Properties

Label 1792.4.a.c.1.1
Level $1792$
Weight $4$
Character 1792.1
Self dual yes
Analytic conductor $105.731$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1792,4,Mod(1,1792)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1792, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1792.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1792 = 2^{8} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1792.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.731422730\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 448)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 1792.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.66025 q^{3} -22.1962 q^{5} -7.00000 q^{7} +31.6795 q^{9} -40.1051 q^{11} -14.4833 q^{13} +170.028 q^{15} -111.569 q^{17} -117.804 q^{19} +53.6218 q^{21} +119.751 q^{23} +367.669 q^{25} -35.8461 q^{27} -92.8897 q^{29} -181.569 q^{31} +307.215 q^{33} +155.373 q^{35} +247.090 q^{37} +110.946 q^{39} -58.1333 q^{41} +249.885 q^{43} -703.163 q^{45} +101.913 q^{47} +49.0000 q^{49} +854.649 q^{51} -570.697 q^{53} +890.179 q^{55} +902.407 q^{57} +277.391 q^{59} +82.9526 q^{61} -221.756 q^{63} +321.474 q^{65} +397.969 q^{67} -917.325 q^{69} +6.22055 q^{71} +209.769 q^{73} -2816.44 q^{75} +280.736 q^{77} +271.902 q^{79} -580.756 q^{81} +1010.28 q^{83} +2476.41 q^{85} +711.559 q^{87} +730.420 q^{89} +101.383 q^{91} +1390.87 q^{93} +2614.79 q^{95} +707.451 q^{97} -1270.51 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 34 q^{5} - 14 q^{7} + 98 q^{9} - 4 q^{11} - 74 q^{13} + 56 q^{15} - 140 q^{17} - 246 q^{19} - 14 q^{21} + 288 q^{23} + 382 q^{25} + 344 q^{27} - 68 q^{29} - 280 q^{31} + 656 q^{33} + 238 q^{35}+ \cdots + 1124 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.66025 −1.47422 −0.737108 0.675775i \(-0.763809\pi\)
−0.737108 + 0.675775i \(0.763809\pi\)
\(4\) 0 0
\(5\) −22.1962 −1.98528 −0.992642 0.121085i \(-0.961363\pi\)
−0.992642 + 0.121085i \(0.961363\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 31.6795 1.17331
\(10\) 0 0
\(11\) −40.1051 −1.09929 −0.549643 0.835400i \(-0.685236\pi\)
−0.549643 + 0.835400i \(0.685236\pi\)
\(12\) 0 0
\(13\) −14.4833 −0.308997 −0.154498 0.987993i \(-0.549376\pi\)
−0.154498 + 0.987993i \(0.549376\pi\)
\(14\) 0 0
\(15\) 170.028 2.92674
\(16\) 0 0
\(17\) −111.569 −1.59174 −0.795868 0.605470i \(-0.792985\pi\)
−0.795868 + 0.605470i \(0.792985\pi\)
\(18\) 0 0
\(19\) −117.804 −1.42242 −0.711212 0.702978i \(-0.751853\pi\)
−0.711212 + 0.702978i \(0.751853\pi\)
\(20\) 0 0
\(21\) 53.6218 0.557201
\(22\) 0 0
\(23\) 119.751 1.08565 0.542823 0.839847i \(-0.317355\pi\)
0.542823 + 0.839847i \(0.317355\pi\)
\(24\) 0 0
\(25\) 367.669 2.94135
\(26\) 0 0
\(27\) −35.8461 −0.255503
\(28\) 0 0
\(29\) −92.8897 −0.594800 −0.297400 0.954753i \(-0.596119\pi\)
−0.297400 + 0.954753i \(0.596119\pi\)
\(30\) 0 0
\(31\) −181.569 −1.05196 −0.525981 0.850497i \(-0.676302\pi\)
−0.525981 + 0.850497i \(0.676302\pi\)
\(32\) 0 0
\(33\) 307.215 1.62059
\(34\) 0 0
\(35\) 155.373 0.750367
\(36\) 0 0
\(37\) 247.090 1.09787 0.548936 0.835864i \(-0.315033\pi\)
0.548936 + 0.835864i \(0.315033\pi\)
\(38\) 0 0
\(39\) 110.946 0.455528
\(40\) 0 0
\(41\) −58.1333 −0.221436 −0.110718 0.993852i \(-0.535315\pi\)
−0.110718 + 0.993852i \(0.535315\pi\)
\(42\) 0 0
\(43\) 249.885 0.886210 0.443105 0.896470i \(-0.353877\pi\)
0.443105 + 0.896470i \(0.353877\pi\)
\(44\) 0 0
\(45\) −703.163 −2.32936
\(46\) 0 0
\(47\) 101.913 0.316287 0.158144 0.987416i \(-0.449449\pi\)
0.158144 + 0.987416i \(0.449449\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 854.649 2.34656
\(52\) 0 0
\(53\) −570.697 −1.47908 −0.739541 0.673112i \(-0.764957\pi\)
−0.739541 + 0.673112i \(0.764957\pi\)
\(54\) 0 0
\(55\) 890.179 2.18240
\(56\) 0 0
\(57\) 902.407 2.09696
\(58\) 0 0
\(59\) 277.391 0.612089 0.306044 0.952017i \(-0.400994\pi\)
0.306044 + 0.952017i \(0.400994\pi\)
\(60\) 0 0
\(61\) 82.9526 0.174115 0.0870573 0.996203i \(-0.472254\pi\)
0.0870573 + 0.996203i \(0.472254\pi\)
\(62\) 0 0
\(63\) −221.756 −0.443471
\(64\) 0 0
\(65\) 321.474 0.613446
\(66\) 0 0
\(67\) 397.969 0.725667 0.362833 0.931854i \(-0.381809\pi\)
0.362833 + 0.931854i \(0.381809\pi\)
\(68\) 0 0
