Properties

Label 448.4.b.a.225.3
Level $448$
Weight $4$
Character 448.225
Analytic conductor $26.433$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(225,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.225");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.4328556826\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 225.3
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 448.225
Dual form 448.4.b.a.225.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.66025i q^{3} +22.1962i q^{5} -7.00000 q^{7} -31.6795 q^{9} -40.1051i q^{11} -14.4833i q^{13} -170.028 q^{15} -111.569 q^{17} +117.804i q^{19} -53.6218i q^{21} +119.751 q^{23} -367.669 q^{25} -35.8461i q^{27} -92.8897i q^{29} +181.569 q^{31} +307.215 q^{33} -155.373i q^{35} -247.090i q^{37} +110.946 q^{39} +58.1333 q^{41} +249.885i q^{43} -703.163i q^{45} -101.913 q^{47} +49.0000 q^{49} -854.649i q^{51} +570.697i q^{53} +890.179 q^{55} -902.407 q^{57} +277.391i q^{59} +82.9526i q^{61} +221.756 q^{63} +321.474 q^{65} -397.969i q^{67} +917.325i q^{69} +6.22055 q^{71} -209.769 q^{73} -2816.44i q^{75} +280.736i q^{77} -271.902 q^{79} -580.756 q^{81} -1010.28i q^{83} -2476.41i q^{85} +711.559 q^{87} -730.420 q^{89} +101.383i q^{91} +1390.87i q^{93} -2614.79 q^{95} +707.451 q^{97} +1270.51i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 28 q^{7} - 196 q^{9} - 112 q^{15} - 280 q^{17} + 576 q^{23} - 764 q^{25} + 560 q^{31} + 1312 q^{33} - 928 q^{39} - 488 q^{41} + 784 q^{47} + 196 q^{49} + 928 q^{55} + 672 q^{57} + 1372 q^{63} + 2048 q^{65}+ \cdots - 856 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 7.66025i 1.47422i 0.675775 + 0.737108i \(0.263809\pi\)
−0.675775 + 0.737108i \(0.736191\pi\)
\(4\) 0 0
\(5\) 22.1962i 1.98528i 0.121085 + 0.992642i \(0.461363\pi\)
−0.121085 + 0.992642i \(0.538637\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) −31.6795 −1.17331
\(10\) 0 0
\(11\) − 40.1051i − 1.09929i −0.835400 0.549643i \(-0.814764\pi\)
0.835400 0.549643i \(-0.185236\pi\)
\(12\) 0 0
\(13\) − 14.4833i − 0.308997i −0.987993 0.154498i \(-0.950624\pi\)
0.987993 0.154498i \(-0.0493761\pi\)
\(14\) 0 0
\(15\) −170.028 −2.92674
\(16\) 0 0
\(17\) −111.569 −1.59174 −0.795868 0.605470i \(-0.792985\pi\)
−0.795868 + 0.605470i \(0.792985\pi\)
\(18\) 0 0
\(19\) 117.804i 1.42242i 0.702978 + 0.711212i \(0.251853\pi\)
−0.702978 + 0.711212i \(0.748147\pi\)
\(20\) 0 0
\(21\) − 53.6218i − 0.557201i
\(22\) 0 0
\(23\) 119.751 1.08565 0.542823 0.839847i \(-0.317355\pi\)
0.542823 + 0.839847i \(0.317355\pi\)
\(24\) 0 0
\(25\) −367.669 −2.94135
\(26\) 0 0
\(27\) − 35.8461i − 0.255503i
\(28\) 0 0
\(29\) − 92.8897i − 0.594800i −0.954753 0.297400i \(-0.903881\pi\)
0.954753 0.297400i \(-0.0961194\pi\)
\(30\) 0 0
\(31\) 181.569 1.05196 0.525981 0.850497i \(-0.323698\pi\)
0.525981 + 0.850497i \(0.323698\pi\)
\(32\) 0 0
\(33\) 307.215 1.62059
\(34\) 0 0
\(35\) − 155.373i − 0.750367i
\(36\) 0 0
\(37\) − 247.090i − 1.09787i −0.835864 0.548936i \(-0.815033\pi\)
0.835864 0.548936i \(-0.184967\pi\)
\(38\) 0 0
\(39\) 110.946 0.455528
\(40\) 0 0
\(41\) 58.1333 0.221436 0.110718 0.993852i \(-0.464685\pi\)
0.110718 + 0.993852i \(0.464685\pi\)
\(42\) 0 0
\(43\) 249.885i 0.886210i 0.896470 + 0.443105i \(0.146123\pi\)
−0.896470 + 0.443105i \(0.853877\pi\)
\(44\) 0 0
\(45\) − 703.163i − 2.32936i
\(46\) 0 0
\(47\) −101.913 −0.316287 −0.158144 0.987416i \(-0.550551\pi\)
−0.158144 + 0.987416i \(0.550551\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) − 854.649i − 2.34656i
\(52\) 0 0
\(53\) 570.697i 1.47908i 0.673112 + 0.739541i \(0.264957\pi\)
−0.673112 + 0.739541i \(0.735043\pi\)
\(54\) 0 0
\(55\) 890.179 2.18240
\(56\) 0 0
\(57\) −902.407 −2.09696
\(58\) 0 0
\(59\) 277.391i 0.612089i 0.952017 + 0.306044i \(0.0990056\pi\)
−0.952017 + 0.306044i \(0.900994\pi\)
\(60\) 0 0
\(61\) 82.9526i 0.174115i 0.996203 + 0.0870573i \(0.0277463\pi\)
−0.996203 + 0.0870573i \(0.972254\pi\)
\(62\) 0 0
\(63\) 221.756 0.443471
\(64\) 0 0
\(65\) 321.474 0.613446
\(66\) 0 0
\(67\) − 397.969i − 0.725667i −0.931854 0.362833i \(-0.881809\pi\)
0.931854 0.362833i \(-0.118191\pi\)
\(68\) 0 0
\(69\) 917.325i 1.60048i
\(70\) 0 0
\(71\) 6.22055 0.0103978 0.00519889 0.999986i \(-0.498345\pi\)
0.00519889 + 0.999986i \(0.498345\pi\)
\(72\) 0 0
