Properties

Label 180.2.k.a.127.1
Level $180$
Weight $2$
Character 180.127
Analytic conductor $1.437$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [180,2,Mod(127,180)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(180, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("180.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 180.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.43730723638\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 127.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 180.127
Dual form 180.2.k.a.163.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +2.00000i q^{4} +(1.00000 - 2.00000i) q^{5} +(2.00000 - 2.00000i) q^{8} +(-3.00000 + 1.00000i) q^{10} +(5.00000 - 5.00000i) q^{13} -4.00000 q^{16} +(-3.00000 - 3.00000i) q^{17} +(4.00000 + 2.00000i) q^{20} +(-3.00000 - 4.00000i) q^{25} -10.0000 q^{26} +10.0000i q^{29} +(4.00000 + 4.00000i) q^{32} +6.00000i q^{34} +(5.00000 + 5.00000i) q^{37} +(-2.00000 - 6.00000i) q^{40} +10.0000 q^{41} +7.00000i q^{49} +(-1.00000 + 7.00000i) q^{50} +(10.0000 + 10.0000i) q^{52} +(-9.00000 + 9.00000i) q^{53} +(10.0000 - 10.0000i) q^{58} -12.0000 q^{61} -8.00000i q^{64} +(-5.00000 - 15.0000i) q^{65} +(6.00000 - 6.00000i) q^{68} +(-5.00000 + 5.00000i) q^{73} -10.0000i q^{74} +(-4.00000 + 8.00000i) q^{80} +(-10.0000 - 10.0000i) q^{82} +(-9.00000 + 3.00000i) q^{85} -10.0000i q^{89} +(-5.00000 - 5.00000i) q^{97} +(7.00000 - 7.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{5} + 4 q^{8} - 6 q^{10} + 10 q^{13} - 8 q^{16} - 6 q^{17} + 8 q^{20} - 6 q^{25} - 20 q^{26} + 8 q^{32} + 10 q^{37} - 4 q^{40} + 20 q^{41} - 2 q^{50} + 20 q^{52} - 18 q^{53} + 20 q^{58}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.707107 0.707107i
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) 0 0
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) 0 0
\(10\) −3.00000 + 1.00000i −0.948683 + 0.316228i
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 5.00000 5.00000i 1.38675 1.38675i 0.554700 0.832050i \(-0.312833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −3.00000 3.00000i −0.727607 0.727607i 0.242536 0.970143i \(-0.422021\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 4.00000 + 2.00000i 0.894427 + 0.447214i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) −10.0000 −1.96116
\(27\) 0 0
\(28\) 0 0
\(29\) 10.0000i 1.85695i 0.371391 + 0.928477i \(0.378881\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 0 0
\(34\) 6.00000i 1.02899i
\(35\) 0 0
\(36\) 0 0
\(37\) 5.00000 + 5.00000i 0.821995 + 0.821995i 0.986394 0.164399i \(-0.0525685\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −2.00000 6.00000i −0.316228 0.948683i
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) −1.00000 + 7.00000i −0.141421 + 0.989949i
\(51\) 0 0
\(52\) 10.0000 + 10.0000i 1.38675 + 1.38675i
\(53\) −9.00000 + 9.00000i −1.23625 + 1.23625i −0.274721 + 0.961524i \(0.588586\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 10.0000 10.0000i 1.31306 1.31306i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −12.0000 −1.53644 −0.768221 0.640184i \(-0.778858\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) −5.00000 15.0000i −0.620174 1.86052i
\(66\) 0 0
\(67\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(68\) 6.00000 6.00000i 0.727607 0.727607i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −5.00000 + 5.00000i −0.585206 + 0.585206i −0.936329 0.351123i \(-0.885800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 10.0000i 1.16248i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −4.00000 + 8.00000i −0.447214 + 0.894427i
\(81\) 0 0
\(82\) −10.0000 10.0000i −1.10432 1.10432i
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 0 0
\(85\) −9.00000 + 3.00000i −0.976187 + 0.325396i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.0000i 1.06000i −0.847998 0.529999i \(-0.822192\pi\)
0.847998 0.529999i \(-0.177808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.00000 5.00000i −0.507673 0.507673i 0.406138 0.913812i \(-0.366875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 7.00000 7.00000i 0.707107 0.707107i
\(99\) 0 0