\(69\) −917.325 −1.60048
\(70\) 0 0
\(71\) 6.22055 0.0103978 0.00519889 0.999986i \(-0.498345\pi\)
0.00519889 + 0.999986i \(0.498345\pi\)
\(72\) 0 0
\(73\) 209.769 0.336324 0.168162 0.985759i \(-0.446217\pi\)
0.168162 + 0.985759i \(0.446217\pi\)
\(74\) 0 0
\(75\) −2816.44 −4.33619
\(76\) 0 0
\(77\) 280.736 0.415491
\(78\) 0 0
\(79\) 271.902 0.387233 0.193617 0.981077i \(-0.437978\pi\)
0.193617 + 0.981077i \(0.437978\pi\)
\(80\) 0 0
\(81\) −580.756 −0.796648
\(82\) 0 0
\(83\) 1010.28 1.33606 0.668028 0.744136i \(-0.267138\pi\)
0.668028 + 0.744136i \(0.267138\pi\)
\(84\) 0 0
\(85\) 2476.41 3.16005
\(86\) 0 0
\(87\) 711.559 0.876863
\(88\) 0 0
\(89\) 730.420 0.869937 0.434969 0.900446i \(-0.356759\pi\)
0.434969 + 0.900446i \(0.356759\pi\)
\(90\) 0 0
\(91\) 101.383 0.116790
\(92\) 0 0
\(93\) 1390.87 1.55082
\(94\) 0 0
\(95\) 2614.79 2.82392
\(96\) 0 0
\(97\) 707.451 0.740523 0.370262 0.928927i \(-0.379268\pi\)
0.370262 + 0.928927i \(0.379268\pi\)
\(98\) 0 0
\(99\) −1270.51 −1.28981
\(100\) 0 0
\(101\) −596.558 −0.587720 −0.293860 0.955849i \(-0.594940\pi\)
−0.293860 + 0.955849i \(0.594940\pi\)
\(102\) 0 0
\(103\) 539.959 0.516541 0.258270 0.966073i \(-0.416847\pi\)
0.258270 + 0.966073i \(0.416847\pi\)
\(104\) 0 0
\(105\) −1190.20 −1.10620
\(106\) 0 0
\(107\) 660.497 0.596754 0.298377 0.954448i \(-0.403555\pi\)
0.298377 + 0.954448i \(0.403555\pi\)
\(108\) 0 0
\(109\) 234.157 0.205763 0.102881 0.994694i \(-0.467194\pi\)
0.102881 + 0.994694i \(0.467194\pi\)
\(110\) 0 0
\(111\) −1892.77 −1.61850
\(112\) 0 0
\(113\) −1740.74 −1.44916 −0.724578 0.689193i \(-0.757965\pi\)
−0.724578 + 0.689193i \(0.757965\pi\)
\(114\) 0 0
\(115\) −2658.02 −2.15532
\(116\) 0 0
\(117\) −458.825 −0.362550
\(118\) 0 0
\(119\) 780.985 0.601620
\(120\) 0 0
\(121\) 277.420 0.208430
\(122\) 0 0
\(123\) 445.316 0.326445
\(124\) 0 0
\(125\) −5386.32 −3.85414
\(126\) 0 0
\(127\) 341.377 0.238522 0.119261 0.992863i \(-0.461947\pi\)
0.119261 + 0.992863i \(0.461947\pi\)
\(128\) 0 0
\(129\) −1914.18 −1.30647
\(130\) 0 0
\(131\) 405.014 0.270124 0.135062 0.990837i \(-0.456877\pi\)
0.135062 + 0.990837i \(0.456877\pi\)
\(132\) 0 0
\(133\) 824.627 0.537626
\(134\) 0 0
\(135\) 795.645 0.507246
\(136\) 0 0
\(137\) 1590.40 0.991803 0.495902 0.868379i \(-0.334838\pi\)
0.495902 + 0.868379i \(0.334838\pi\)
\(138\) 0 0
\(139\) 605.609 0.369547 0.184774 0.982781i \(-0.440845\pi\)
0.184774 + 0.982781i \(0.440845\pi\)
\(140\) 0 0
\(141\) −780.677 −0.466276
\(142\) 0 0
\(143\) 580.856 0.339676
\(144\) 0 0
\(145\) 2061.79 1.18085
\(146\) 0 0
\(147\) −375.352 −0.210602
\(148\) 0 0
\(149\) −1986.22 −1.09206 −0.546032 0.837764i \(-0.683862\pi\)
−0.546032 + 0.837764i \(0.683862\pi\)
\(150\) 0 0
\(151\) 678.905 0.365884 0.182942 0.983124i \(-0.441438\pi\)
0.182942 + 0.983124i \(0.441438\pi\)
\(152\) 0 0
\(153\) −3534.46 −1.86761
\(154\) 0 0
\(155\) 4030.14 2.08844
\(156\) 0 0
\(157\) −3202.21 −1.62780 −0.813899 0.581006i \(-0.802659\pi\)
−0.813899 + 0.581006i \(0.802659\pi\)
\(158\) 0 0
\(159\) 4371.69 2.18049
\(160\) 0 0
\(161\) −838.259 −0.410336
\(162\) 0 0
\(163\) 340.941 0.163831 0.0819157 0.996639i \(-0.473896\pi\)
0.0819157 + 0.996639i \(0.473896\pi\)
\(164\) 0 0
\(165\) −6819.00 −3.21732
\(166\) 0 0
\(167\) −3038.90 −1.40812 −0.704062 0.710138i \(-0.748633\pi\)
−0.704062 + 0.710138i \(0.748633\pi\)
\(168\) 0 0
\(169\) −1987.23 −0.904521
\(170\) 0 0
\(171\) −3731.97 −1.66895
\(172\) 0 0
\(173\) 2611.06 1.14749 0.573743 0.819035i \(-0.305491\pi\)
0.573743 + 0.819035i \(0.305491\pi\)
\(174\) 0 0
\(175\) −2573.68 −1.11173
\(176\) 0 0
\(177\) −2124.88 −0.902351
\(178\) 0 0
\(179\) 2055.56 0.858325 0.429162 0.903227i \(-0.358809\pi\)
0.429162 + 0.903227i \(0.358809\pi\)
\(180\) 0 0
\(181\) −1986.95 −0.815961 −0.407981 0.912991i \(-0.633767\pi\)
−0.407981 + 0.912991i \(0.633767\pi\)
\(182\) 0 0
\(183\) −635.438 −0.256683
\(184\) 0 0
\(185\) −5484.44 −2.17959
\(186\) 0 0
\(187\) 4474.50 1.74977
\(188\) 0 0
\(189\) 250.923 0.0965711
\(190\) 0 0
\(191\) −441.866 −0.167394 −0.0836971 0.996491i \(-0.526673\pi\)
−0.0836971 + 0.996491i \(0.526673\pi\)
\(192\) 0 0
\(193\) −5059.63 −1.88705 −0.943524 0.331304i \(-0.892511\pi\)
−0.943524 + 0.331304i \(0.892511\pi\)
