Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [18,15,Mod(17,18)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(18, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 15, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("18.17");
S:= CuspForms(chi, 15);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 18.b (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 |
|
− | 90.5097i | 0 | −8192.00 | − | 132922.i | 0 | 1.63562e6 | 741455.i | 0 | −1.20307e7 | ||||||||||||||||||||||||||||
17.2 | − | 90.5097i | 0 | −8192.00 | 141636.i | 0 | −305793. | 741455.i | 0 | 1.28194e7 | ||||||||||||||||||||||||||||||
17.3 | 90.5097i | 0 | −8192.00 | − | 141636.i | 0 | −305793. | − | 741455.i | 0 | 1.28194e7 | |||||||||||||||||||||||||||||
17.4 | 90.5097i | 0 | −8192.00 | 132922.i | 0 | 1.63562e6 | − | 741455.i | 0 | −1.20307e7 | ||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 18.15.b.b | ✓ | 4 |
3.b | odd | 2 | 1 | inner | 18.15.b.b | ✓ | 4 |
4.b | odd | 2 | 1 | 144.15.e.b | 4 | ||
12.b | even | 2 | 1 | 144.15.e.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
18.15.b.b | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
18.15.b.b | ✓ | 4 | 3.b | odd | 2 | 1 | inner |
144.15.e.b | 4 | 4.b | odd | 2 | 1 | ||
144.15.e.b | 4 | 12.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .