 0.173422i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −18.0000 | −1.53784 | −0.768922 | − | 0.639343i | \(-0.779207\pi\) | ||||
−0.768922 | + | 0.639343i | \(0.779207\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | − 14.0000i | − 1.18746i | −0.804663 | − | 0.593732i | \(-0.797654\pi\) | ||||
0.804663 | − | 0.593732i | \(-0.202346\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | − 24.0000i | − 2.02116i | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | − 2.00000i | − 0.164957i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | − 18.0000i | − 1.47462i | −0.675556 | − | 0.737309i | \(-0.736096\pi\) | ||||
0.675556 | − | 0.737309i | \(-0.263904\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 8.00000 | 0.651031 | 0.325515 | − | 0.945537i | \(-0.394462\pi\) | ||||
0.325515 | + | 0.945537i | \(0.394462\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | −6.00000 | −0.485071 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 4.00000i | 0.319235i | 0.987179 | + | 0.159617i | \(0.0510260\pi\) | ||||
−0.987179 | + | 0.159617i | \(0.948974\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 12.0000 | 0.951662 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 16.0000i | − 1.25322i | −0.779334 | − | 0.626608i | \(-0.784443\pi\) | ||||
0.779334 | − | 0.626608i | \(-0.215557\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −12.0000 | −0.928588 | −0.464294 | − | 0.885681i | \(-0.653692\pi\) | ||||
−0.464294 | + | 0.885681i | \(0.653692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −3.00000 | −0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | − 2.00000i | − 0.152944i | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 12.0000i | 0.912343i | 0.889892 | + | 0.456172i | \(0.150780\pi\) | ||||
−0.889892 | + | 0.456172i | \(0.849220\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 5.00000 | 0.377964 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 12.0000 | 0.901975 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | − 12.0000i | − 0.896922i | −0.893802 | − | 0.448461i | \(-0.851972\pi\) | ||||
0.893802 | − | 0.448461i | \(-0.148028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 20.0000i | 1.48659i | 0.668965 | + | 0.743294i | \(0.266738\pi\) | ||||
−0.668965 | + | 0.743294i | \(0.733262\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | −16.0000 | −1.18275 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | − 4.00000i | − 0.290957i | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −24.0000 | −1.73658 | −0.868290 | − | 0.496058i | \(-0.834780\pi\) | ||||
−0.868290 | + | 0.496058i | \(0.834780\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 14.0000 | 1.00774 | 0.503871 | − | 0.863779i | \(-0.331909\pi\) | ||||
0.503871 | + | 0.863779i | \(0.331909\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 18.0000i | − 1.28245i | −0.767354 | − | 0.641223i | \(-0.778427\pi\) | ||||
0.767354 | − | 0.641223i | \(-0.221573\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 20.0000 | 1.41776 | 0.708881 | − | 0.705328i | \(-0.249200\pi\) | ||||
0.708881 | + | 0.705328i | \(0.249200\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | −8.00000 | −0.564276 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 6.00000i | 0.421117i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | − 4.00000i | − 0.275371i | −0.990476 | − | 0.137686i | \(-0.956034\pi\) | ||||
0.990476 | − | 0.137686i | \(-0.0439664\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 4.00000 | 0.271538 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 4.00000i | 0.270295i | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 24.0000i | 1.61441i | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −8.00000 | −0.535720 | −0.267860 | − | 0.963458i | \(-0.586316\pi\) | ||||
−0.267860 | + | 0.963458i | \(0.586316\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | −5.00000 | −0.333333 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 18.0000i | 1.19470i | 0.801980 | + | 0.597351i | \(0.203780\pi\) | ||||
−0.801980 | + | 0.597351i | \(0.796220\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | − 4.00000i | − 0.264327i | −0.991228 | − | 0.132164i | \(-0.957808\pi\) | ||||
0.991228 | − | 0.132164i | \(-0.0421925\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 6.00000 | 0.393073 | 0.196537 | − | 0.980497i | \(-0.437031\pi\) | ||||
0.196537 | + | 0.980497i | \(0.437031\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 16.0000i | 1.03931i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −24.0000 | −1.55243 | −0.776215 | − | 0.630468i | \(-0.782863\pi\) | ||||
−0.776215 | + | 0.630468i | \(0.782863\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −10.0000 | −0.644157 | −0.322078 | − | 0.946713i | \(-0.604381\pi\) | ||||
−0.322078 | + | 0.946713i | \(0.604381\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 10.0000i | 0.641500i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −8.00000 | −0.509028 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | −12.0000 | −0.760469 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 18.0000i | 1.13615i | 0.822977 | + | 0.568075i | \(0.192312\pi\) | ||||
−0.822977 | + | 0.568075i | \(0.807688\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 18.0000 | 1.12281 | 0.561405 | − | 0.827541i | \(-0.310261\pi\) | ||||
0.561405 | + | 0.827541i | \(0.310261\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 2.00000i | 0.124274i | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | − 6.00000i | − 0.371391i | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | − 12.0000i | − 0.734388i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 12.0000i | 0.731653i | 0.930683 | + | 0.365826i | \(0.119214\pi\) | ||||
−0.930683 | + | 0.365826i | \(0.880786\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 16.0000 | 0.971931 | 0.485965 | − | 0.873978i | \(-0.338468\pi\) | ||||
0.485965 | + | 0.873978i | \(0.338468\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 8.00000 | 0.484182 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 10.0000i | − 0.600842i | −0.953807 | − | 0.300421i | \(-0.902873\pi\) | ||||
0.953807 | − | 0.300421i | \(-0.0971271\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | −4.00000 | −0.239474 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 6.00000 | 0.357930 | 0.178965 | − | 0.983855i | \(-0.442725\pi\) | ||||
0.178965 | + | 0.983855i | \(0.442725\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 22.0000i | 1.30776i | 0.756596 | + | 0.653882i | \(0.226861\pi\) | ||||
−0.756596 | + | 0.653882i | \(0.773139\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −6.00000 | −0.354169 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 19.0000 | 1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 20.0000i | 1.17242i | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 24.0000i | 1.40209i | 0.713115 | + | 0.701047i | \(0.247284\pi\) | ||||
−0.713115 | + | 0.701047i | \(0.752716\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | − 8.00000i | − 0.461112i | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 2.00000i | 0.114146i | 0.998370 | + | 0.0570730i | \(0.0181768\pi\) | ||||
−0.998370 | + | 0.0570730i | \(0.981823\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 8.00000i | 0.455104i | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −24.0000 | −1.36092 | −0.680458 | − | 0.732787i | \(-0.738219\pi\) | ||||
−0.680458 | + | 0.732787i | \(0.738219\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 10.0000 | 0.565233 | 0.282617 | − | 0.959233i | \(-0.408798\pi\) | ||||
0.282617 | + | 0.959233i | \(0.408798\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 6.00000i | − 0.336994i | −0.985702 | − | 0.168497i | \(-0.946109\pi\) | ||||
0.985702 | − | 0.168497i | \(-0.0538913\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | −24.0000 | −1.33955 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 12.0000i | 0.667698i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 20.0000i | 1.10940i | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | −4.00000 | −0.221201 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 12.0000 | 0.661581 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | − 8.00000i | − 0.439720i | −0.975531 | − | 0.219860i | \(-0.929440\pi\) | ||||
0.975531 | − | 0.219860i | \(-0.0705600\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | − 2.00000i | − 0.109599i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 14.0000 | 0.762629 | 0.381314 | − | 0.924445i | \(-0.375472\pi\) | ||||
0.381314 | + | 0.924445i | \(0.375472\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | − 12.0000i | − 0.651751i | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 1.00000 | 0.0539949 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 24.0000i | 1.28839i | 0.764862 | + | 0.644194i | \(0.222807\pi\) | ||||
−0.764862 | + | 0.644194i | \(0.777193\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 28.0000i | 1.49881i | 0.662114 | + | 0.749403i | \(0.269659\pi\) | ||||
−0.662114 | + | 0.749403i | \(0.730341\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 16.0000 | 0.854017 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 18.0000 | 0.958043 | 0.479022 | − | 0.877803i | \(-0.340992\pi\) | ||||
0.479022 | + | 0.877803i | \(0.340992\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | − 12.0000i | − 0.635107i | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −24.0000 | −1.26667 | −0.633336 | − | 0.773877i | \(-0.718315\pi\) | ||||
−0.633336 | + | 0.773877i | \(0.718315\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 15.0000 | 0.789474 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | − 22.0000i | − 1.15470i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −8.00000 | −0.417597 | −0.208798 | − | 0.977959i | \(-0.566955\pi\) | ||||
−0.208798 | + | 0.977959i | \(0.566955\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 6.00000 | 0.312348 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 6.00000i | 0.311504i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 14.0000i | 0.724893i | 0.932005 | + | 0.362446i | \(0.118058\pi\) | ||||
−0.932005 | + | 0.362446i | \(0.881942\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −24.0000 | −1.23606 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 16.0000i | 0.821865i | 0.911666 | + | 0.410932i | \(0.134797\pi\) | ||||
−0.911666 | + | 0.410932i | \(0.865203\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | − 32.0000i | − 1.63941i | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −36.0000 | −1.83951 | −0.919757 | − | 0.392488i | \(-0.871614\pi\) | ||||
−0.919757 | + | 0.392488i | \(0.871614\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 8.00000i | 0.406663i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 18.0000i | 0.912636i | 0.889817 | + | 0.456318i | \(0.150832\pi\) | ||||
−0.889817 | + | 0.456318i | \(0.849168\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 36.0000 | 1.81596 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 20.0000i | − 1.00377i | −0.864934 | − | 0.501886i | \(-0.832640\pi\) | ||||
0.864934 | − | 0.501886i | \(-0.167360\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 4.00000 | 0.200250 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −18.0000 | −0.898877 | −0.449439 | − | 0.893311i | \(-0.648376\pi\) | ||||
−0.449439 | + | 0.893311i | \(0.648376\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 16.0000i | 0.797017i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −14.0000 | −0.692255 | −0.346128 | − | 0.938187i | \(-0.612504\pi\) | ||||
−0.346128 | + | 0.938187i | \(0.612504\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 36.0000i | 1.77575i | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 6.00000i | 0.295241i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | −28.0000 | −1.37117 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 6.00000i | 0.293119i | 0.989202 | + | 0.146560i | \(0.0468200\pi\) | ||||
−0.989202 | + | 0.146560i | \(0.953180\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | − 10.0000i | − 0.487370i | −0.969854 | − | 0.243685i | \(-0.921644\pi\) | ||||
0.969854 | − | 0.243685i | \(-0.0783563\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | −12.0000 | −0.583460 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 30.0000 | 1.45521 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 8.00000i | − 0.387147i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −24.0000 | −1.15604 | −0.578020 | − | 0.816023i | \(-0.696174\pi\) | ||||
−0.578020 | + | 0.816023i | \(0.696174\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −34.0000 | −1.63394 | −0.816968 | − | 0.576683i | \(-0.804347\pi\) | ||||
−0.816968 | + | 0.576683i | \(0.804347\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 8.00000 | 0.381819 | 0.190910 | − | 0.981608i | \(-0.438856\pi\) | ||||
0.190910 | + | 0.981608i | \(0.438856\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −1.00000 | −0.0476190 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 12.0000i | 0.570137i | 0.958507 | + | 0.285069i | \(0.0920164\pi\) | ||||
−0.958507 | + | 0.285069i | \(0.907984\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | −36.0000 | −1.70274 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 18.0000 | 0.849473 | 0.424736 | − | 0.905317i | \(-0.360367\pi\) | ||||
0.424736 | + | 0.905317i | \(0.360367\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | − 16.0000i | − 0.751746i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 10.0000 | 0.467780 | 0.233890 | − | 0.972263i | \(-0.424854\pi\) | ||||
0.233890 | + | 0.972263i | \(0.424854\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | − 24.0000i | − 1.12022i | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | − 12.0000i | − 0.558896i | −0.960161 | − | 0.279448i | \(-0.909849\pi\) | ||||
0.960161 | − | 0.279448i | \(-0.0901514\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −32.0000 | −1.48717 | −0.743583 | − | 0.668644i | \(-0.766875\pi\) | ||||
−0.743583 | + | 0.668644i | \(0.766875\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 6.00000i | − 0.277647i | −0.990317 | − | 0.138823i | \(-0.955668\pi\) | ||||
0.990317 | − | 0.138823i | \(-0.0443321\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | − 4.00000i | − 0.184703i | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 8.00000 | 0.368621 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 10.0000i | 0.458831i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | − 6.00000i | − 0.274721i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 36.0000 | 1.64488 | 0.822441 | − | 0.568850i | \(-0.192612\pi\) | ||||
0.822441 | + | 0.568850i | \(0.192612\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −8.00000 | −0.364769 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −16.0000 | −0.725029 | −0.362515 | − | 0.931978i | \(-0.618082\pi\) | ||||
−0.362515 | + | 0.931978i | \(0.618082\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −32.0000 | −1.44709 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 12.0000i | 0.541552i | 0.962642 | + | 0.270776i | \(0.0872803\pi\) | ||||
−0.962642 | + | 0.270776i | \(0.912720\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 36.0000i | 1.62136i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − 4.00000i | − 0.179065i | −0.995984 | − | 0.0895323i | \(-0.971463\pi\) | ||||
0.995984 | − | 0.0895323i | \(-0.0285372\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 24.0000i | 1.07224i | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 6.00000i | 0.266469i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − 36.0000i | − 1.59567i | −0.602875 | − | 0.797836i | \(-0.705978\pi\) | ||||
0.602875 | − | 0.797836i | \(-0.294022\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −2.00000 | −0.0884748 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 8.00000 | 0.353209 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 24.0000 | 1.05348 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −6.00000 | −0.262865 | −0.131432 | − | 0.991325i | \(-0.541958\pi\) | ||||
−0.131432 | + | 0.991325i | \(0.541958\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 2.00000i | − 0.0874539i | −0.999044 | − | 0.0437269i | \(-0.986077\pi\) | ||||
0.999044 | − | 0.0437269i | \(-0.0139232\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | − 10.0000i | − 0.436436i | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 24.0000 | 1.04546 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −23.0000 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | − 6.00000i | − 0.260378i | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 24.0000i | − 1.03956i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | −24.0000 | −1.03568 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | − 38.0000i | − 1.63375i | −0.576816 | − | 0.816874i | \(-0.695705\pi\) | ||||
0.576816 | − | 0.816874i | \(-0.304295\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 40.0000 | 1.71656 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 8.00000i | 0.342055i | 0.985266 | + | 0.171028i | \(0.0547087\pi\) | ||||
−0.985266 | + | 0.171028i | \(0.945291\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 8.00000i | 0.341432i | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −12.0000 | −0.511217 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −8.00000 | −0.340195 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 6.00000i | − 0.254228i | −0.991888 | − | 0.127114i | \(-0.959429\pi\) | ||||
0.991888 | − | 0.127114i | \(-0.0405714\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 32.0000 | 1.35346 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 30.0000i | 1.26435i | 0.774826 | + | 0.632175i | \(0.217837\pi\) | ||||
−0.774826 | + | 0.632175i | \(0.782163\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | −11.0000 | −0.461957 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −6.00000 | −0.251533 | −0.125767 | − | 0.992060i | \(-0.540139\pi\) | ||||
−0.125767 | + | 0.992060i | \(0.540139\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | − 32.0000i | − 1.33916i | −0.742741 | − | 0.669579i | \(-0.766474\pi\) | ||||
0.742741 | − | 0.669579i | \(-0.233526\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 48.0000i | 2.00523i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 2.00000 | 0.0832611 | 0.0416305 | − | 0.999133i | \(-0.486745\pi\) | ||||
0.0416305 | + | 0.999133i | \(0.486745\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | − 28.0000i | − 1.16364i | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | − 6.00000i | − 0.248922i | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 42.0000i | 1.73353i | 0.498721 | + | 0.866763i | \(0.333803\pi\) | ||||
−0.498721 | + | 0.866763i | \(0.666197\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 8.00000i | 0.329634i | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | −36.0000 | −1.48084 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −6.00000 | −0.246390 | −0.123195 | − | 0.992382i | \(-0.539314\pi\) | ||||
−0.123195 | + | 0.992382i | \(0.539314\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | − 40.0000i | − 1.63709i | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −24.0000 | −0.980613 | −0.490307 | − | 0.871550i | \(-0.663115\pi\) | ||||
−0.490307 | + | 0.871550i | \(0.663115\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −26.0000 | −1.06056 | −0.530281 | − | 0.847822i | \(-0.677914\pi\) | ||||
−0.530281 | + | 0.847822i | \(0.677914\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 4.00000i | 0.162893i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −32.0000 | −1.29884 | −0.649420 | − | 0.760430i | \(-0.724988\pi\) | ||||
−0.649420 | + | 0.760430i | \(0.724988\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 12.0000 | 0.486265 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 48.0000i | 1.94187i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 2.00000i | 0.0807792i | 0.999184 | + | 0.0403896i | \(0.0128599\pi\) | ||||
−0.999184 | + | 0.0403896i | \(0.987140\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −6.00000 | −0.241551 | −0.120775 | − | 0.992680i | \(-0.538538\pi\) | ||||
−0.120775 | + | 0.992680i | \(0.538538\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − 26.0000i | − 1.04503i | −0.852631 | − | 0.522514i | \(-0.824994\pi\) | ||||
0.852631 | − | 0.522514i | \(-0.175006\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 6.00000 | 0.240385 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 25.0000 | 1.00000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 12.0000i | 0.478471i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −16.0000 | −0.636950 | −0.318475 | − | 0.947931i | \(-0.603171\pi\) | ||||
−0.318475 | + | 0.947931i | \(0.603171\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | −8.00000 | −0.317971 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 4.00000i | 0.158486i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −18.0000 | −0.710957 | −0.355479 | − | 0.934684i | \(-0.615682\pi\) | ||||
−0.355479 | + | 0.934684i | \(0.615682\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 14.0000i | 0.552106i | 0.961142 | + | 0.276053i | \(0.0890266\pi\) | ||||
−0.961142 | + | 0.276053i | \(0.910973\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −12.0000 | −0.471769 | −0.235884 | − | 0.971781i | \(-0.575799\pi\) | ||||
−0.235884 | + | 0.971781i | \(0.575799\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | − 8.00000i | − 0.313545i | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 18.0000i | − 0.704394i | −0.935926 | − | 0.352197i | \(-0.885435\pi\) | ||||
0.935926 | − | 0.352197i | \(-0.114565\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 2.00000 | 0.0780274 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | − 24.0000i | − 0.934907i | −0.884018 | − | 0.467454i | \(-0.845171\pi\) | ||||
0.884018 | − | 0.467454i | \(-0.154829\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | − 40.0000i | − 1.55582i | −0.628376 | − | 0.777910i | \(-0.716280\pi\) | ||||
0.628376 | − | 0.777910i | \(-0.283720\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 48.0000 | 1.86417 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 16.0000i | 0.618596i | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 26.0000 | 1.00223 | 0.501113 | − | 0.865382i | \(-0.332924\pi\) | ||||
0.501113 | + | 0.865382i | \(0.332924\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | − 20.0000i | − 0.769800i | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 12.0000i | − 0.461197i | −0.973049 | − | 0.230599i | \(-0.925932\pi\) | ||||
0.973049 | − | 0.230599i | \(-0.0740685\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −10.0000 | −0.383765 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 36.0000 | 1.37952 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 12.0000i | 0.459167i | 0.973289 | + | 0.229584i | \(0.0737364\pi\) | ||||
−0.973289 | + | 0.229584i | \(0.926264\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | −8.00000 | −0.305219 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −24.0000 | −0.914327 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − 46.0000i | − 1.74992i | −0.484193 | − | 0.874961i | \(-0.660887\pi\) | ||||
0.484193 | − | 0.874961i | \(-0.339113\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −36.0000 | −1.36360 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | − 12.0000i | − 0.453882i | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | − 18.0000i | − 0.679851i | −0.940452 | − | 0.339925i | \(-0.889598\pi\) | ||||
0.940452 | − | 0.339925i | \(-0.110402\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −4.00000 | −0.150863 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − 46.0000i | − 1.72757i | −0.503864 | − | 0.863783i | \(-0.668089\pi\) | ||||
0.503864 | − | 0.863783i | \(-0.331911\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 8.00000 | 0.300023 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 48.0000i | 1.79259i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −12.0000 | −0.447524 | −0.223762 | − | 0.974644i | \(-0.571834\pi\) | ||||
−0.223762 | + | 0.974644i | \(0.571834\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −4.00000 | −0.148968 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 20.0000i | 0.743808i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 30.0000i | 1.11417i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 44.0000 | 1.63187 | 0.815935 | − | 0.578144i | \(-0.196223\pi\) | ||||
0.815935 | + | 0.578144i | \(0.196223\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −13.0000 | −0.481481 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | − 48.0000i | − 1.77534i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 40.0000i | 1.47743i | 0.674016 | + | 0.738717i | \(0.264568\pi\) | ||||
−0.674016 | + | 0.738717i | \(0.735432\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − 16.0000i | − 0.588570i | −0.955718 | − | 0.294285i | \(-0.904919\pi\) | ||||
0.955718 | − | 0.294285i | \(-0.0950814\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 16.0000i | 0.587775i | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 24.0000 | 0.880475 | 0.440237 | − | 0.897881i | \(-0.354894\pi\) | ||||