\(194\) 0 0
\(195\) −2462.58 −0.904352
\(196\) 0 0
\(197\) −3150.30 −1.13934 −0.569669 0.821875i \(-0.692928\pi\)
−0.569669 + 0.821875i \(0.692928\pi\)
\(198\) 0 0
\(199\) −539.846 −0.192305 −0.0961525 0.995367i \(-0.530654\pi\)
−0.0961525 + 0.995367i \(0.530654\pi\)
\(200\) 0 0
\(201\) −3048.54 −1.06979
\(202\) 0 0
\(203\) 650.228 0.224813
\(204\) 0 0
\(205\) 1290.34 0.439614
\(206\) 0 0
\(207\) 3793.66 1.27380
\(208\) 0 0
\(209\) 4724.54 1.56365
\(210\) 0 0
\(211\) 5413.14 1.76614 0.883071 0.469239i \(-0.155472\pi\)
0.883071 + 0.469239i \(0.155472\pi\)
\(212\) 0 0
\(213\) −47.6510 −0.0153286
\(214\) 0 0
\(215\) −5546.48 −1.75938
\(216\) 0 0
\(217\) 1270.98 0.397604
\(218\) 0 0
\(219\) −1606.88 −0.495814
\(220\) 0 0
\(221\) 1615.89 0.491841
\(222\) 0 0
\(223\) −2289.18 −0.687422 −0.343711 0.939075i \(-0.611684\pi\)
−0.343711 + 0.939075i \(0.611684\pi\)
\(224\) 0 0
\(225\) 11647.6 3.45113
\(226\) 0 0
\(227\) −6742.24 −1.97136 −0.985679 0.168634i \(-0.946064\pi\)
−0.985679 + 0.168634i \(0.946064\pi\)
\(228\) 0 0
\(229\) 1536.97 0.443520 0.221760 0.975101i \(-0.428820\pi\)
0.221760 + 0.975101i \(0.428820\pi\)
\(230\) 0 0
\(231\) −2150.51 −0.612524
\(232\) 0 0
\(233\) 1568.19 0.440926 0.220463 0.975395i \(-0.429243\pi\)
0.220463 + 0.975395i \(0.429243\pi\)
\(234\) 0 0
\(235\) −2262.07 −0.627920
\(236\) 0 0
\(237\) −2082.84 −0.570865
\(238\) 0 0
\(239\) −4907.22 −1.32812 −0.664062 0.747677i \(-0.731169\pi\)
−0.664062 + 0.747677i \(0.731169\pi\)
\(240\) 0 0
\(241\) 1403.57 0.375154 0.187577 0.982250i \(-0.439937\pi\)
0.187577 + 0.982250i \(0.439937\pi\)
\(242\) 0 0
\(243\) 5416.58 1.42993
\(244\) 0 0
\(245\) −1087.61 −0.283612
\(246\) 0 0
\(247\) 1706.19 0.439524
\(248\) 0 0
\(249\) −7739.01 −1.96964
\(250\) 0 0
\(251\) 3774.48 0.949175 0.474588 0.880208i \(-0.342597\pi\)
0.474588 + 0.880208i \(0.342597\pi\)
\(252\) 0 0
\(253\) −4802.64 −1.19344
\(254\) 0 0
\(255\) −18969.9 −4.65860
\(256\) 0 0
\(257\) −3233.01 −0.784708 −0.392354 0.919814i \(-0.628339\pi\)
−0.392354 + 0.919814i \(0.628339\pi\)
\(258\) 0 0
\(259\) −1729.63 −0.414957
\(260\) 0 0
\(261\) −2942.70 −0.697887
\(262\) 0 0
\(263\) 3259.84 0.764298 0.382149 0.924101i \(-0.375184\pi\)
0.382149 + 0.924101i \(0.375184\pi\)
\(264\) 0 0
\(265\) 12667.3 2.93640
\(266\) 0 0
\(267\) −5595.21 −1.28248
\(268\) 0 0
\(269\) 7328.77 1.66113 0.830563 0.556925i \(-0.188019\pi\)
0.830563 + 0.556925i \(0.188019\pi\)
\(270\) 0 0
\(271\) 7009.29 1.57116 0.785579 0.618761i \(-0.212365\pi\)
0.785579 + 0.618761i \(0.212365\pi\)
\(272\) 0 0
\(273\) −776.622 −0.172173
\(274\) 0 0
\(275\) −14745.4 −3.23339
\(276\) 0 0
\(277\) −3753.77 −0.814233 −0.407116 0.913376i \(-0.633466\pi\)
−0.407116 + 0.913376i \(0.633466\pi\)
\(278\) 0 0
\(279\) −5752.02 −1.23428
\(280\) 0 0
\(281\) 36.9750 0.00784961 0.00392481 0.999992i \(-0.498751\pi\)
0.00392481 + 0.999992i \(0.498751\pi\)
\(282\) 0 0
\(283\) 3236.79 0.679884 0.339942 0.940446i \(-0.389593\pi\)
0.339942 + 0.940446i \(0.389593\pi\)
\(284\) 0 0
\(285\) −20030.0 −4.16306
\(286\) 0 0
\(287\) 406.933 0.0836951
\(288\) 0 0
\(289\) 7534.69 1.53362
\(290\) 0 0
\(291\) −5419.25 −1.09169
\(292\) 0 0
\(293\) 4412.89 0.879876 0.439938 0.898028i \(-0.355000\pi\)
0.439938 + 0.898028i \(0.355000\pi\)
\(294\) 0 0
\(295\) −6157.01 −1.21517
\(296\) 0 0
\(297\) 1437.61 0.280871
\(298\) 0 0
\(299\) −1734.40 −0.335461
\(300\) 0 0
\(301\) −1749.19 −0.334956
\(302\) 0 0
\(303\) 4569.78 0.866426
\(304\) 0 0
\(305\) −1841.23 −0.345667
\(306\) 0 0
\(307\) 588.428 0.109392 0.0546961 0.998503i \(-0.482581\pi\)
0.0546961 + 0.998503i \(0.482581\pi\)
\(308\) 0 0
\(309\) −4136.22 −0.761493
\(310\) 0 0
\(311\) −7495.29 −1.36662 −0.683310 0.730128i \(-0.739460\pi\)
−0.683310 + 0.730128i \(0.739460\pi\)
\(312\) 0 0
\(313\) 6652.87 1.20141 0.600707 0.799469i \(-0.294886\pi\)
0.600707 + 0.799469i \(0.294886\pi\)
\(314\) 0 0
\(315\) 4922.14 0.880416
\(316\) 0 0
\(317\) −7215.06 −1.27835 −0.639177 0.769060i \(-0.720725\pi\)
−0.639177 + 0.769060i \(0.720725\pi\)
\(318\) 0 0
\(319\) 3725.35 0.653855
\(320\) 0 0
\(321\) −5059.58 −0.879745
\(322\) 0 0
\(323\) 13143.3 2.26412
\(324\) 0 0
\(325\) −5325.08 −0.908868
\(326\) 0 0
\(327\) −1793.70 −0.303339
\(328\) 0 0
\(329\) −713.389 −0.119545
\(330\) 0 0
\(331\) −1123.85 −0.186623 −0.0933116 0.995637i \(-0.529745\pi\)
−0.0933116 + 0.995637i \(0.529745\pi\)
\(332\) 0 0
\(333\) 7827.67 1.28815
\(334\) 0 0
\(335\) −8833.38 −1.44065
\(336\) 0 0
\(337\) −735.459 −0.118881 −0.0594407 0.998232i \(-0.518932\pi\)
−0.0594407 + 0.998232i \(0.518932\pi\)
\(338\) 0 0
\(339\) 13334.5 2.13637
\(340\) 0 0
\(341\) 7281.85 1.15641
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 20361.1 3.17740
\(346\) 0 0
\(347\) 8412.83 1.30151 0.650756 0.759287i \(-0.274452\pi\)
0.650756 + 0.759287i \(0.274452\pi\)
\(348\) 0 0
\(349\) 8577.90 1.31566 0.657829 0.753167i \(-0.271475\pi\)
0.657829 + 0.753167i \(0.271475\pi\)
\(350\) 0 0
\(351\) 519.171 0.0789496
\(352\) 0 0
\(353\) −34.2817 −0.00516892 −0.00258446 0.999997i \(-0.500823\pi\)
−0.00258446 + 0.999997i \(0.500823\pi\)
\(354\) 0 0
\(355\) −138.072 −0.0206426
\(356\) 0 0
\(357\) −5982.54 −0.886918
\(358\) 0 0
\(359\) 1007.89 0.148174 0.0740872 0.997252i \(-0.476396\pi\)
0.0740872 + 0.997252i \(0.476396\pi\)
\(360\) 0 0
\(361\) 7018.75 1.02329
\(362\) 0 0
\(363\) −2125.11 −0.307271
\(364\) 0 0
\(365\) −4656.07 −0.667698
\(366\) 0 0
\(367\) 13076.7 1.85994 0.929969 0.367638i \(-0.119834\pi\)
0.929969 + 0.367638i \(0.119834\pi\)
\(368\) 0 0
\(369\) −1841.63 −0.259815
\(370\) 0 0
\(371\) 3994.88 0.559040
\(372\) 0 0
\(373\) −8552.62 −1.18723 −0.593616 0.804748i \(-0.702300\pi\)
−0.593616 + 0.804748i \(0.702300\pi\)
\(374\) 0 0
\(375\) 41260.6 5.68183
\(376\) 0 0
\(377\) 1345.35 0.183791
\(378\) 0 0
\(379\) −9753.81 −1.32195 −0.660975 0.750408i \(-0.729857\pi\)
−0.660975 + 0.750408i \(0.729857\pi\)
\(380\) 0 0
\(381\) −2615.03 −0.351633
\(382\) 0 0
\(383\) 7141.71 0.952805 0.476402 0.879227i \(-0.341941\pi\)
0.476402 + 0.879227i \(0.341941\pi\)
\(384\) 0 0
\(385\) −6231.26 −0.824868
\(386\) 0 0
\(387\) 7916.22 1.03980
\(388\) 0 0
\(389\) 4854.81 0.632773 0.316386 0.948630i \(-0.397530\pi\)
0.316386 + 0.948630i \(0.397530\pi\)
\(390\) 0 0
\(391\) −13360.6 −1.72806
\(392\) 0 0
\(393\) −3102.51 −0.398221
\(394\) 0 0
\(395\) −6035.19 −0.768768
\(396\) 0 0
\(397\) −10401.6 −1.31496 −0.657481 0.753471i \(-0.728378\pi\)
−0.657481 + 0.753471i \(0.728378\pi\)
\(398\) 0 0
\(399\) −6316.85 −0.792577
\(400\) 0 0
\(401\) 4386.56 0.546271 0.273135 0.961976i \(-0.411939\pi\)
0.273135 + 0.961976i \(0.411939\pi\)
\(402\) 0 0
\(403\) 2629.73 0.325052
\(404\) 0 0
\(405\) 12890.6 1.58157
\(406\) 0 0
\(407\) −9909.56 −1.20688
\(408\) 0 0
\(409\) 6474.49 0.782746 0.391373 0.920232i \(-0.372000\pi\)
0.391373 + 0.920232i \(0.372000\pi\)
\(410\) 0 0
\(411\) −12182.9 −1.46213
\(412\) 0 0
\(413\) −1941.74 −0.231348
\(414\) 0 0
\(415\) −22424.3 −2.65245
\(416\) 0 0
\(417\) −4639.12 −0.544793
\(418\) 0 0
\(419\) −4781.90 −0.557544 −0.278772 0.960357i \(-0.589927\pi\)
−0.278772 + 0.960357i \(0.589927\pi\)
\(420\) 0 0
\(421\) 271.468 0.0314265 0.0157133 0.999877i \(-0.494998\pi\)
0.0157133 + 0.999877i \(0.494998\pi\)
\(422\) 0 0
\(423\) 3228.54 0.371104
\(424\) 0 0
\(425\) −41020.6 −4.68186
\(426\) 0 0
\(427\) −580.668 −0.0658091
\(428\) 0 0
\(429\) −4449.50 −0.500756
\(430\) 0 0
\(431\) −10024.3 −1.12031 −0.560153 0.828389i \(-0.689258\pi\)
−0.560153 + 0.828389i \(0.689258\pi\)
\(432\) 0 0
\(433\) 14997.2 1.66448 0.832242 0.554413i \(-0.187057\pi\)
0.832242 + 0.554413i \(0.187057\pi\)
\(434\) 0 0
\(435\) −15793.9 −1.74082
\(436\) 0 0
\(437\) −14107.2 −1.54425
\(438\) 0 0
\(439\) 7619.62 0.828393 0.414196 0.910188i \(-0.364063\pi\)
0.414196 + 0.910188i \(0.364063\pi\)
\(440\) 0 0
\(441\) 1552.30 0.167616
\(442\) 0 0
\(443\) 3188.70 0.341985 0.170993 0.985272i \(-0.445303\pi\)
0.170993 + 0.985272i \(0.445303\pi\)
\(444\) 0 0
\(445\) −16212.5 −1.72707
\(446\) 0 0
\(447\) 15215.0 1.60994
\(448\) 0 0
\(449\) 3446.04 0.362202 0.181101 0.983464i \(-0.442034\pi\)
0.181101 + 0.983464i \(0.442034\pi\)
\(450\) 0 0
\(451\) 2331.44 0.243422
\(452\) 0 0
\(453\) −5200.58 −0.539392
\(454\) 0 0
\(455\) −2250.32 −0.231861
\(456\) 0 0
\(457\) 7559.50 0.773782 0.386891 0.922126i \(-0.373549\pi\)
0.386891 + 0.922126i \(0.373549\pi\)
\(458\) 0 0
\(459\) 3999.32 0.406694
\(460\) 0 0
\(461\) 10358.3 1.04650 0.523249 0.852180i \(-0.324720\pi\)
0.523249 + 0.852180i \(0.324720\pi\)
\(462\) 0 0
\(463\) −5546.46 −0.556730 −0.278365 0.960475i \(-0.589792\pi\)
−0.278365 + 0.960475i \(0.589792\pi\)
\(464\) 0 0
\(465\) −30871.9 −3.07882
\(466\) 0 0
\(467\) −7296.87 −0.723038 −0.361519 0.932365i \(-0.617742\pi\)
−0.361519 + 0.932365i \(0.617742\pi\)
\(468\) 0 0
\(469\) −2785.78 −0.274276
\(470\) 0 0
\(471\) 24529.8 2.39973
\(472\) 0 0
\(473\) −10021.7 −0.974199
\(474\) 0 0
\(475\) −43312.8 −4.18385
\(476\) 0 0
\(477\) −18079.4 −1.73543
\(478\) 0 0
\(479\) −19437.2 −1.85409 −0.927046 0.374946i \(-0.877661\pi\)
−0.927046 + 0.374946i \(0.877661\pi\)
\(480\) 0 0
\(481\) −3578.68 −0.339239
\(482\) 0 0
\(483\) 6421.28 0.604924
\(484\) 0 0
\(485\) −15702.7 −1.47015
\(486\) 0 0
\(487\) 6540.19 0.608551 0.304276 0.952584i \(-0.401586\pi\)
0.304276 + 0.952584i \(0.401586\pi\)
\(488\) 0 0
\(489\) −2611.69 −0.241523
\(490\) 0 0
\(491\) 8542.59 0.785176 0.392588 0.919714i \(-0.371580\pi\)
0.392588 + 0.919714i \(0.371580\pi\)
\(492\) 0 0
\(493\) 10363.6 0.946764
\(494\) 0 0
\(495\) 28200.4 2.56064
\(496\) 0 0
\(497\) −43.5438 −0.00392999
\(498\) 0 0
\(499\) 17254.6 1.54794 0.773968 0.633224i \(-0.218269\pi\)
0.773968 + 0.633224i \(0.218269\pi\)
\(500\) 0 0
\(501\) 23278.7 2.07588
\(502\) 0 0
\(503\) −5597.51 −0.496184 −0.248092 0.968736i \(-0.579804\pi\)
−0.248092 + 0.968736i \(0.579804\pi\)
\(504\) 0 0
\(505\) 13241.3 1.16679
\(506\) 0 0
\(507\) 15222.7 1.33346
\(508\) 0 0
\(509\) −5232.92 −0.455688 −0.227844 0.973698i \(-0.573168\pi\)
−0.227844 + 0.973698i \(0.573168\pi\)
\(510\) 0 0
\(511\) −1468.38 −0.127118
\(512\) 0 0
\(513\) 4222.81 0.363434
\(514\) 0 0
\(515\) −11985.0 −1.02548
\(516\) 0 0
\(517\) −4087.22 −0.347690
\(518\) 0 0
\(519\) −20001.4 −1.69164
\(520\) 0 0
\(521\) −7429.89 −0.624778 −0.312389 0.949954i \(-0.601129\pi\)
−0.312389 + 0.949954i \(0.601129\pi\)
\(522\) 0 0
\(523\) −2963.01 −0.247732 −0.123866 0.992299i \(-0.539529\pi\)
−0.123866 + 0.992299i \(0.539529\pi\)
\(524\) 0 0
\(525\) 19715.1 1.63893
\(526\) 0 0
\(527\) 20257.5 1.67444
\(528\) 0 0
\(529\) 2173.37 0.178628
\(530\) 0 0
\(531\) 8787.60 0.718172
\(532\) 0 0
\(533\) 841.964 0.0684231
\(534\) 0 0
\(535\) −14660.5 −1.18473
\(536\) 0 0
\(537\) −15746.1 −1.26536
\(538\) 0 0
\(539\) −1965.15 −0.157041
\(540\) 0 0
\(541\) 19355.9 1.53822 0.769109 0.639118i \(-0.220701\pi\)
0.769109 + 0.639118i \(0.220701\pi\)
\(542\) 0 0
\(543\) 15220.6 1.20290
\(544\) 0 0
\(545\) −5197.38 −0.408498
\(546\) 0 0
\(547\) −7653.95 −0.598280 −0.299140 0.954209i \(-0.596700\pi\)
−0.299140 + 0.954209i \(0.596700\pi\)
\(548\) 0 0
\(549\) 2627.90 0.204291
\(550\) 0 0
\(551\) 10942.8 0.846057
\(552\) 0 0
\(553\) −1903.32 −0.146360
\(554\) 0 0
\(555\) 42012.2 3.21319
\(556\) 0 0
\(557\) 10896.0 0.828864 0.414432 0.910080i \(-0.363980\pi\)
0.414432 + 0.910080i \(0.363980\pi\)
\(558\) 0 0
\(559\) −3619.16 −0.273836
\(560\) 0 0
\(561\) −34275.8 −2.57954
\(562\) 0 0
\(563\) −15441.8 −1.15594 −0.577972 0.816057i \(-0.696156\pi\)
−0.577972 + 0.816057i \(0.696156\pi\)
\(564\) 0 0
\(565\) 38637.6 2.87699
\(566\) 0 0
\(567\) 4065.29 0.301104
\(568\) 0 0
\(569\) 5615.59 0.413739 0.206870 0.978369i \(-0.433672\pi\)
0.206870 + 0.978369i \(0.433672\pi\)
\(570\) 0 0
\(571\) 14371.0 1.05325 0.526626 0.850097i \(-0.323457\pi\)
0.526626 + 0.850097i \(0.323457\pi\)
\(572\) 0 0
\(573\) 3384.81 0.246775
\(574\) 0 0
\(575\) 44028.9 3.19327
\(576\) 0 0
\(577\) −18933.5 −1.36605 −0.683027 0.730393i \(-0.739337\pi\)
−0.683027 + 0.730393i \(0.739337\pi\)
\(578\) 0 0
\(579\) 38758.1 2.78192
\(580\) 0 0
\(581\) −7071.96 −0.504982
\(582\) 0 0
\(583\) 22887.9 1.62593
\(584\) 0 0
\(585\) 10184.1 0.719765
\(586\) 0 0
\(587\) 17871.6 1.25663 0.628315 0.777959i \(-0.283745\pi\)
0.628315 + 0.777959i \(0.283745\pi\)
\(588\) 0 0
\(589\) 21389.6 1.49633
\(590\) 0 0
\(591\) 24132.1 1.67963
\(592\) 0 0
\(593\) 45.4735 0.00314902 0.00157451 0.999999i \(-0.499499\pi\)
0.00157451 + 0.999999i \(0.499499\pi\)
\(594\) 0 0
\(595\) −17334.9 −1.19439
\(596\) 0 0
\(597\) 4135.36 0.283499
\(598\) 0 0
\(599\) 10336.6 0.705078 0.352539 0.935797i \(-0.385318\pi\)
0.352539 + 0.935797i \(0.385318\pi\)
\(600\) 0 0