\(73\) −209.769 −0.336324 −0.168162 0.985759i \(-0.553783\pi\)
−0.168162 + 0.985759i \(0.553783\pi\)
\(74\) 0 0
\(75\) − 2816.44i − 4.33619i
\(76\) 0 0
\(77\) 280.736i 0.415491i
\(78\) 0 0
\(79\) −271.902 −0.387233 −0.193617 0.981077i \(-0.562022\pi\)
−0.193617 + 0.981077i \(0.562022\pi\)
\(80\) 0 0
\(81\) −580.756 −0.796648
\(82\) 0 0
\(83\) − 1010.28i − 1.33606i −0.744136 0.668028i \(-0.767138\pi\)
0.744136 0.668028i \(-0.232862\pi\)
\(84\) 0 0
\(85\) − 2476.41i − 3.16005i
\(86\) 0 0
\(87\) 711.559 0.876863
\(88\) 0 0
\(89\) −730.420 −0.869937 −0.434969 0.900446i \(-0.643241\pi\)
−0.434969 + 0.900446i \(0.643241\pi\)
\(90\) 0 0
\(91\) 101.383i 0.116790i
\(92\) 0 0
\(93\) 1390.87i 1.55082i
\(94\) 0 0
\(95\) −2614.79 −2.82392
\(96\) 0 0
\(97\) 707.451 0.740523 0.370262 0.928927i \(-0.379268\pi\)
0.370262 + 0.928927i \(0.379268\pi\)
\(98\) 0 0
\(99\) 1270.51i 1.28981i
\(100\) 0 0
\(101\) 596.558i 0.587720i 0.955849 + 0.293860i \(0.0949399\pi\)
−0.955849 + 0.293860i \(0.905060\pi\)
\(102\) 0 0
\(103\) 539.959 0.516541 0.258270 0.966073i \(-0.416847\pi\)
0.258270 + 0.966073i \(0.416847\pi\)
\(104\) 0 0
\(105\) 1190.20 1.10620
\(106\) 0 0
\(107\) 660.497i 0.596754i 0.954448 + 0.298377i \(0.0964453\pi\)
−0.954448 + 0.298377i \(0.903555\pi\)
\(108\) 0 0
\(109\) 234.157i 0.205763i 0.994694 + 0.102881i \(0.0328062\pi\)
−0.994694 + 0.102881i \(0.967194\pi\)
\(110\) 0 0
\(111\) 1892.77 1.61850
\(112\) 0 0
\(113\) −1740.74 −1.44916 −0.724578 0.689193i \(-0.757965\pi\)
−0.724578 + 0.689193i \(0.757965\pi\)
\(114\) 0 0
\(115\) 2658.02i 2.15532i
\(116\) 0 0
\(117\) 458.825i 0.362550i
\(118\) 0 0
\(119\) 780.985 0.601620
\(120\) 0 0
\(121\) −277.420 −0.208430
\(122\) 0 0
\(123\) 445.316i 0.326445i
\(124\) 0 0
\(125\) − 5386.32i − 3.85414i
\(126\) 0 0
\(127\) −341.377 −0.238522 −0.119261 0.992863i \(-0.538053\pi\)
−0.119261 + 0.992863i \(0.538053\pi\)
\(128\) 0 0
\(129\) −1914.18 −1.30647
\(130\) 0 0
\(131\) − 405.014i − 0.270124i −0.990837 0.135062i \(-0.956877\pi\)
0.990837 0.135062i \(-0.0431233\pi\)
\(132\) 0 0
\(133\) − 824.627i − 0.537626i
\(134\) 0 0
\(135\) 795.645 0.507246
\(136\) 0 0
\(137\) −1590.40 −0.991803 −0.495902 0.868379i \(-0.665162\pi\)
−0.495902 + 0.868379i \(0.665162\pi\)
\(138\) 0 0
\(139\) 605.609i 0.369547i 0.982781 + 0.184774i \(0.0591552\pi\)
−0.982781 + 0.184774i \(0.940845\pi\)
\(140\) 0 0
\(141\) − 780.677i − 0.466276i
\(142\) 0 0
\(143\) −580.856 −0.339676
\(144\) 0 0
\(145\) 2061.79 1.18085
\(146\) 0 0
\(147\) 375.352i 0.210602i
\(148\) 0 0
\(149\) 1986.22i 1.09206i 0.837764 + 0.546032i \(0.183862\pi\)
−0.837764 + 0.546032i \(0.816138\pi\)
\(150\) 0 0
\(151\) 678.905 0.365884 0.182942 0.983124i \(-0.441438\pi\)
0.182942 + 0.983124i \(0.441438\pi\)
\(152\) 0 0
\(153\) 3534.46 1.86761
\(154\) 0 0
\(155\) 4030.14i 2.08844i
\(156\) 0 0
\(157\) − 3202.21i − 1.62780i −0.581006 0.813899i \(-0.697341\pi\)
0.581006 0.813899i \(-0.302659\pi\)
\(158\) 0 0
\(159\) −4371.69 −2.18049
\(160\) 0 0
\(161\) −838.259 −0.410336
\(162\) 0 0
\(163\) − 340.941i − 0.163831i −0.996639 0.0819157i \(-0.973896\pi\)
0.996639 0.0819157i \(-0.0261038\pi\)
\(164\) 0 0
\(165\) 6819.00i 3.21732i
\(166\) 0 0
\(167\) −3038.90 −1.40812 −0.704062 0.710138i \(-0.748633\pi\)
−0.704062 + 0.710138i \(0.748633\pi\)
\(168\) 0 0
\(169\) 1987.23 0.904521
\(170\) 0 0
\(171\) − 3731.97i − 1.66895i
\(172\) 0 0
\(173\) 2611.06i 1.14749i 0.819035 + 0.573743i \(0.194509\pi\)
−0.819035 + 0.573743i \(0.805491\pi\)
\(174\) 0 0
\(175\) 2573.68 1.11173
\(176\) 0 0
\(177\) −2124.88 −0.902351
\(178\) 0 0
\(179\) − 2055.56i − 0.858325i −0.903227 0.429162i \(-0.858809\pi\)
0.903227 0.429162i \(-0.141191\pi\)
\(180\) 0 0
\(181\) 1986.95i 0.815961i 0.912991 + 0.407981i \(0.133767\pi\)
−0.912991 + 0.407981i \(0.866233\pi\)
\(182\) 0 0
\(183\) −635.438 −0.256683
\(184\) 0 0
\(185\) 5484.44 2.17959
\(186\) 0 0
\(187\) 4474.50i 1.74977i
\(188\) 0 0
\(189\) 250.923i 0.0965711i
\(190\) 0 0
\(191\) 441.866 0.167394 0.0836971 0.996491i \(-0.473327\pi\)
0.0836971 + 0.996491i \(0.473327\pi\)
\(192\) 0 0
\(193\) −5059.63 −1.88705 −0.943524 0.331304i \(-0.892511\pi\)
−0.943524 + 0.331304i \(0.892511\pi\)
\(194\) 0 0
\(195\) 2462.58i 0.904352i
\(196\) 0 0
\(197\) 3150.30i 1.13934i 0.821875 + 0.569669i \(0.192928\pi\)
−0.821875 + 0.569669i \(0.807072\pi\)
