Properties

Label 18.15.b.b
Level 1818
Weight 1515
Character orbit 18.b
Analytic conductor 22.37922.379
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,15,Mod(17,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 15, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.17");
 
S:= CuspForms(chi, 15);
 
N := Newforms(S);
 
Level: N N == 18=232 18 = 2 \cdot 3^{2}
Weight: k k == 15 15
Character orbit: [χ][\chi] == 18.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 22.379214267322.3792142673
Analytic rank: 00
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x344875x2+44876x+503643366 x^{4} - 2x^{3} - 44875x^{2} + 44876x + 503643366 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 2738 2^{7}\cdot 3^{8}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+64β1q28192q4+(β33081β1)q5+(5β2+664916)q7524288β1q8+(64β2+394368)q10+(110β3+12410508β1)q11++(851092480β3+45194578419648β1)q98+O(q100) q + 64 \beta_1 q^{2} - 8192 q^{4} + ( - \beta_{3} - 3081 \beta_1) q^{5} + ( - 5 \beta_{2} + 664916) q^{7} - 524288 \beta_1 q^{8} + (64 \beta_{2} + 394368) q^{10} + (110 \beta_{3} + 12410508 \beta_1) q^{11}+ \cdots + ( - 851092480 \beta_{3} + 45194578419648 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q32768q4+2659664q7+1577472q10+60092672q13+268435456q16220734784q196354180096q2251043883876q2521787967488q28106337705584q31139572822528q34++67539358987904q97+O(q100) 4 q - 32768 q^{4} + 2659664 q^{7} + 1577472 q^{10} + 60092672 q^{13} + 268435456 q^{16} - 220734784 q^{19} - 6354180096 q^{22} - 51043883876 q^{25} - 21787967488 q^{28} - 106337705584 q^{31} - 139572822528 q^{34}+ \cdots + 67539358987904 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x344875x2+44876x+503643366 x^{4} - 2x^{3} - 44875x^{2} + 44876x + 503643366 : Copy content Toggle raw display

β1\beta_{1}== (2ν33ν244867ν+22434)/89769 ( 2\nu^{3} - 3\nu^{2} - 44867\nu + 22434 ) / 89769 Copy content Toggle raw display
β2\beta_{2}== (864ν3+1296ν2+58162752ν29081592)/29923 ( -864\nu^{3} + 1296\nu^{2} + 58162752\nu - 29081592 ) / 29923 Copy content Toggle raw display
β3\beta_{3}== 324ν2324ν7269912 324\nu^{2} - 324\nu - 7269912 Copy content Toggle raw display
ν\nu== (β2+1296β1+648)/1296 ( \beta_{2} + 1296\beta _1 + 648 ) / 1296 Copy content Toggle raw display
ν2\nu^{2}== (4β3+β2+1296β1+29080296)/1296 ( 4\beta_{3} + \beta_{2} + 1296\beta _1 + 29080296 ) / 1296 Copy content Toggle raw display
ν3\nu^{3}== (6β3+22435β2+87246072β1+43620120)/1296 ( 6\beta_{3} + 22435\beta_{2} + 87246072\beta _1 + 43620120 ) / 1296 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/18Z)×\left(\mathbb{Z}/18\mathbb{Z}\right)^\times.