\(601\) −4844.95 −0.328835 −0.164417 0.986391i \(-0.552574\pi\)
−0.164417 + 0.986391i \(0.552574\pi\)
\(602\) 0 0
\(603\) 12607.5 0.851435
\(604\) 0 0
\(605\) −6157.67 −0.413793
\(606\) 0 0
\(607\) −15710.1 −1.05050 −0.525249 0.850949i \(-0.676028\pi\)
−0.525249 + 0.850949i \(0.676028\pi\)
\(608\) 0 0
\(609\) −4980.91 −0.331423
\(610\) 0 0
\(611\) −1476.04 −0.0977317
\(612\) 0 0
\(613\) −23320.2 −1.53653 −0.768267 0.640130i \(-0.778881\pi\)
−0.768267 + 0.640130i \(0.778881\pi\)
\(614\) 0 0
\(615\) −9884.30 −0.648087
\(616\) 0 0
\(617\) 10540.0 0.687720 0.343860 0.939021i \(-0.388266\pi\)
0.343860 + 0.939021i \(0.388266\pi\)
\(618\) 0 0
\(619\) 17788.6 1.15507 0.577533 0.816367i \(-0.304016\pi\)
0.577533 + 0.816367i \(0.304016\pi\)
\(620\) 0 0
\(621\) −4292.62 −0.277386
\(622\) 0 0
\(623\) −5112.94 −0.328805
\(624\) 0 0
\(625\) 73597.0 4.71021
\(626\) 0 0
\(627\) −36191.2 −2.30516
\(628\) 0 0
\(629\) −27567.6 −1.74752
\(630\) 0 0
\(631\) 12278.6 0.774648 0.387324 0.921944i \(-0.373399\pi\)
0.387324 + 0.921944i \(0.373399\pi\)
\(632\) 0 0
\(633\) −41466.1 −2.60368
\(634\) 0 0
\(635\) −7577.25 −0.473534
\(636\) 0 0
\(637\) −709.684 −0.0441424
\(638\) 0 0
\(639\) 197.064 0.0121999
\(640\) 0 0
\(641\) 15729.2 0.969216 0.484608 0.874732i \(-0.338962\pi\)
0.484608 + 0.874732i \(0.338962\pi\)
\(642\) 0 0
\(643\) −7527.17 −0.461652 −0.230826 0.972995i \(-0.574143\pi\)
−0.230826 + 0.972995i \(0.574143\pi\)
\(644\) 0 0
\(645\) 42487.4 2.59371
\(646\) 0 0
\(647\) −4431.02 −0.269245 −0.134622 0.990897i \(-0.542982\pi\)
−0.134622 + 0.990897i \(0.542982\pi\)
\(648\) 0 0
\(649\) −11124.8 −0.672860
\(650\) 0 0
\(651\) −9736.06 −0.586154
\(652\) 0 0
\(653\) −4155.52 −0.249032 −0.124516 0.992218i \(-0.539738\pi\)
−0.124516 + 0.992218i \(0.539738\pi\)
\(654\) 0 0
\(655\) −8989.75 −0.536272
\(656\) 0 0
\(657\) 6645.38 0.394613
\(658\) 0 0
\(659\) 10380.1 0.613583 0.306791 0.951777i \(-0.400745\pi\)
0.306791 + 0.951777i \(0.400745\pi\)
\(660\) 0 0
\(661\) 17788.9 1.04676 0.523381 0.852099i \(-0.324671\pi\)
0.523381 + 0.852099i \(0.324671\pi\)
\(662\) 0 0
\(663\) −12378.2 −0.725080
\(664\) 0 0
\(665\) −18303.5 −1.06734
\(666\) 0 0
\(667\) −11123.7 −0.645742
\(668\) 0 0
\(669\) 17535.7 1.01341
\(670\) 0 0
\(671\) −3326.82 −0.191402
\(672\) 0 0
\(673\) 13619.4 0.780074 0.390037 0.920799i \(-0.372462\pi\)
0.390037 + 0.920799i \(0.372462\pi\)
\(674\) 0 0
\(675\) −13179.5 −0.751525
\(676\) 0 0
\(677\) 10454.1 0.593478 0.296739 0.954959i \(-0.404101\pi\)
0.296739 + 0.954959i \(0.404101\pi\)
\(678\) 0 0
\(679\) −4952.16 −0.279892
\(680\) 0 0
\(681\) 51647.3 2.90621
\(682\) 0 0
\(683\) −11405.9 −0.638996 −0.319498 0.947587i \(-0.603514\pi\)
−0.319498 + 0.947587i \(0.603514\pi\)
\(684\) 0 0
\(685\) −35300.8 −1.96901
\(686\) 0 0
\(687\) −11773.6 −0.653844
\(688\) 0 0
\(689\) 8265.60 0.457031
\(690\) 0 0
\(691\) 5921.64 0.326006 0.163003 0.986626i \(-0.447882\pi\)
0.163003 + 0.986626i \(0.447882\pi\)
\(692\) 0 0
\(693\) 8893.57 0.487502
\(694\) 0 0
\(695\) −13442.2 −0.733656
\(696\) 0 0
\(697\) 6485.89 0.352468
\(698\) 0 0
\(699\) −12012.8 −0.650021
\(700\) 0 0
\(701\) 24236.4 1.30584 0.652921 0.757426i \(-0.273543\pi\)
0.652921 + 0.757426i \(0.273543\pi\)
\(702\) 0 0
\(703\) −29108.1 −1.56164
\(704\) 0 0
\(705\) 17328.0 0.925690
\(706\) 0 0
\(707\) 4175.90 0.222137
\(708\) 0 0
\(709\) 30145.3 1.59680 0.798400 0.602128i \(-0.205680\pi\)
0.798400 + 0.602128i \(0.205680\pi\)
\(710\) 0 0
\(711\) 8613.73 0.454346
\(712\) 0 0
\(713\) −21743.1 −1.14206
\(714\) 0 0
\(715\) −12892.8 −0.674353
\(716\) 0 0
\(717\) 37590.6 1.95794
\(718\) 0 0
\(719\) 5159.52 0.267619 0.133809 0.991007i \(-0.457279\pi\)
0.133809 + 0.991007i \(0.457279\pi\)
\(720\) 0 0
\(721\) −3779.71 −0.195234
\(722\) 0 0
\(723\) −10751.7 −0.553059
\(724\) 0 0
\(725\) −34152.7 −1.74952
\(726\) 0 0
\(727\) 22475.2 1.14657 0.573286 0.819355i \(-0.305668\pi\)
0.573286 + 0.819355i \(0.305668\pi\)
\(728\) 0 0
\(729\) −25812.0 −1.31139
\(730\) 0 0
\(731\) −27879.4 −1.41061
\(732\) 0 0
\(733\) 15258.4 0.768871 0.384436 0.923152i \(-0.374396\pi\)
0.384436 + 0.923152i \(0.374396\pi\)
\(734\) 0 0
\(735\) 8331.38 0.418106
\(736\) 0 0
\(737\) −15960.6 −0.797715
\(738\) 0 0