\(198\) 0 0
\(199\) −539.846 −0.192305 −0.0961525 0.995367i \(-0.530654\pi\)
−0.0961525 + 0.995367i \(0.530654\pi\)
\(200\) 0 0
\(201\) 3048.54 1.06979
\(202\) 0 0
\(203\) 650.228i 0.224813i
\(204\) 0 0
\(205\) 1290.34i 0.439614i
\(206\) 0 0
\(207\) −3793.66 −1.27380
\(208\) 0 0
\(209\) 4724.54 1.56365
\(210\) 0 0
\(211\) − 5413.14i − 1.76614i −0.469239 0.883071i \(-0.655472\pi\)
0.469239 0.883071i \(-0.344528\pi\)
\(212\) 0 0
\(213\) 47.6510i 0.0153286i
\(214\) 0 0
\(215\) −5546.48 −1.75938
\(216\) 0 0
\(217\) −1270.98 −0.397604
\(218\) 0 0
\(219\) − 1606.88i − 0.495814i
\(220\) 0 0
\(221\) 1615.89i 0.491841i
\(222\) 0 0
\(223\) 2289.18 0.687422 0.343711 0.939075i \(-0.388316\pi\)
0.343711 + 0.939075i \(0.388316\pi\)
\(224\) 0 0
\(225\) 11647.6 3.45113
\(226\) 0 0
\(227\) 6742.24i 1.97136i 0.168634 + 0.985679i \(0.446064\pi\)
−0.168634 + 0.985679i \(0.553936\pi\)
\(228\) 0 0
\(229\) − 1536.97i − 0.443520i −0.975101 0.221760i \(-0.928820\pi\)
0.975101 0.221760i \(-0.0711801\pi\)
\(230\) 0 0
\(231\) −2150.51 −0.612524
\(232\) 0 0
\(233\) −1568.19 −0.440926 −0.220463 0.975395i \(-0.570757\pi\)
−0.220463 + 0.975395i \(0.570757\pi\)
\(234\) 0 0
\(235\) − 2262.07i − 0.627920i
\(236\) 0 0
\(237\) − 2082.84i − 0.570865i
\(238\) 0 0
\(239\) 4907.22 1.32812 0.664062 0.747677i \(-0.268831\pi\)
0.664062 + 0.747677i \(0.268831\pi\)
\(240\) 0 0
\(241\) 1403.57 0.375154 0.187577 0.982250i \(-0.439937\pi\)
0.187577 + 0.982250i \(0.439937\pi\)
\(242\) 0 0
\(243\) − 5416.58i − 1.42993i
\(244\) 0 0
\(245\) 1087.61i 0.283612i
\(246\) 0 0
\(247\) 1706.19 0.439524
\(248\) 0 0
\(249\) 7739.01 1.96964
\(250\) 0 0
\(251\) 3774.48i 0.949175i 0.880208 + 0.474588i \(0.157403\pi\)
−0.880208 + 0.474588i \(0.842597\pi\)
\(252\) 0 0
\(253\) − 4802.64i − 1.19344i
\(254\) 0 0
\(255\) 18969.9 4.65860
\(256\) 0 0
\(257\) −3233.01 −0.784708 −0.392354 0.919814i \(-0.628339\pi\)
−0.392354 + 0.919814i \(0.628339\pi\)
\(258\) 0 0
\(259\) 1729.63i 0.414957i
\(260\) 0 0
\(261\) 2942.70i 0.697887i
\(262\) 0 0
\(263\) 3259.84 0.764298 0.382149 0.924101i \(-0.375184\pi\)
0.382149 + 0.924101i \(0.375184\pi\)
\(264\) 0 0
\(265\) −12667.3 −2.93640
\(266\) 0 0
\(267\) − 5595.21i − 1.28248i
\(268\) 0 0
\(269\) 7328.77i 1.66113i 0.556925 + 0.830563i \(0.311981\pi\)
−0.556925 + 0.830563i \(0.688019\pi\)
\(270\) 0 0
\(271\) −7009.29 −1.57116 −0.785579 0.618761i \(-0.787635\pi\)
−0.785579 + 0.618761i \(0.787635\pi\)
\(272\) 0 0
\(273\) −776.622 −0.172173
\(274\) 0 0
\(275\) 14745.4i 3.23339i
\(276\) 0 0
\(277\) 3753.77i 0.814233i 0.913376 + 0.407116i \(0.133466\pi\)
−0.913376 + 0.407116i \(0.866534\pi\)
\(278\) 0 0
\(279\) −5752.02 −1.23428
\(280\) 0 0
\(281\) −36.9750 −0.00784961 −0.00392481 0.999992i \(-0.501249\pi\)
−0.00392481 + 0.999992i \(0.501249\pi\)
\(282\) 0 0
\(283\) 3236.79i 0.679884i 0.940446 + 0.339942i \(0.110407\pi\)
−0.940446 + 0.339942i \(0.889593\pi\)
\(284\) 0 0
\(285\) − 20030.0i − 4.16306i
\(286\) 0 0
\(287\) −406.933 −0.0836951
\(288\) 0 0
\(289\) 7534.69 1.53362
\(290\) 0 0
\(291\) 5419.25i 1.09169i
\(292\) 0 0
\(293\) − 4412.89i − 0.879876i −0.898028 0.439938i \(-0.855000\pi\)
0.898028 0.439938i \(-0.145000\pi\)
\(294\) 0 0
\(295\) −6157.01 −1.21517
\(296\) 0 0
\(297\) −1437.61 −0.280871
\(298\) 0 0
\(299\) − 1734.40i − 0.335461i
\(300\) 0 0
\(301\) − 1749.19i − 0.334956i
\(302\) 0 0
\(303\) −4569.78 −0.866426
\(304\) 0 0
\(305\) −1841.23 −0.345667
\(306\) 0 0
\(307\) − 588.428i − 0.109392i −0.998503 0.0546961i \(-0.982581\pi\)
0.998503 0.0546961i \(-0.0174190\pi\)
\(308\) 0 0
\(309\) 4136.22i 0.761493i
\(310\) 0 0
\(311\) −7495.29 −1.36662 −0.683310 0.730128i \(-0.739460\pi\)
−0.683310 + 0.730128i \(0.739460\pi\)
\(312\) 0 0
\(313\) −6652.87 −1.20141 −0.600707 0.799469i \(-0.705114\pi\)
−0.600707 + 0.799469i \(0.705114\pi\)
\(314\) 0 0
\(315\) 4922.14i 0.880416i
\(316\) 0 0
\(317\) − 7215.06i − 1.27835i −0.769060 0.639177i \(-0.779275\pi\)
0.769060 0.639177i \(-0.220725\pi\)
\(318\) 0 0
\(319\) −3725.35 −0.653855
\(320\) 0 0
\(321\) −5059.58 −0.879745
\(322\) 0 0
\(323\) − 13143.3i − 2.26412i
\(324\) 0 0
\(325\) 5325.08i 0.908868i
\(326\) 0 0
\(327\) −1793.70 −0.303339
\(328\) 0 0
\(329\) 713.389 0.119545
\(330\) 0 0
\(331\) − 1123.85i − 0.186623i −0.995637 0.0933116i \(-0.970255\pi\)
0.995637 0.0933116i \(-0.0297453\pi\)
\(332\) 0 0
\(333\) 7827.67i 1.28815i
\(334\) 0 0
\(335\) 8833.38 1.44065
\(336\) 0 0
\(337\) −735.459 −0.118881 −0.0594407 0.998232i \(-0.518932\pi\)
−0.0594407 + 0.998232i \(0.518932\pi\)
\(338\) 0 0
\(339\) − 13334.5i − 2.13637i
\(340\) 0 0
\(341\) − 7281.85i − 1.15641i
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −20361.1 −3.17740
\(346\) 0 0
\(347\) 8412.83i 1.30151i 0.759287 + 0.650756i \(0.225548\pi\)
−0.759287 + 0.650756i \(0.774452\pi\)
\(348\) 0 0
\(349\) 8577.90i 1.31566i 0.753167 + 0.657829i \(0.228525\pi\)
−0.753167 + 0.657829i \(0.771475\pi\)
\(350\) 0 0
\(351\) −519.171 −0.0789496
\(352\) 0 0
\(353\) −34.2817 −0.00516892 −0.00258446 0.999997i \(-0.500823\pi\)
−0.00258446 + 0.999997i \(0.500823\pi\)
\(354\) 0 0
\(355\) 138.072i 0.0206426i
\(356\) 0 0
\(357\) 5982.54i 0.886918i
\(358\) 0 0
\(359\) 1007.89 0.148174 0.0740872 0.997252i \(-0.476396\pi\)
0.0740872 + 0.997252i \(0.476396\pi\)
\(360\) 0 0
\(361\) −7018.75 −1.02329
\(362\) 0 0
\(363\) − 2125.11i − 0.307271i
\(364\) 0 0
\(365\) − 4656.07i − 0.667698i
\(366\) 0 0
\(367\) −13076.7 −1.85994 −0.929969 0.367638i \(-0.880166\pi\)
−0.929969 + 0.367638i \(0.880166\pi\)
\(368\) 0 0
\(369\) −1841.63 −0.259815
\(370\) 0 0
\(371\) − 3994.88i − 0.559040i
\(372\) 0 0
\(373\) 8552.62i 1.18723i 0.804748 + 0.593616i \(0.202300\pi\)
−0.804748 + 0.593616i \(0.797700\pi\)
\(374\) 0 0
\(375\) 41260.6 5.68183
\(376\) 0 0
\(377\) −1345.35 −0.183791
\(378\) 0 0
\(379\) − 9753.81i − 1.32195i −0.750408 0.660975i \(-0.770143\pi\)
0.750408 0.660975i \(-0.229857\pi\)
\(380\) 0 0
\(381\) − 2615.03i − 0.351633i
\(382\) 0 0
\(383\) −7141.71 −0.952805 −0.476402 0.879227i \(-0.658059\pi\)
−0.476402 + 0.879227i \(0.658059\pi\)
\(384\) 0 0
\(385\) −6231.26 −0.824868
\(386\) 0 0
\(387\) − 7916.22i − 1.03980i
\(388\) 0 0
\(389\) − 4854.81i − 0.632773i −0.948630 0.316386i \(-0.897530\pi\)
0.948630 0.316386i \(-0.102470\pi\)
\(390\) 0 0
\(391\) −13360.6 −1.72806
\(392\) 0 0
\(393\) 3102.51 0.398221
\(394\) 0 0
\(395\) − 6035.19i − 0.768768i
\(396\) 0 0
\(397\) − 10401.6i − 1.31496i −0.753471 0.657481i \(-0.771622\pi\)
0.753471 0.657481i \(-0.228378\pi\)
\(398\) 0 0
\(399\) 6316.85 0.792577
\(400\) 0 0
\(401\) 4386.56 0.546271 0.273135 0.961976i \(-0.411939\pi\)
0.273135 + 0.961976i \(0.411939\pi\)
\(402\) 0 0
\(403\) − 2629.73i − 0.325052i
\(404\) 0 0
\(405\) − 12890.6i − 1.58157i
\(406\) 0 0
\(407\) −9909.56 −1.20688
\(408\) 0 0
\(409\) −6474.49 −0.782746 −0.391373 0.920232i \(-0.628000\pi\)
−0.391373 + 0.920232i \(0.628000\pi\)
\(410\) 0 0
\(411\) − 12182.9i − 1.46213i
\(412\) 0 0
\(413\) − 1941.74i − 0.231348i
\(414\) 0 0
\(415\) 22424.3 2.65245
\(416\) 0 0
\(417\) −4639.12 −0.544793
\(418\) 0 0
\(419\) 4781.90i 0.557544i 0.960357 + 0.278772i \(0.0899274\pi\)
−0.960357 + 0.278772i \(0.910073\pi\)
\(420\) 0 0
\(421\) − 271.468i − 0.0314265i −0.999877 0.0157133i \(-0.994998\pi\)
0.999877 0.0157133i \(-0.00500189\pi\)
\(422\) 0 0
\(423\) 3228.54 0.371104
\(424\) 0 0
\(425\) 41020.6 4.68186
\(426\) 0 0
\(427\) − 580.668i − 0.0658091i
\(428\) 0 0
\(429\) − 4449.50i − 0.500756i
\(430\) 0 0
\(431\) 10024.3 1.12031 0.560153 0.828389i \(-0.310742\pi\)
0.560153 + 0.828389i \(0.310742\pi\)
\(432\) 0 0
\(433\) 14997.2 1.66448 0.832242 0.554413i \(-0.187057\pi\)
0.832242 + 0.554413i \(0.187057\pi\)
\(434\) 0 0
\(435\) 15793.9i 1.74082i
\(436\) 0 0
\(437\) 14107.2i 1.54425i
\(438\) 0 0
\(439\) 7619.62 0.828393 0.414196 0.910188i \(-0.364063\pi\)
0.414196 + 0.910188i \(0.364063\pi\)
\(440\) 0 0
\(441\) −1552.30 −0.167616
\(442\) 0 0
\(443\) 3188.70i 0.341985i 0.985272 + 0.170993i \(0.0546975\pi\)
−0.985272 + 0.170993i \(0.945303\pi\)
\(444\) 0 0
\(445\) − 16212.5i − 1.72707i
\(446\) 0 0
\(447\) −15215.0 −1.60994
\(448\) 0 0
\(449\) 3446.04 0.362202 0.181101 0.983464i \(-0.442034\pi\)
0.181101 + 0.983464i \(0.442034\pi\)
\(450\) 0 0
\(451\) − 2331.44i − 0.243422i
\(452\) 0 0
\(453\) 5200.58i 0.539392i
\(454\) 0 0
\(455\) −2250.32 −0.231861
\(456\) 0 0
\(457\) −7559.50 −0.773782 −0.386891 0.922126i \(-0.626451\pi\)
−0.386891 + 0.922126i \(0.626451\pi\)
\(458\) 0 0
\(459\) 3999.32i 0.406694i
\(460\) 0 0
\(461\) 10358.3i 1.04650i 0.852180 + 0.523249i \(0.175280\pi\)
−0.852180 + 0.523249i \(0.824720\pi\)