\(100\) 8.00000 6.00000i 0.800000 0.600000i
\(101\) 20.0000 1.99007 0.995037 0.0995037i \(-0.0317255\pi\)
0.995037 + 0.0995037i \(0.0317255\pi\)
\(102\) 0 0
\(103\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(104\) 20.0000i 1.96116i
\(105\) 0 0
\(106\) 18.0000 1.74831
\(107\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(108\) 0 0
\(109\) 6.00000i 0.574696i 0.957826 + 0.287348i \(0.0927736\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.00000 + 1.00000i −0.0940721 + 0.0940721i −0.752577 0.658505i \(-0.771189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −20.0000 −1.85695
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 12.0000 + 12.0000i 1.08643 + 1.08643i
\(123\) 0 0
\(124\) 0 0
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(128\) −8.00000 + 8.00000i −0.707107 + 0.707107i
\(129\) 0 0
\(130\) −10.0000 + 20.0000i −0.877058 + 1.75412i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −12.0000 −1.02899
\(137\) −7.00000 7.00000i −0.598050 0.598050i 0.341743 0.939793i \(-0.388983\pi\)
−0.939793 + 0.341743i \(0.888983\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 20.0000 + 10.0000i 1.66091 + 0.830455i
\(146\) 10.0000 0.827606
\(147\) 0 0
\(148\) −10.0000 + 10.0000i −0.821995 + 0.821995i
\(149\) 20.0000i 1.63846i 0.573462 + 0.819232i \(0.305600\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −5.00000 5.00000i −0.399043 0.399043i 0.478852 0.877896i \(-0.341053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 12.0000 4.00000i 0.948683 0.316228i
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) 20.0000i 1.56174i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) 37.0000i 2.84615i
\(170\) 12.0000 + 6.00000i 0.920358 + 0.460179i
\(171\) 0 0
\(172\) 0 0
\(173\) −11.0000 + 11.0000i −0.836315 + 0.836315i −0.988372 0.152057i \(-0.951410\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −10.0000 + 10.0000i −0.749532 + 0.749532i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.0000 5.00000i 1.10282 0.367607i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −5.00000 + 5.00000i −0.359908 + 0.359908i −0.863779 0.503871i \(-0.831909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 10.0000i 0.717958i
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 13.0000 + 13.0000i 0.926212 + 0.926212i 0.997459 0.0712470i \(-0.0226979\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −14.0000 2.00000i −0.989949 0.141421i
\(201\) 0 0
\(202\) −20.0000 20.0000i −1.40720 1.40720i
\(203\) 0 0
\(204\) 0 0
\(205\) 10.0000 20.0000i 0.698430 1.39686i
\(206\) 0 0
\(207\) 0 0
\(208\) −20.0000 + 20.0000i −1.38675 + 1.38675i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −18.0000 18.0000i −1.23625 1.23625i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 6.00000 6.00000i 0.406371 0.406371i
\(219\) 0 0
\(220\) 0 0
\(221\) −30.0000 −2.01802
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2.00000 0.133038
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 0 0
\(229\) 4.00000i 0.264327i 0.991228 + 0.132164i \(0.0421925\pi\)
−0.991228 + 0.132164i \(0.957808\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 20.0000 + 20.0000i 1.31306 + 1.31306i
\(233\) 21.0000 21.0000i 1.37576 1.37576i 0.524097 0.851658i \(-0.324403\pi\)
0.851658 0.524097i \(-0.175597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −8.00000 −0.515325 −0.257663 0.966235i \(-0.582952\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(242\) −11.0000 11.0000i −0.707107 0.707107i
\(243\) 0 0
\(244\) 24.0000i 1.53644i
\(245\) 14.0000 + 7.00000i 0.894427 + 0.447214i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 13.0000 + 9.00000i 0.822192 + 0.569210i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −17.0000 17.0000i −1.06043 1.06043i −0.998053 0.0623783i \(-0.980131\pi\)
−0.0623783 0.998053i \(-0.519869\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 30.0000 10.0000i 1.86052 0.620174i
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0 0
\(265\) 9.00000 + 27.0000i 0.552866 + 1.65860i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 20.0000i 1.21942i −0.792624 0.609711i \(-0.791286\pi\)
0.792624 0.609711i \(-0.208714\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 12.0000 + 12.0000i 0.727607 + 0.727607i
\(273\) 0 0
\(274\) 14.0000i 0.845771i
\(275\) 0 0
\(276\) 0 0
\(277\) 5.00000 + 5.00000i 0.300421 + 0.300421i 0.841178 0.540758i \(-0.181862\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) −10.0000 30.0000i −0.587220 1.76166i
\(291\) 0 0
\(292\) −10.0000 10.0000i −0.585206 0.585206i
\(293\) 19.0000 19.0000i 1.10999 1.10999i 0.116841 0.993151i \(-0.462723\pi\)
0.993151 0.116841i \(-0.0372769\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 20.0000 1.16248
\(297\) 0 0
\(298\) 20.0000 20.0000i 1.15857 1.15857i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.0000 + 24.0000i −0.687118 + 1.37424i
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −25.0000 + 25.0000i −1.41308 + 1.41308i −0.678280 + 0.734803i \(0.737274\pi\)
−0.734803 + 0.678280i \(0.762726\pi\)
\(314\) 10.0000i 0.564333i
\(315\) 0 0
\(316\) 0 0
\(317\) −3.00000 3.00000i −0.168497 0.168497i 0.617822 0.786318i \(-0.288015\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −16.0000 8.00000i −0.894427 0.447214i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −35.0000 5.00000i −1.94145 0.277350i
\(326\) 0 0
\(327\) 0 0
\(328\) 20.0000 20.0000i 1.10432 1.10432i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −25.0000 25.0000i −1.36184 1.36184i −0.871576 0.490261i \(-0.836901\pi\)
−0.490261 0.871576i \(-0.663099\pi\)
\(338\) −37.0000 + 37.0000i −2.01253 + 2.01253i
\(339\) 0 0
\(340\) −6.00000 18.0000i −0.325396 0.976187i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 22.0000 1.18273
\(347\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(348\) 0 0
\(349\) 36.0000i 1.92704i 0.267644 + 0.963518i \(0.413755\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.00000 + 9.00000i −0.479022 + 0.479022i −0.904819 0.425797i \(-0.859994\pi\)
0.425797 + 0.904819i \(0.359994\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 20.0000 1.06000
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −18.0000 18.0000i −0.946059 0.946059i
\(363\) 0 0
\(364\) 0 0
\(365\) 5.00000 + 15.0000i 0.261712 + 0.785136i
\(366\) 0 0
\(367\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −20.0000 10.0000i −1.03975 0.519875i
\(371\) 0 0
\(372\) 0 0
\(373\) 25.0000 25.0000i 1.29445 1.29445i 0.362446 0.932005i \(-0.381942\pi\)
0.932005 0.362446i \(-0.118058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 50.0000 + 50.0000i 2.57513 + 2.57513i
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.0000 0.508987
\(387\) 0 0
\(388\) 10.0000 10.0000i 0.507673 0.507673i
\(389\) 20.0000i 1.01404i −0.861934 0.507020i \(-0.830747\pi\)
0.861934 0.507020i \(-0.169253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 14.0000 + 14.0000i 0.707107 + 0.707107i
\(393\) 0 0
\(394\) 26.0000i 1.30986i
\(395\) 0 0
\(396\) 0 0
\(397\) 25.0000 + 25.0000i 1.25471 + 1.25471i 0.953583 + 0.301131i \(0.0973643\pi\)
0.301131 + 0.953583i \(0.402636\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 12.0000 + 16.0000i 0.600000 + 0.800000i
\(401\) −40.0000 −1.99750 −0.998752 0.0499376i \(-0.984098\pi\)
−0.998752 + 0.0499376i \(0.984098\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 40.0000i 1.99007i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 6.00000i 0.296681i 0.988936 + 0.148340i \(0.0473931\pi\)
−0.988936 + 0.148340i \(0.952607\pi\)
\(410\) −30.0000 + 10.0000i −1.48159 + 0.493865i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 40.0000 1.96116
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 36.0000i 1.74831i
\(425\) −3.00000 + 21.0000i −0.145521 + 1.01865i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 5.00000 5.00000i 0.240285 0.240285i −0.576683 0.816968i \(-0.695653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −12.0000 −0.574696
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 30.0000 + 30.0000i 1.42695 + 1.42695i
\(443\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 0 0
\(445\) −20.0000 10.0000i −0.948091 0.474045i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 40.0000i 1.88772i −0.330350 0.943858i \(-0.607167\pi\)