\(739\) −27519.3 −1.36984 −0.684922 0.728616i \(-0.740164\pi\)
−0.684922 + 0.728616i \(0.740164\pi\)
\(740\) 0 0
\(741\) −13069.9 −0.647954
\(742\) 0 0
\(743\) −38497.6 −1.90086 −0.950431 0.310937i \(-0.899357\pi\)
−0.950431 + 0.310937i \(0.899357\pi\)
\(744\) 0 0
\(745\) 44086.5 2.16806
\(746\) 0 0
\(747\) 32005.2 1.56761
\(748\) 0 0
\(749\) −4623.48 −0.225552
\(750\) 0 0
\(751\) −25060.1 −1.21765 −0.608827 0.793303i \(-0.708359\pi\)
−0.608827 + 0.793303i \(0.708359\pi\)
\(752\) 0 0
\(753\) −28913.5 −1.39929
\(754\) 0 0
\(755\) −15069.1 −0.726384
\(756\) 0 0
\(757\) 7440.21 0.357225 0.178612 0.983920i \(-0.442839\pi\)
0.178612 + 0.983920i \(0.442839\pi\)
\(758\) 0 0
\(759\) 36789.4 1.75938
\(760\) 0 0
\(761\) −11058.6 −0.526773 −0.263386 0.964690i \(-0.584839\pi\)
−0.263386 + 0.964690i \(0.584839\pi\)
\(762\) 0 0
\(763\) −1639.10 −0.0777710
\(764\) 0 0
\(765\) 78451.3 3.70773
\(766\) 0 0
\(767\) −4017.55 −0.189133
\(768\) 0 0
\(769\) 39340.3 1.84479 0.922397 0.386243i \(-0.126227\pi\)
0.922397 + 0.386243i \(0.126227\pi\)
\(770\) 0 0
\(771\) 24765.7 1.15683
\(772\) 0 0
\(773\) −28953.3 −1.34719 −0.673595 0.739100i \(-0.735251\pi\)
−0.673595 + 0.739100i \(0.735251\pi\)
\(774\) 0 0
\(775\) −66757.4 −3.09419
\(776\) 0 0
\(777\) 13249.4 0.611736
\(778\) 0 0
\(779\) 6848.32 0.314976
\(780\) 0 0
\(781\) −249.476 −0.0114301
\(782\) 0 0
\(783\) 3329.73 0.151973
\(784\) 0 0
\(785\) 71076.8 3.23164
\(786\) 0 0
\(787\) 15424.4 0.698627 0.349313 0.937006i \(-0.386415\pi\)
0.349313 + 0.937006i \(0.386415\pi\)
\(788\) 0 0
\(789\) −24971.2 −1.12674
\(790\) 0 0
\(791\) 12185.2 0.547730
\(792\) 0 0
\(793\) −1201.43 −0.0538008
\(794\) 0 0
\(795\) −97034.6 −4.32888
\(796\) 0 0
\(797\) −13348.5 −0.593258 −0.296629 0.954993i \(-0.595862\pi\)
−0.296629 + 0.954993i \(0.595862\pi\)
\(798\) 0 0
\(799\) −11370.3 −0.503446
\(800\) 0 0
\(801\) 23139.3 1.02071
\(802\) 0 0
\(803\) −8412.82 −0.369716
\(804\) 0 0
\(805\) 18606.1 0.814633
\(806\) 0 0
\(807\) −56140.2 −2.44886
\(808\) 0 0
\(809\) −18871.7 −0.820139 −0.410070 0.912054i \(-0.634496\pi\)
−0.410070 + 0.912054i \(0.634496\pi\)
\(810\) 0 0
\(811\) 8113.79 0.351312 0.175656 0.984452i \(-0.443795\pi\)
0.175656 + 0.984452i \(0.443795\pi\)
\(812\) 0 0
\(813\) −53692.9 −2.31623
\(814\) 0 0
\(815\) −7567.57 −0.325252
\(816\) 0 0
\(817\) −29437.4 −1.26057
\(818\) 0 0
\(819\) 3211.77 0.137031
\(820\) 0 0
\(821\) 16368.2 0.695804 0.347902 0.937531i \(-0.386894\pi\)
0.347902 + 0.937531i \(0.386894\pi\)
\(822\) 0 0
\(823\) −34575.7 −1.46444 −0.732220 0.681069i \(-0.761516\pi\)
−0.732220 + 0.681069i \(0.761516\pi\)
\(824\) 0 0
\(825\) 112954. 4.76672
\(826\) 0 0
\(827\) 43222.0 1.81739 0.908693 0.417466i \(-0.137082\pi\)
0.908693 + 0.417466i \(0.137082\pi\)
\(828\) 0 0
\(829\) −29288.6 −1.22706 −0.613532 0.789670i \(-0.710252\pi\)
−0.613532 + 0.789670i \(0.710252\pi\)
\(830\) 0 0
\(831\) 28754.9 1.20036
\(832\) 0 0
\(833\) −5466.89 −0.227391
\(834\) 0 0
\(835\) 67451.8 2.79553
\(836\) 0 0
\(837\) 6508.55 0.268779
\(838\) 0 0
\(839\) −16518.3 −0.679708 −0.339854 0.940478i \(-0.610378\pi\)
−0.339854 + 0.940478i \(0.610378\pi\)
\(840\) 0 0
\(841\) −15760.5 −0.646213
\(842\) 0 0
\(843\) −283.238 −0.0115720
\(844\) 0 0
\(845\) 44108.9 1.79573
\(846\) 0 0
\(847\) −1941.94 −0.0787792
\(848\) 0 0
\(849\) −24794.6 −1.00230
\(850\) 0 0
\(851\) 29589.3 1.19190
\(852\) 0 0
\(853\) 8649.24 0.347180 0.173590 0.984818i \(-0.444463\pi\)
0.173590 + 0.984818i \(0.444463\pi\)
\(854\) 0 0
\(855\) 82835.3 3.31334
\(856\) 0 0
\(857\) −16342.9 −0.651413 −0.325707 0.945471i \(-0.605602\pi\)
−0.325707 + 0.945471i \(0.605602\pi\)
\(858\) 0 0
\(859\) 29613.4 1.17625 0.588123 0.808772i \(-0.299867\pi\)
0.588123 + 0.808772i \(0.299867\pi\)
\(860\) 0 0
\(861\) −3117.21 −0.123385
\(862\) 0 0
\(863\) −20366.7 −0.803348 −0.401674 0.915783i \(-0.631571\pi\)
−0.401674 + 0.915783i \(0.631571\pi\)
\(864\) 0 0
\(865\) −57955.5 −2.27809
\(866\) 0 0
\(867\) −57717.6 −2.26089
\(868\) 0 0
\(869\) −10904.7 −0.425680
\(870\) 0 0
\(871\) −5763.92 −0.224228
\(872\) 0 0
\(873\) 22411.7 0.868867
\(874\) 0 0
\(875\) 37704.3 1.45673
\(876\) 0 0
\(877\) −35210.6 −1.35573 −0.677866 0.735186i \(-0.737095\pi\)
−0.677866 + 0.735186i \(0.737095\pi\)