\(462\) 0 0
\(463\) 5546.46 0.556730 0.278365 0.960475i \(-0.410208\pi\)
0.278365 + 0.960475i \(0.410208\pi\)
\(464\) 0 0
\(465\) −30871.9 −3.07882
\(466\) 0 0
\(467\) 7296.87i 0.723038i 0.932365 + 0.361519i \(0.117742\pi\)
−0.932365 + 0.361519i \(0.882258\pi\)
\(468\) 0 0
\(469\) 2785.78i 0.274276i
\(470\) 0 0
\(471\) 24529.8 2.39973
\(472\) 0 0
\(473\) 10021.7 0.974199
\(474\) 0 0
\(475\) − 43312.8i − 4.18385i
\(476\) 0 0
\(477\) − 18079.4i − 1.73543i
\(478\) 0 0
\(479\) 19437.2 1.85409 0.927046 0.374946i \(-0.122339\pi\)
0.927046 + 0.374946i \(0.122339\pi\)
\(480\) 0 0
\(481\) −3578.68 −0.339239
\(482\) 0 0
\(483\) − 6421.28i − 0.604924i
\(484\) 0 0
\(485\) 15702.7i 1.47015i
\(486\) 0 0
\(487\) 6540.19 0.608551 0.304276 0.952584i \(-0.401586\pi\)
0.304276 + 0.952584i \(0.401586\pi\)
\(488\) 0 0
\(489\) 2611.69 0.241523
\(490\) 0 0
\(491\) 8542.59i 0.785176i 0.919714 + 0.392588i \(0.128420\pi\)
−0.919714 + 0.392588i \(0.871580\pi\)
\(492\) 0 0
\(493\) 10363.6i 0.946764i
\(494\) 0 0
\(495\) −28200.4 −2.56064
\(496\) 0 0
\(497\) −43.5438 −0.00392999
\(498\) 0 0
\(499\) − 17254.6i − 1.54794i −0.633224 0.773968i \(-0.718269\pi\)
0.633224 0.773968i \(-0.281731\pi\)
\(500\) 0 0
\(501\) − 23278.7i − 2.07588i
\(502\) 0 0
\(503\) −5597.51 −0.496184 −0.248092 0.968736i \(-0.579804\pi\)
−0.248092 + 0.968736i \(0.579804\pi\)
\(504\) 0 0
\(505\) −13241.3 −1.16679
\(506\) 0 0
\(507\) 15222.7i 1.33346i
\(508\) 0 0
\(509\) − 5232.92i − 0.455688i −0.973698 0.227844i \(-0.926832\pi\)
0.973698 0.227844i \(-0.0731676\pi\)
\(510\) 0 0
\(511\) 1468.38 0.127118
\(512\) 0 0
\(513\) 4222.81 0.363434
\(514\) 0 0
\(515\) 11985.0i 1.02548i
\(516\) 0 0
\(517\) 4087.22i 0.347690i
\(518\) 0 0
\(519\) −20001.4 −1.69164
\(520\) 0 0
\(521\) 7429.89 0.624778 0.312389 0.949954i \(-0.398871\pi\)
0.312389 + 0.949954i \(0.398871\pi\)
\(522\) 0 0
\(523\) − 2963.01i − 0.247732i −0.992299 0.123866i \(-0.960471\pi\)
0.992299 0.123866i \(-0.0395292\pi\)
\(524\) 0 0
\(525\) 19715.1i 1.63893i
\(526\) 0 0
\(527\) −20257.5 −1.67444
\(528\) 0 0
\(529\) 2173.37 0.178628
\(530\) 0 0
\(531\) − 8787.60i − 0.718172i
\(532\) 0 0
\(533\) − 841.964i − 0.0684231i
\(534\) 0 0
\(535\) −14660.5 −1.18473
\(536\) 0 0
\(537\) 15746.1 1.26536
\(538\) 0 0
\(539\) − 1965.15i − 0.157041i
\(540\) 0 0
\(541\) 19355.9i 1.53822i 0.639118 + 0.769109i \(0.279299\pi\)
−0.639118 + 0.769109i \(0.720701\pi\)
\(542\) 0 0
\(543\) −15220.6 −1.20290
\(544\) 0 0
\(545\) −5197.38 −0.408498
\(546\) 0 0
\(547\) 7653.95i 0.598280i 0.954209 + 0.299140i \(0.0966997\pi\)
−0.954209 + 0.299140i \(0.903300\pi\)
\(548\) 0 0
\(549\) − 2627.90i − 0.204291i
\(550\) 0 0
\(551\) 10942.8 0.846057
\(552\) 0 0
\(553\) 1903.32 0.146360
\(554\) 0 0
\(555\) 42012.2i 3.21319i
\(556\) 0 0
\(557\) 10896.0i 0.828864i 0.910080 + 0.414432i \(0.136020\pi\)
−0.910080 + 0.414432i \(0.863980\pi\)
\(558\) 0 0
\(559\) 3619.16 0.273836
\(560\) 0 0
\(561\) −34275.8 −2.57954
\(562\) 0 0
\(563\) 15441.8i 1.15594i 0.816057 + 0.577972i \(0.196156\pi\)
−0.816057 + 0.577972i \(0.803844\pi\)
\(564\) 0 0
\(565\) − 38637.6i − 2.87699i
\(566\) 0 0
\(567\) 4065.29 0.301104
\(568\) 0 0
\(569\) −5615.59 −0.413739 −0.206870 0.978369i \(-0.566328\pi\)
−0.206870 + 0.978369i \(0.566328\pi\)
\(570\) 0 0
\(571\) 14371.0i 1.05325i 0.850097 + 0.526626i \(0.176543\pi\)
−0.850097 + 0.526626i \(0.823457\pi\)
\(572\) 0 0
\(573\) 3384.81i 0.246775i
\(574\) 0 0
\(575\) −44028.9 −3.19327
\(576\) 0 0
\(577\) −18933.5 −1.36605 −0.683027 0.730393i \(-0.739337\pi\)
−0.683027 + 0.730393i \(0.739337\pi\)
\(578\) 0 0
\(579\) − 38758.1i − 2.78192i
\(580\) 0 0
\(581\) 7071.96i 0.504982i
\(582\) 0 0
\(583\) 22887.9 1.62593
\(584\) 0 0
\(585\) −10184.1 −0.719765
\(586\) 0 0
\(587\) 17871.6i 1.25663i 0.777959 + 0.628315i \(0.216255\pi\)
−0.777959 + 0.628315i \(0.783745\pi\)
\(588\) 0 0
\(589\) 21389.6i 1.49633i
\(590\) 0 0
\(591\) −24132.1 −1.67963
\(592\) 0 0
\(593\) 45.4735 0.00314902 0.00157451 0.999999i \(-0.499499\pi\)
0.00157451 + 0.999999i \(0.499499\pi\)
\(594\) 0 0
\(595\) 17334.9i 1.19439i
\(596\) 0 0
\(597\) − 4135.36i − 0.283499i
\(598\) 0 0
\(599\) 10336.6 0.705078 0.352539 0.935797i \(-0.385318\pi\)
0.352539 + 0.935797i \(0.385318\pi\)
\(600\) 0 0
\(601\) 4844.95 0.328835 0.164417 0.986391i \(-0.447426\pi\)