0.330350 0.943858i \(-0.392833\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −2.00000 2.00000i −0.0940721 0.0940721i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 25.0000 + 25.0000i 1.16945 + 1.16945i 0.982339 + 0.187112i \(0.0599128\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(458\) 4.00000 4.00000i 0.186908 0.186908i
\(459\) 0 0
\(460\) 0 0
\(461\) −20.0000 −0.931493 −0.465746 0.884918i \(-0.654214\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 40.0000i 1.85695i
\(465\) 0 0
\(466\) −42.0000 −1.94561
\(467\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 50.0000 2.27980
\(482\) 8.00000 + 8.00000i 0.364390 + 0.364390i
\(483\) 0 0
\(484\) 22.0000i 1.00000i
\(485\) −15.0000 + 5.00000i −0.681115 + 0.227038i
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) −24.0000 + 24.0000i −1.08643 + 1.08643i
\(489\) 0 0
\(490\) −7.00000 21.0000i −0.316228 0.948683i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 30.0000 30.0000i 1.35113 1.35113i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −4.00000 22.0000i −0.178885 0.983870i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) 20.0000 40.0000i 0.889988 1.77998i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.0000i 0.443242i −0.975133 0.221621i \(-0.928865\pi\)
0.975133 0.221621i \(-0.0711348\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) 0 0
\(514\) 34.0000i 1.49968i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −40.0000 20.0000i −1.75412 0.877058i
\(521\) 40.0000 1.75243 0.876216 0.481919i \(-0.160060\pi\)
0.876216 + 0.481919i \(0.160060\pi\)
\(522\) 0 0
\(523\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 18.0000 36.0000i 0.781870 1.56374i
\(531\) 0 0
\(532\) 0 0
\(533\) 50.0000 50.0000i 2.16574 2.16574i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −20.0000 + 20.0000i −0.862261 + 0.862261i
\(539\) 0 0
\(540\) 0 0
\(541\) −42.0000 −1.80572 −0.902861 0.429934i \(-0.858537\pi\)
−0.902861 + 0.429934i \(0.858537\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 24.0000i 1.02899i
\(545\) 12.0000 + 6.00000i 0.514024 + 0.257012i
\(546\) 0 0
\(547\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) 14.0000 14.0000i 0.598050 0.598050i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 10.0000i 0.424859i
\(555\) 0 0
\(556\) 0 0
\(557\) −33.0000 33.0000i −1.39825 1.39825i −0.805056 0.593199i \(-0.797865\pi\)
−0.593199 0.805056i \(-0.702135\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 10.0000 + 10.0000i 0.421825 + 0.421825i
\(563\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) 1.00000 + 3.00000i 0.0420703 + 0.126211i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 40.0000i 1.67689i 0.544988 + 0.838444i \(0.316534\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −25.0000 25.0000i −1.04076 1.04076i −0.999133 0.0416305i \(-0.986745\pi\)
−0.0416305 0.999133i \(-0.513255\pi\)
\(578\) 1.00000 1.00000i 0.0415945 0.0415945i
\(579\) 0 0
\(580\) −20.0000 + 40.0000i −0.830455 + 1.66091i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 20.0000i 0.827606i
\(585\) 0 0
\(586\) −38.0000 −1.56977
\(587\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −20.0000 20.0000i −0.821995 0.821995i
\(593\) −31.0000 + 31.0000i −1.27302 + 1.27302i −0.328521 + 0.944497i \(0.606550\pi\)
−0.944497 + 0.328521i \(0.893450\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −40.0000 −1.63846
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 48.0000 1.95796 0.978980 0.203954i \(-0.0653794\pi\)
0.978980 + 0.203954i \(0.0653794\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.0000 22.0000i 0.447214 0.894427i
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 36.0000 12.0000i 1.45760 0.485866i
\(611\) 0 0
\(612\) 0 0
\(613\) 35.0000 35.0000i 1.41364 1.41364i 0.686624 0.727013i \(-0.259092\pi\)
0.727013 0.686624i \(-0.240908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.00000 3.00000i −0.120775 0.120775i 0.644136 0.764911i \(-0.277217\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 50.0000 1.99840
\(627\) 0 0
\(628\) 10.0000 10.0000i 0.399043 0.399043i