0.440237 | + | 0.897881i | \(0.354894\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 6.00000i | 0.219529i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | − 12.0000i | − 0.438470i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 40.0000 | 1.45962 | 0.729810 | − | 0.683650i | \(-0.239608\pi\) | ||||
0.729810 | + | 0.683650i | \(0.239608\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 36.0000 | 1.31191 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 2.00000i | 0.0726912i | 0.999339 | + | 0.0363456i | \(0.0115717\pi\) | ||||
−0.999339 | + | 0.0363456i | \(0.988428\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 18.0000 | 0.652499 | 0.326250 | − | 0.945284i | \(-0.394215\pi\) | ||||
0.326250 | + | 0.945284i | \(0.394215\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 2.00000i | − 0.0724049i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −24.0000 | −0.866590 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 14.0000 | 0.504853 | 0.252426 | − | 0.967616i | \(-0.418771\pi\) | ||||
0.252426 | + | 0.967616i | \(0.418771\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | − 36.0000i | − 1.29651i | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 24.0000i | 0.863220i | 0.902060 | + | 0.431610i | \(0.142054\pi\) | ||||
−0.902060 | + | 0.431610i | \(0.857946\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 20.0000 | 0.718421 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 4.00000 | 0.143499 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | − 12.0000i | − 0.429945i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 24.0000 | 0.857690 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 22.0000i | − 0.784215i | −0.919919 | − | 0.392108i | \(-0.871746\pi\) | ||||
0.919919 | − | 0.392108i | \(-0.128254\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 6.00000 | 0.213335 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 32.0000 | 1.13635 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 12.0000i | 0.425062i | 0.977154 | + | 0.212531i | \(0.0681706\pi\) | ||||
−0.977154 | + | 0.212531i | \(0.931829\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 72.0000 | 2.54718 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | −6.00000 | −0.212000 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 24.0000 | 0.844840 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −6.00000 | −0.210949 | −0.105474 | − | 0.994422i | \(-0.533636\pi\) | ||||
−0.105474 | + | 0.994422i | \(0.533636\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − 2.00000i | − 0.0702295i | −0.999383 | − | 0.0351147i | \(-0.988820\pi\) | ||||
0.999383 | − | 0.0351147i | \(-0.0111797\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | − 32.0000i | − 1.12229i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 16.0000 | 0.559769 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | − 4.00000i | − 0.139771i | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 6.00000i | 0.209401i | 0.994504 | + | 0.104701i | \(0.0333885\pi\) | ||||
−0.994504 | + | 0.104701i | \(0.966612\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −40.0000 | −1.39431 | −0.697156 | − | 0.716919i | \(-0.745552\pi\) | ||||
−0.697156 | + | 0.716919i | \(0.745552\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 36.0000i | 1.25184i | 0.779886 | + | 0.625921i | \(0.215277\pi\) | ||||
−0.779886 | + | 0.625921i | \(0.784723\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | − 56.0000i | − 1.94496i | −0.232986 | − | 0.972480i | \(-0.574849\pi\) | ||||
0.232986 | − | 0.972480i | \(-0.425151\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | −20.0000 | −0.693792 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 6.00000 | 0.207888 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | − 16.0000i | − 0.553041i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 12.0000 | 0.414286 | 0.207143 | − | 0.978311i | \(-0.433583\pi\) | ||||
0.207143 | + | 0.978311i | \(0.433583\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −7.00000 | −0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | − 12.0000i | − 0.413302i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 11.0000 | 0.377964 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 44.0000 | 1.51008 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 44.0000i | 1.50653i | 0.657716 | + | 0.753266i | \(0.271523\pi\) | ||||
−0.657716 | + | 0.753266i | \(0.728477\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 18.0000 | 0.614868 | 0.307434 | − | 0.951569i | \(-0.400530\pi\) | ||||
0.307434 | + | 0.951569i | \(0.400530\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − 14.0000i | − 0.477674i | −0.971060 | − | 0.238837i | \(-0.923234\pi\) | ||||
0.971060 | − | 0.238837i | \(-0.0767661\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 12.0000i | 0.408959i | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 24.0000 | 0.816970 | 0.408485 | − | 0.912765i | \(-0.366057\pi\) | ||||