0.164417 + 0.986391i \(0.447426\pi\)
\(602\) 0 0
\(603\) 12607.5i 0.851435i
\(604\) 0 0
\(605\) − 6157.67i − 0.413793i
\(606\) 0 0
\(607\) 15710.1 1.05050 0.525249 0.850949i \(-0.323972\pi\)
0.525249 + 0.850949i \(0.323972\pi\)
\(608\) 0 0
\(609\) −4980.91 −0.331423
\(610\) 0 0
\(611\) 1476.04i 0.0977317i
\(612\) 0 0
\(613\) 23320.2i 1.53653i 0.640130 + 0.768267i \(0.278881\pi\)
−0.640130 + 0.768267i \(0.721119\pi\)
\(614\) 0 0
\(615\) −9884.30 −0.648087
\(616\) 0 0
\(617\) −10540.0 −0.687720 −0.343860 0.939021i \(-0.611734\pi\)
−0.343860 + 0.939021i \(0.611734\pi\)
\(618\) 0 0
\(619\) 17788.6i 1.15507i 0.816367 + 0.577533i \(0.195984\pi\)
−0.816367 + 0.577533i \(0.804016\pi\)
\(620\) 0 0
\(621\) − 4292.62i − 0.277386i
\(622\) 0 0
\(623\) 5112.94 0.328805
\(624\) 0 0
\(625\) 73597.0 4.71021
\(626\) 0 0
\(627\) 36191.2i 2.30516i
\(628\) 0 0
\(629\) 27567.6i 1.74752i
\(630\) 0 0
\(631\) 12278.6 0.774648 0.387324 0.921944i \(-0.373399\pi\)
0.387324 + 0.921944i \(0.373399\pi\)
\(632\) 0 0
\(633\) 41466.1 2.60368
\(634\) 0 0
\(635\) − 7577.25i − 0.473534i
\(636\) 0 0
\(637\) − 709.684i − 0.0441424i
\(638\) 0 0
\(639\) −197.064 −0.0121999
\(640\) 0 0
\(641\) 15729.2 0.969216 0.484608 0.874732i \(-0.338962\pi\)
0.484608 + 0.874732i \(0.338962\pi\)
\(642\) 0 0
\(643\) 7527.17i 0.461652i 0.972995 + 0.230826i \(0.0741429\pi\)
−0.972995 + 0.230826i \(0.925857\pi\)
\(644\) 0 0
\(645\) − 42487.4i − 2.59371i
\(646\) 0 0
\(647\) −4431.02 −0.269245 −0.134622 0.990897i \(-0.542982\pi\)
−0.134622 + 0.990897i \(0.542982\pi\)
\(648\) 0 0
\(649\) 11124.8 0.672860
\(650\) 0 0
\(651\) − 9736.06i − 0.586154i
\(652\) 0 0
\(653\) − 4155.52i − 0.249032i −0.992218 0.124516i \(-0.960262\pi\)
0.992218 0.124516i \(-0.0397378\pi\)
\(654\) 0 0
\(655\) 8989.75 0.536272
\(656\) 0 0
\(657\) 6645.38 0.394613
\(658\) 0 0
\(659\) − 10380.1i − 0.613583i −0.951777 0.306791i \(-0.900745\pi\)
0.951777 0.306791i \(-0.0992554\pi\)
\(660\) 0 0
\(661\) − 17788.9i − 1.04676i −0.852099 0.523381i \(-0.824671\pi\)
0.852099 0.523381i \(-0.175329\pi\)
\(662\) 0 0
\(663\) −12378.2 −0.725080
\(664\) 0 0
\(665\) 18303.5 1.06734
\(666\) 0 0
\(667\) − 11123.7i − 0.645742i
\(668\) 0 0
\(669\) 17535.7i 1.01341i
\(670\) 0 0
\(671\) 3326.82 0.191402
\(672\) 0 0
\(673\) 13619.4 0.780074 0.390037 0.920799i \(-0.372462\pi\)
0.390037 + 0.920799i \(0.372462\pi\)
\(674\) 0 0
\(675\) 13179.5i 0.751525i
\(676\) 0 0
\(677\) − 10454.1i − 0.593478i −0.954959 0.296739i \(-0.904101\pi\)
0.954959 0.296739i \(-0.0958992\pi\)
\(678\) 0 0
\(679\) −4952.16 −0.279892
\(680\) 0 0
\(681\) −51647.3 −2.90621
\(682\) 0 0
\(683\) − 11405.9i − 0.638996i −0.947587 0.319498i \(-0.896486\pi\)
0.947587 0.319498i \(-0.103514\pi\)
\(684\) 0 0
\(685\) − 35300.8i − 1.96901i
\(686\) 0 0
\(687\) 11773.6 0.653844
\(688\) 0 0
\(689\) 8265.60 0.457031
\(690\) 0 0
\(691\) − 5921.64i − 0.326006i −0.986626 0.163003i \(-0.947882\pi\)
0.986626 0.163003i \(-0.0521180\pi\)
\(692\) 0 0
\(693\) − 8893.57i − 0.487502i
\(694\) 0 0
\(695\) −13442.2 −0.733656
\(696\) 0 0
\(697\) −6485.89 −0.352468
\(698\) 0 0
\(699\) − 12012.8i − 0.650021i
\(700\) 0 0
\(701\) 24236.4i 1.30584i 0.757426 + 0.652921i \(0.226457\pi\)
−0.757426 + 0.652921i \(0.773543\pi\)
\(702\) 0 0
\(703\) 29108.1 1.56164
\(704\) 0 0
\(705\) 17328.0 0.925690
\(706\) 0 0
\(707\) − 4175.90i − 0.222137i
\(708\) 0 0
\(709\) − 30145.3i − 1.59680i −0.602128 0.798400i \(-0.705680\pi\)
0.602128 0.798400i \(-0.294320\pi\)
\(710\) 0 0
\(711\) 8613.73 0.454346
\(712\) 0 0
\(713\) 21743.1 1.14206
\(714\) 0 0
\(715\) − 12892.8i − 0.674353i
\(716\) 0 0
\(717\) 37590.6i 1.95794i
\(718\) 0 0
\(719\) −5159.52 −0.267619 −0.133809 0.991007i \(-0.542721\pi\)
−0.133809 + 0.991007i \(0.542721\pi\)
\(720\) 0 0
\(721\) −3779.71 −0.195234
\(722\) 0 0
\(723\) 10751.7i 0.553059i
\(724\) 0 0
\(725\) 34152.7i 1.74952i
\(726\) 0 0
\(727\) 22475.2 1.14657 0.573286 0.819355i \(-0.305668\pi\)
0.573286 + 0.819355i \(0.305668\pi\)
\(728\) 0 0
\(729\) 25812.0 1.31139
\(730\) 0 0
\(731\) − 27879.4i − 1.41061i
\(732\) 0 0
\(733\) 15258.4i 0.768871i 0.923152 + 0.384436i \(0.125604\pi\)
−0.923152 + 0.384436i \(0.874396\pi\)
\(734\) 0 0
\(735\) −8331.38 −0.418106
\(736\) 0 0
\(737\) −15960.6 −0.797715
\(738\) 0 0
\(739\) 27519.3i 1.36984i 0.728616 + 0.684922i \(0.240164\pi\)
