Properties

Label 18.15.b.b
Level $18$
Weight $15$
Character orbit 18.b
Analytic conductor $22.379$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,15,Mod(17,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 15, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.17");
 
S:= CuspForms(chi, 15);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 15 \)
Character orbit: \([\chi]\) \(=\) 18.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.3792142673\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 44875x^{2} + 44876x + 503643366 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 64 \beta_1 q^{2} - 8192 q^{4} + ( - \beta_{3} - 3081 \beta_1) q^{5} + ( - 5 \beta_{2} + 664916) q^{7} - 524288 \beta_1 q^{8} + (64 \beta_{2} + 394368) q^{10} + (110 \beta_{3} + 12410508 \beta_1) q^{11}+ \cdots + ( - 851092480 \beta_{3} + 45194578419648 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32768 q^{4} + 2659664 q^{7} + 1577472 q^{10} + 60092672 q^{13} + 268435456 q^{16} - 220734784 q^{19} - 6354180096 q^{22} - 51043883876 q^{25} - 21787967488 q^{28} - 106337705584 q^{31} - 139572822528 q^{34}+ \cdots + 67539358987904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 44875x^{2} + 44876x + 503643366 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{3} - 3\nu^{2} - 44867\nu + 22434 ) / 89769 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -864\nu^{3} + 1296\nu^{2} + 58162752\nu - 29081592 ) / 29923 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 324\nu^{2} - 324\nu - 7269912 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 1296\beta _1 + 648 ) / 1296 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{3} + \beta_{2} + 1296\beta _1 + 29080296 ) / 1296 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 6\beta_{3} + 22435\beta_{2} + 87246072\beta _1 + 43620120 ) / 1296 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).

\(n\) \(11\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
−149.301 1.41421i
150.301 1.41421i
150.301 + 1.41421i
−149.301 + 1.41421i
90.5097i 0 −8192.00 132922.i 0 1.63562e6 741455.i 0 −1.20307e7
17.2 90.5097i 0 −8192.00 141636.i 0 −305793. 741455.i 0 1.28194e7
17.3 90.5097i 0 −8192.00 141636.i 0 −305793. 741455.i 0 1.28194e7
17.4 90.5097i 0 −8192.00 132922.i 0 1.63562e6 741455.i 0 −1.20307e7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.15.b.b 4
3.b odd 2 1 inner 18.15.b.b 4
4.b odd 2 1 144.15.e.b 4
12.b even 2 1 144.15.e.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.15.b.b 4 1.a even 1 1 trivial
18.15.b.b 4 3.b odd 2 1 inner
144.15.e.b 4 4.b odd 2 1
144.15.e.b 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 37728973188T_{5}^{2} + 354437717876817322500 \) acting on \(S_{15}^{\mathrm{new}}(18, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 8192)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 35\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T^{2} - 1329832 T - 500161786544)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 64\!\cdots\!84 \) Copy content Toggle raw display
$13$ \( (T^{2} + \cdots - 24\!\cdots\!76)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 21\!\cdots\!84 \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots - 35\!\cdots\!84)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 18\!\cdots\!44 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 16\!\cdots\!64 \) Copy content Toggle raw display
$31$ \( (T^{2} + \cdots + 65\!\cdots\!16)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots + 97\!\cdots\!56)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 13\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( (T^{2} + \cdots - 23\!\cdots\!00)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 89\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 50\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 41\!\cdots\!84 \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots + 10\!\cdots\!00)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + \cdots + 95\!\cdots\!04)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 27\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots + 85\!\cdots\!36)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots - 19\!\cdots\!44)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 57\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 16\!\cdots\!44 \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots - 38\!\cdots\!24)^{2} \) Copy content Toggle raw display
show more
show less