\(878\) 0 0
\(879\) −33803.8 −1.29713
\(880\) 0 0
\(881\) −7354.03 −0.281230 −0.140615 0.990064i \(-0.544908\pi\)
−0.140615 + 0.990064i \(0.544908\pi\)
\(882\) 0 0
\(883\) 28837.9 1.09906 0.549531 0.835473i \(-0.314806\pi\)
0.549531 + 0.835473i \(0.314806\pi\)
\(884\) 0 0
\(885\) 47164.3 1.79142
\(886\) 0 0
\(887\) 10861.0 0.411136 0.205568 0.978643i \(-0.434096\pi\)
0.205568 + 0.978643i \(0.434096\pi\)
\(888\) 0 0
\(889\) −2389.64 −0.0901528
\(890\) 0 0
\(891\) 23291.3 0.875744
\(892\) 0 0
\(893\) −12005.7 −0.449895
\(894\) 0 0
\(895\) −45625.6 −1.70402
\(896\) 0 0
\(897\) 13285.9 0.494542
\(898\) 0 0
\(899\) 16865.9 0.625706
\(900\) 0 0
\(901\) 63672.3 2.35431
\(902\) 0 0
\(903\) 13399.3 0.493798
\(904\) 0 0
\(905\) 44102.7 1.61992
\(906\) 0 0
\(907\) 18682.8 0.683961 0.341980 0.939707i \(-0.388902\pi\)
0.341980 + 0.939707i \(0.388902\pi\)
\(908\) 0 0
\(909\) −18898.6 −0.689580
\(910\) 0 0
\(911\) −34392.2 −1.25078 −0.625392 0.780311i \(-0.715061\pi\)
−0.625392 + 0.780311i \(0.715061\pi\)
\(912\) 0 0
\(913\) −40517.4 −1.46871
\(914\) 0 0
\(915\) 14104.3 0.509588
\(916\) 0 0
\(917\) −2835.10 −0.102097
\(918\) 0 0
\(919\) −14715.8 −0.528216 −0.264108 0.964493i \(-0.585078\pi\)
−0.264108 + 0.964493i \(0.585078\pi\)
\(920\) 0 0
\(921\) −4507.51 −0.161268
\(922\) 0 0
\(923\) −90.0943 −0.00321288
\(924\) 0 0
\(925\) 90847.3 3.22923
\(926\) 0 0
\(927\) 17105.6 0.606065
\(928\) 0 0
\(929\) −36204.2 −1.27860 −0.639300 0.768957i \(-0.720776\pi\)
−0.639300 + 0.768957i \(0.720776\pi\)
\(930\) 0 0
\(931\) −5772.39 −0.203203
\(932\) 0 0
\(933\) 57415.8 2.01469
\(934\) 0 0
\(935\) −99316.6 −3.47380
\(936\) 0 0
\(937\) −43636.5 −1.52139 −0.760694 0.649110i \(-0.775141\pi\)
−0.760694 + 0.649110i \(0.775141\pi\)
\(938\) 0 0
\(939\) −50962.7 −1.77114
\(940\) 0 0
\(941\) −4751.54 −0.164608 −0.0823038 0.996607i \(-0.526228\pi\)
−0.0823038 + 0.996607i \(0.526228\pi\)
\(942\) 0 0
\(943\) −6961.54 −0.240402
\(944\) 0 0
\(945\) −5569.52 −0.191721
\(946\) 0 0
\(947\) −49387.3 −1.69469 −0.847344 0.531044i \(-0.821800\pi\)
−0.847344 + 0.531044i \(0.821800\pi\)
\(948\) 0 0
\(949\) −3038.16 −0.103923
\(950\) 0 0
\(951\) 55269.2 1.88457
\(952\) 0 0
\(953\) 46336.1 1.57500 0.787499 0.616316i \(-0.211375\pi\)
0.787499 + 0.616316i \(0.211375\pi\)
\(954\) 0 0
\(955\) 9807.72 0.332325
\(956\) 0 0
\(957\) −28537.2 −0.963924
\(958\) 0 0
\(959\) −11132.8 −0.374866
\(960\) 0 0
\(961\) 3176.38 0.106622
\(962\) 0 0
\(963\) 20924.2 0.700180
\(964\) 0 0
\(965\) 112304. 3.74633
\(966\) 0 0
\(967\) 21078.1 0.700957 0.350479 0.936571i \(-0.386019\pi\)
0.350479 + 0.936571i \(0.386019\pi\)
\(968\) 0 0
\(969\) −100681. −3.33781
\(970\) 0 0
\(971\) −27225.5 −0.899802 −0.449901 0.893079i \(-0.648541\pi\)
−0.449901 + 0.893079i \(0.648541\pi\)
\(972\) 0 0
\(973\) −4239.26 −0.139676
\(974\) 0 0
\(975\) 40791.4 1.33987
\(976\) 0 0
\(977\) 4699.41 0.153887 0.0769434 0.997035i \(-0.475484\pi\)
0.0769434 + 0.997035i \(0.475484\pi\)
\(978\) 0 0
\(979\) −29293.6 −0.956310
\(980\) 0 0
\(981\) 7417.96 0.241424
\(982\) 0 0
\(983\) 48128.7 1.56161 0.780807 0.624773i \(-0.214808\pi\)
0.780807 + 0.624773i \(0.214808\pi\)
\(984\) 0 0
\(985\) 69924.5 2.26191
\(986\) 0 0
\(987\) 5464.74 0.176236
\(988\) 0 0
\(989\) 29924.0 0.962111
\(990\) 0 0
\(991\) −214.168 −0.00686506 −0.00343253 0.999994i \(-0.501093\pi\)
−0.00343253 + 0.999994i \(0.501093\pi\)
\(992\) 0 0
\(993\) 8608.96 0.275123
\(994\) 0 0
\(995\) 11982.5 0.381780
\(996\) 0 0
\(997\) 12678.3 0.402735 0.201368 0.979516i \(-0.435461\pi\)
0.201368 + 0.979516i \(0.435461\pi\)
\(998\) 0 0
\(999\) −8857.20 −0.280510
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1792.4.a.c.1.1 2
4.3 odd 2 1792.4.a.a.1.2 2
8.3 odd 2 1792.4.a.d.1.1 2
8.5 even 2 1792.4.a.b.1.2 2
16.3 odd 4 448.4.b.a.225.3 yes 4
16.5 even 4 448.4.b.b.225.3 yes 4
16.11 odd 4 448.4.b.a.225.2 4
16.13 even 4 448.4.b.b.225.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
448.4.b.a.225.2 4 16.11 odd 4
448.4.b.a.225.3 yes 4 16.3 odd 4
448.4.b.b.225.2 yes 4 16.13 even 4
448.4.b.b.225.3 yes 4 16.5 even 4
1792.4.a.a.1.2 2 4.3 odd 2
1792.4.a.b.1.2 2 8.5 even 2
1792.4.a.c.1.1 2 1.1 even 1 trivial
1792.4.a.d.1.1 2 8.3 odd 2