nn 1111
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
17.1
−149.301 1.41421i
150.301 1.41421i
150.301 + 1.41421i
−149.301 + 1.41421i
90.5097i 0 −8192.00 132922.i 0 1.63562e6 741455.i 0 −1.20307e7
17.2 90.5097i 0 −8192.00 141636.i 0 −305793. 741455.i 0 1.28194e7
17.3 90.5097i 0 −8192.00 141636.i 0 −305793. 741455.i 0 1.28194e7
17.4 90.5097i 0 −8192.00 132922.i 0 1.63562e6 741455.i 0 −1.20307e7
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.15.b.b 4
3.b odd 2 1 inner 18.15.b.b 4
4.b odd 2 1 144.15.e.b 4
12.b even 2 1 144.15.e.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.15.b.b 4 1.a even 1 1 trivial
18.15.b.b 4 3.b odd 2 1 inner
144.15.e.b 4 4.b odd 2 1
144.15.e.b 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+37728973188T52+354437717876817322500 T_{5}^{4} + 37728973188T_{5}^{2} + 354437717876817322500 acting on S15new(18,[χ])S_{15}^{\mathrm{new}}(18, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+8192)2 (T^{2} + 8192)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4++35 ⁣ ⁣00 T^{4} + \cdots + 35\!\cdots\!00 Copy content Toggle raw display
77 (T21329832T500161786544)2 (T^{2} - 1329832 T - 500161786544)^{2} Copy content Toggle raw display
1111 T4++64 ⁣ ⁣84 T^{4} + \cdots + 64\!\cdots\!84 Copy content Toggle raw display
1313 (T2+24 ⁣ ⁣76)2 (T^{2} + \cdots - 24\!\cdots\!76)^{2} Copy content Toggle raw display
1717 T4++21 ⁣ ⁣84 T^{4} + \cdots + 21\!\cdots\!84 Copy content Toggle raw display
1919 (T2+35 ⁣ ⁣84)2 (T^{2} + \cdots - 35\!\cdots\!84)^{2} Copy content Toggle raw display
2323 T4++18 ⁣ ⁣44 T^{4} + \cdots + 18\!\cdots\!44 Copy content Toggle raw display
2929 T4++16 ⁣ ⁣64 T^{4} + \cdots + 16\!\cdots\!64 Copy content Toggle raw display
3131 (T2++65 ⁣ ⁣16)2 (T^{2} + \cdots + 65\!\cdots\!16)^{2} Copy content Toggle raw display
3737 (T2++97 ⁣ ⁣56)2 (T^{2} + \cdots + 97\!\cdots\!56)^{2} Copy content Toggle raw display
4141 T4++13 ⁣ ⁣64 T^{4} + \cdots + 13\!\cdots\!64 Copy content Toggle raw display
4343 (T2+23 ⁣ ⁣00)2 (T^{2} + \cdots - 23\!\cdots\!00)^{2} Copy content Toggle raw display
4747 T4++89 ⁣ ⁣00 T^{4} + \cdots + 89\!\cdots\!00 Copy content Toggle raw display
5353 T4++50 ⁣ ⁣44 T^{4} + \cdots + 50\!\cdots\!44 Copy content Toggle raw display
5959 T4++41 ⁣ ⁣84 T^{4} + \cdots + 41\!\cdots\!84 Copy content Toggle raw display
6161 (T2++10 ⁣ ⁣00)2 (T^{2} + \cdots + 10\!\cdots\!00)^{2} Copy content Toggle raw display
6767 (T2++95 ⁣ ⁣04)2 (T^{2} + \cdots + 95\!\cdots\!04)^{2} Copy content Toggle raw display
7171 T4++27 ⁣ ⁣04 T^{4} + \cdots + 27\!\cdots\!04 Copy content Toggle raw display
7373 (T2++85 ⁣ ⁣36)2 (T^{2} + \cdots + 85\!\cdots\!36)^{2} Copy content Toggle raw display
7979 (T2+19 ⁣ ⁣44)2 (T^{2} + \cdots - 19\!\cdots\!44)^{2} Copy content Toggle raw display
8383 T4++57 ⁣ ⁣44 T^{4} + \cdots + 57\!\cdots\!44 Copy content Toggle raw display
8989 T4++16 ⁣ ⁣44 T^{4} + \cdots + 16\!\cdots\!44 Copy content Toggle raw display
9797 (T2+38 ⁣ ⁣24)2 (T^{2} + \cdots - 38\!\cdots\!24)^{2} Copy content Toggle raw display
show more
show less