0.408485 | + | 0.912765i | \(0.366057\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | − 38.0000i | − 1.29055i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 16.0000 | 0.542139 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 10.0000 | 0.338449 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 22.0000i | 0.742887i | 0.928456 | + | 0.371444i | \(0.121137\pi\) | ||||
−0.928456 | + | 0.371444i | \(0.878863\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 48.0000 | 1.61900 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −54.0000 | −1.81931 | −0.909653 | − | 0.415369i | \(-0.863653\pi\) | ||||
−0.909653 | + | 0.415369i | \(0.863653\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 20.0000i | 0.673054i | 0.941674 | + | 0.336527i | \(0.109252\pi\) | ||||
−0.941674 | + | 0.336527i | \(0.890748\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −36.0000 | −1.20876 | −0.604381 | − | 0.796696i | \(-0.706579\pi\) | ||||
−0.604381 | + | 0.796696i | \(0.706579\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 16.0000 | 0.536623 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 24.0000i | 0.803129i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 24.0000i | 0.800445i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 36.0000i | 1.19933i | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | −16.0000 | −0.532447 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 44.0000i | − 1.46100i | −0.682915 | − | 0.730498i | \(-0.739288\pi\) | ||||
0.682915 | − | 0.730498i | \(-0.260712\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −48.0000 | −1.59031 | −0.795155 | − | 0.606406i | \(-0.792611\pi\) | ||||
−0.795155 | + | 0.606406i | \(0.792611\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 18.0000i | 0.594412i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 56.0000 | 1.84727 | 0.923635 | − | 0.383274i | \(-0.125203\pi\) | ||||
0.923635 | + | 0.383274i | \(0.125203\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 4.00000 | 0.131804 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 10.0000i | 0.328798i | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 4.00000 | 0.131377 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 6.00000 | 0.196854 | 0.0984268 | − | 0.995144i | \(-0.468619\pi\) | ||||
0.0984268 | + | 0.995144i | \(0.468619\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 2.00000i | 0.0655474i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 48.0000i | 1.57145i | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −2.00000 | −0.0653372 | −0.0326686 | − | 0.999466i | \(-0.510401\pi\) | ||||
−0.0326686 | + | 0.999466i | \(0.510401\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | − 20.0000i | − 0.652675i | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 24.0000i | 0.782378i | 0.920310 | + | 0.391189i | \(0.127936\pi\) | ||||
−0.920310 | + | 0.391189i | \(0.872064\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 24.0000i | 0.779895i | 0.920837 | + | 0.389948i | \(0.127507\pi\) | ||||
−0.920837 | + | 0.389948i | \(0.872493\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | − 8.00000i | − 0.259691i | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | −12.0000 | −0.389127 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 54.0000 | 1.74923 | 0.874616 | − | 0.484817i | \(-0.161114\pi\) | ||||
0.874616 | + | 0.484817i | \(0.161114\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −18.0000 | −0.581250 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 12.0000i | 0.386695i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 32.0000 | 1.02905 | 0.514525 | − | 0.857475i | \(-0.327968\pi\) | ||||
0.514525 | + | 0.857475i | \(0.327968\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 24.0000 | 0.770991 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 6.00000i | 0.192549i | 0.995355 | + | 0.0962746i | \(0.0306927\pi\) | ||||
−0.995355 | + | 0.0962746i | \(0.969307\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 14.0000i | − 0.448819i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 40.0000 | 1.28103 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −6.00000 | −0.191957 | −0.0959785 | − | 0.995383i | \(-0.530598\pi\) | ||||
−0.0959785 | + | 0.995383i | \(0.530598\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 2.00000i | 0.0638551i | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −36.0000 | −1.14822 | −0.574111 | − | 0.818778i | \(-0.694652\pi\) | ||||
−0.574111 | + | 0.818778i | \(0.694652\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | − 24.0000i | − 0.763928i | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 16.0000 | 0.508257 | 0.254128 | − | 0.967170i | \(-0.418211\pi\) | ||||
0.254128 | + | 0.967170i | \(0.418211\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | −16.0000 | −0.507745 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 8.00000i | 0.253363i | 0.991943 | + | 0.126681i | \(0.0404325\pi\) | ||||
−0.991943 | + | 0.126681i | \(0.959567\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 8.00000 | 0.253109 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))