−0.728616 + 0.684922i \(0.759836\pi\)
\(740\) 0 0
\(741\) 13069.9i 0.647954i
\(742\) 0 0
\(743\) −38497.6 −1.90086 −0.950431 0.310937i \(-0.899357\pi\)
−0.950431 + 0.310937i \(0.899357\pi\)
\(744\) 0 0
\(745\) −44086.5 −2.16806
\(746\) 0 0
\(747\) 32005.2i 1.56761i
\(748\) 0 0
\(749\) − 4623.48i − 0.225552i
\(750\) 0 0
\(751\) 25060.1 1.21765 0.608827 0.793303i \(-0.291641\pi\)
0.608827 + 0.793303i \(0.291641\pi\)
\(752\) 0 0
\(753\) −28913.5 −1.39929
\(754\) 0 0
\(755\) 15069.1i 0.726384i
\(756\) 0 0
\(757\) − 7440.21i − 0.357225i −0.983920 0.178612i \(-0.942839\pi\)
0.983920 0.178612i \(-0.0571608\pi\)
\(758\) 0 0
\(759\) 36789.4 1.75938
\(760\) 0 0
\(761\) 11058.6 0.526773 0.263386 0.964690i \(-0.415161\pi\)
0.263386 + 0.964690i \(0.415161\pi\)
\(762\) 0 0
\(763\) − 1639.10i − 0.0777710i
\(764\) 0 0
\(765\) 78451.3i 3.70773i
\(766\) 0 0
\(767\) 4017.55 0.189133
\(768\) 0 0
\(769\) 39340.3 1.84479 0.922397 0.386243i \(-0.126227\pi\)
0.922397 + 0.386243i \(0.126227\pi\)
\(770\) 0 0
\(771\) − 24765.7i − 1.15683i
\(772\) 0 0
\(773\) 28953.3i 1.34719i 0.739100 + 0.673595i \(0.235251\pi\)
−0.739100 + 0.673595i \(0.764749\pi\)
\(774\) 0 0
\(775\) −66757.4 −3.09419
\(776\) 0 0
\(777\) −13249.4 −0.611736
\(778\) 0 0
\(779\) 6848.32i 0.314976i
\(780\) 0 0
\(781\) − 249.476i − 0.0114301i
\(782\) 0 0
\(783\) −3329.73 −0.151973
\(784\) 0 0
\(785\) 71076.8 3.23164
\(786\) 0 0
\(787\) − 15424.4i − 0.698627i −0.937006 0.349313i \(-0.886415\pi\)
0.937006 0.349313i \(-0.113585\pi\)
\(788\) 0 0
\(789\) 24971.2i 1.12674i
\(790\) 0 0
\(791\) 12185.2 0.547730
\(792\) 0 0
\(793\) 1201.43 0.0538008
\(794\) 0 0
\(795\) − 97034.6i − 4.32888i
\(796\) 0 0
\(797\) − 13348.5i − 0.593258i −0.954993 0.296629i \(-0.904138\pi\)
0.954993 0.296629i \(-0.0958625\pi\)
\(798\) 0 0
\(799\) 11370.3 0.503446
\(800\) 0 0
\(801\) 23139.3 1.02071
\(802\) 0 0
\(803\) 8412.82i 0.369716i
\(804\) 0 0
\(805\) − 18606.1i − 0.814633i
\(806\) 0 0
\(807\) −56140.2 −2.44886
\(808\) 0 0
\(809\) 18871.7 0.820139 0.410070 0.912054i \(-0.365504\pi\)
0.410070 + 0.912054i \(0.365504\pi\)
\(810\) 0 0
\(811\) 8113.79i 0.351312i 0.984452 + 0.175656i \(0.0562046\pi\)
−0.984452 + 0.175656i \(0.943795\pi\)
\(812\) 0 0
\(813\) − 53692.9i − 2.31623i
\(814\) 0 0
\(815\) 7567.57 0.325252
\(816\) 0 0
\(817\) −29437.4 −1.26057
\(818\) 0 0
\(819\) − 3211.77i − 0.137031i
\(820\) 0 0
\(821\) − 16368.2i − 0.695804i −0.937531 0.347902i \(-0.886894\pi\)
0.937531 0.347902i \(-0.113106\pi\)
\(822\) 0 0
\(823\) −34575.7 −1.46444 −0.732220 0.681069i \(-0.761516\pi\)
−0.732220 + 0.681069i \(0.761516\pi\)
\(824\) 0 0
\(825\) −112954. −4.76672
\(826\) 0 0
\(827\) 43222.0i 1.81739i 0.417466 + 0.908693i \(0.362918\pi\)
−0.417466 + 0.908693i \(0.637082\pi\)
\(828\) 0 0
\(829\) − 29288.6i − 1.22706i −0.789670 0.613532i \(-0.789748\pi\)
0.789670 0.613532i \(-0.210252\pi\)
\(830\) 0 0
\(831\) −28754.9 −1.20036
\(832\) 0 0
\(833\) −5466.89 −0.227391
\(834\) 0 0
\(835\) − 67451.8i − 2.79553i
\(836\) 0 0
\(837\) − 6508.55i − 0.268779i
\(838\) 0 0
\(839\) −16518.3 −0.679708 −0.339854 0.940478i \(-0.610378\pi\)
−0.339854 + 0.940478i \(0.610378\pi\)
\(840\) 0 0
\(841\) 15760.5 0.646213
\(842\) 0 0
\(843\) − 283.238i − 0.0115720i
\(844\) 0 0
\(845\) 44108.9i 1.79573i
\(846\) 0 0
\(847\) 1941.94 0.0787792
\(848\) 0 0
\(849\) −24794.6 −1.00230
\(850\) 0 0
\(851\) − 29589.3i − 1.19190i
\(852\) 0 0
\(853\) − 8649.24i − 0.347180i −0.984818 0.173590i \(-0.944463\pi\)
0.984818 0.173590i \(-0.0555367\pi\)
\(854\) 0 0
\(855\) 82835.3 3.31334
\(856\) 0 0
\(857\) 16342.9 0.651413 0.325707 0.945471i \(-0.394398\pi\)
0.325707 + 0.945471i \(0.394398\pi\)
\(858\) 0 0
\(859\) 29613.4i 1.17625i 0.808772 + 0.588123i \(0.200133\pi\)
−0.808772 + 0.588123i \(0.799867\pi\)
\(860\) 0 0
\(861\) − 3117.21i − 0.123385i
\(862\) 0 0
\(863\) 20366.7 0.803348 0.401674 0.915783i \(-0.368429\pi\)
0.401674 + 0.915783i \(0.368429\pi\)
\(864\) 0 0
\(865\) −57955.5 −2.27809
\(866\) 0 0
\(867\) 57717.6i 2.26089i
\(868\) 0 0
\(869\) 10904.7i 0.425680i
\(870\) 0 0
\(871\) −5763.92 −0.224228
\(872\) 0 0
\(873\) −22411.7 −0.868867
\(874\) 0 0
\(875\) 37704.3i 1.45673i
\(876\) 0 0
\(877\) − 35210.6i − 1.35573i −0.735186 0.677866i \(-0.762905\pi\)
0.735186 0.677866i \(-0.237095\pi\)
\(878\) 0 0
\(879\) 33803.8 1.29713
\(880\) 0 0
\(881\) −7354.03 −0.281230 −0.140615 0.990064i \(-0.544908\pi\)
−0.140615 + 0.990064i \(0.544908\pi\)
\(882\) 0 0
\(883\) − 28837.9i − 1.09906i −0.835473 0.549531i \(-0.814806\pi\)
0.835473 0.549531i \(-0.185194\pi\)
\(884\) 0 0
\(885\) − 47164.3i − 1.79142i
\(886\) 0 0
\(887\) 10861.0 0.411136 0.205568 0.978643i \(-0.434096\pi\)
0.205568 + 0.978643i \(0.434096\pi\)
\(888\) 0 0
\(889\) 2389.64 0.0901528
\(890\) 0 0
\(891\) 23291.3i 0.875744i
\(892\) 0 0
\(893\) − 12005.7i − 0.449895i
\(894\) 0 0
\(895\) 45625.6 1.70402
\(896\) 0 0
\(897\) 13285.9 0.494542
\(898\) 0 0
\(899\) − 16865.9i − 0.625706i
\(900\) 0 0
\(901\) − 63672.3i − 2.35431i
\(902\) 0 0
\(903\) 13399.3 0.493798
\(904\) 0 0
\(905\) −44102.7 −1.61992
\(906\) 0 0
\(907\) 18682.8i 0.683961i 0.939707 + 0.341980i \(0.111098\pi\)
−0.939707 + 0.341980i \(0.888902\pi\)
\(908\) 0 0
\(909\) − 18898.6i − 0.689580i
\(910\) 0 0
\(911\) 34392.2 1.25078 0.625392 0.780311i \(-0.284939\pi\)
0.625392 + 0.780311i \(0.284939\pi\)
\(912\) 0 0
\(913\) −40517.4 −1.46871
\(914\) 0 0
\(915\) − 14104.3i − 0.509588i
\(916\) 0 0
\(917\) 2835.10i 0.102097i
\(918\) 0 0
\(919\) −14715.8 −0.528216 −0.264108 0.964493i \(-0.585078\pi\)
−0.264108 + 0.964493i \(0.585078\pi\)
\(920\) 0 0
\(921\) 4507.51 0.161268
\(922\) 0 0
\(923\) − 90.0943i − 0.00321288i
\(924\) 0 0
\(925\) 90847.3i 3.22923i
\(926\) 0 0
\(927\) −17105.6 −0.606065
\(928\) 0 0
\(929\) −36204.2 −1.27860 −0.639300 0.768957i \(-0.720776\pi\)
−0.639300 + 0.768957i \(0.720776\pi\)
\(930\) 0 0
\(931\) 5772.39i 0.203203i
\(932\) 0 0
\(933\) − 57415.8i − 2.01469i
\(934\) 0 0
\(935\) −99316.6 −3.47380
\(936\) 0 0
\(937\) 43636.5 1.52139 0.760694 0.649110i \(-0.224859\pi\)
0.760694 + 0.649110i \(0.224859\pi\)
\(938\) 0 0
\(939\) − 50962.7i − 1.77114i
\(940\) 0 0
\(941\) − 4751.54i − 0.164608i −0.996607 0.0823038i \(-0.973772\pi\)
0.996607 0.0823038i \(-0.0262278\pi\)
\(942\) 0 0
\(943\) 6961.54 0.240402
\(944\) 0 0
\(945\) −5569.52 −0.191721
\(946\) 0 0
\(947\) 49387.3i 1.69469i 0.531044 + 0.847344i \(0.321800\pi\)
−0.531044 + 0.847344i \(0.678200\pi\)
\(948\) 0 0
\(949\) 3038.16i 0.103923i
\(950\) 0 0
\(951\) 55269.2 1.88457
\(952\) 0 0
\(953\) −46336.1 −1.57500 −0.787499 0.616316i \(-0.788625\pi\)
−0.787499 + 0.616316i \(0.788625\pi\)
\(954\) 0 0
\(955\) 9807.72i 0.332325i
\(956\) 0 0
\(957\) − 28537.2i − 0.963924i
\(958\) 0 0
\(959\) 11132.8 0.374866
\(960\) 0 0
\(961\) 3176.38 0.106622
\(962\) 0 0
\(963\) − 20924.2i − 0.700180i
\(964\) 0 0
\(965\) − 112304.i − 3.74633i
\(966\) 0 0
\(967\) 21078.1 0.700957 0.350479 0.936571i \(-0.386019\pi\)
0.350479 + 0.936571i \(0.386019\pi\)
\(968\) 0 0
\(969\) 100681. 3.33781
\(970\) 0 0
\(971\) − 27225.5i − 0.899802i −0.893079 0.449901i \(-0.851459\pi\)
0.893079 0.449901i \(-0.148541\pi\)
\(972\) 0 0
\(973\) − 4239.26i − 0.139676i
\(974\) 0 0
\(975\) −40791.4 −1.33987
\(976\) 0 0
\(977\) 4699.41 0.153887 0.0769434 0.997035i \(-0.475484\pi\)
0.0769434 + 0.997035i \(0.475484\pi\)
\(978\) 0 0
\(979\) 29293.6i 0.956310i
\(980\) 0 0
\(981\) − 7417.96i − 0.241424i
\(982\) 0 0
\(983\) 48128.7 1.56161 0.780807 0.624773i \(-0.214808\pi\)
0.780807 + 0.624773i \(0.214808\pi\)
\(984\) 0 0
\(985\) −69924.5 −2.26191
\(986\) 0 0
\(987\) 5464.74i 0.176236i
\(988\) 0 0
\(989\) 29924.0i 0.962111i
\(990\) 0 0
\(991\) 214.168 0.00686506 0.00343253 0.999994i \(-0.498907\pi\)
0.00343253 + 0.999994i \(0.498907\pi\)
\(992\) 0 0
\(993\) 8608.96 0.275123
\(994\) 0 0
\(995\) − 11982.5i − 0.381780i
\(996\) 0 0
\(997\) − 12678.3i − 0.402735i −0.979516 0.201368i \(-0.935461\pi\)
0.979516 0.201368i \(-0.0645385\pi\)
\(998\) 0 0
\(999\) −8857.20 −0.280510
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.4.b.a.225.3 yes 4
4.3 odd 2 448.4.b.b.225.2 yes 4
8.3 odd 2 448.4.b.b.225.3 yes 4
8.5 even 2 inner 448.4.b.a.225.2 4
16.3 odd 4 1792.4.a.b.1.2 2
16.5 even 4 1792.4.a.a.1.2 2
16.11 odd 4 1792.4.a.c.1.1 2
16.13 even 4 1792.4.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
448.4.b.a.225.2 4 8.5 even 2 inner
448.4.b.a.225.3 yes 4 1.1 even 1 trivial
448.4.b.b.225.2 yes 4 4.3 odd 2
448.4.b.b.225.3 yes 4 8.3 odd 2
1792.4.a.a.1.2 2 16.5 even 4
1792.4.a.b.1.2 2 16.3 odd 4
1792.4.a.c.1.1 2 16.11 odd 4
1792.4.a.d.1.1 2 16.13 even 4