\(629\) 30.0000i 1.19618i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 6.00000i 0.238290i
\(635\) 0 0
\(636\) 0 0
\(637\) 35.0000 + 35.0000i 1.38675 + 1.38675i
\(638\) 0 0
\(639\) 0 0
\(640\) 8.00000 + 24.0000i 0.316228 + 0.948683i
\(641\) −50.0000 −1.97488 −0.987441 0.157991i \(-0.949498\pi\)
−0.987441 + 0.157991i \(0.949498\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 30.0000 + 40.0000i 1.17670 + 1.56893i
\(651\) 0 0
\(652\) 0 0
\(653\) −9.00000 + 9.00000i −0.352197 + 0.352197i −0.860927 0.508729i \(-0.830115\pi\)
0.508729 + 0.860927i \(0.330115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −40.0000 −1.56174
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −12.0000 −0.466746 −0.233373 0.972387i \(-0.574976\pi\)
−0.233373 + 0.972387i \(0.574976\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −35.0000 + 35.0000i −1.34915 + 1.34915i −0.462566 + 0.886585i \(0.653071\pi\)
−0.886585 + 0.462566i \(0.846929\pi\)
\(674\) 50.0000i 1.92593i
\(675\) 0 0
\(676\) 74.0000 2.84615
\(677\) 27.0000 + 27.0000i 1.03769 + 1.03769i 0.999261 + 0.0384331i \(0.0122367\pi\)
0.0384331 + 0.999261i \(0.487763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −12.0000 + 24.0000i −0.460179 + 0.920358i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) 0 0
\(685\) −21.0000 + 7.00000i −0.802369 + 0.267456i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 90.0000i 3.42873i
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) −22.0000 22.0000i −0.836315 0.836315i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −30.0000 30.0000i −1.13633 1.13633i
\(698\) 36.0000 36.0000i 1.36262 1.36262i
\(699\) 0 0
\(700\) 0 0
\(701\) 10.0000 0.377695 0.188847 0.982006i \(-0.439525\pi\)
0.188847 + 0.982006i \(0.439525\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) 0 0
\(708\) 0 0
\(709\) 44.0000i 1.65245i 0.563337 + 0.826227i \(0.309517\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −20.0000 20.0000i −0.749532 0.749532i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 19.0000 + 19.0000i 0.707107 + 0.707107i
\(723\) 0 0
\(724\) 36.0000i 1.33793i
\(725\) 40.0000 30.0000i 1.48556 1.11417i
\(726\) 0 0
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 10.0000 20.0000i 0.370117 0.740233i
\(731\) 0 0
\(732\) 0 0
\(733\) −25.0000 + 25.0000i −0.923396 + 0.923396i −0.997268 0.0738717i \(-0.976464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 10.0000 + 30.0000i 0.367607 + 1.10282i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(744\) 0 0
\(745\) 40.0000 + 20.0000i 1.46549 + 0.732743i
\(746\) −50.0000 −1.83063
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 100.000i 3.64179i
\(755\) 0 0
\(756\) 0 0
\(757\) −35.0000 35.0000i −1.27210 1.27210i −0.944986 0.327111i \(-0.893925\pi\)
−0.327111 0.944986i \(-0.606075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.0000 1.45000 0.724999 0.688749i \(-0.241840\pi\)
0.724999 + 0.688749i \(0.241840\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 24.0000i 0.865462i −0.901523 0.432731i \(-0.857550\pi\)
0.901523 0.432731i \(-0.142450\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10.0000 10.0000i −0.359908 0.359908i
\(773\) −39.0000 + 39.0000i −1.40273 + 1.40273i −0.611448 + 0.791285i \(0.709412\pi\)
−0.791285 + 0.611448i \(0.790588\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −20.0000 −0.717958
\(777\) 0 0
\(778\) −20.0000 + 20.0000i −0.717035 + 0.717035i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000i 1.00000i
\(785\) −15.0000 + 5.00000i −0.535373 + 0.178458i
\(786\) 0 0
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) −26.0000 + 26.0000i −0.926212 + 0.926212i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −60.0000 + 60.0000i −2.13066 + 2.13066i
\(794\) 50.0000i 1.77443i
\(795\) 0 0
\(796\) 0 0
\(797\) −37.0000 37.0000i −1.31061 1.31061i −0.920967 0.389640i \(-0.872599\pi\)
−0.389640 0.920967i \(-0.627401\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 4.00000 28.0000i 0.141421 0.989949i
\(801\) 0 0
\(802\) 40.0000 + 40.0000i 1.41245 + 1.41245i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 40.0000 40.0000i 1.40720 1.40720i
\(809\) 10.0000i 0.351581i 0.984428 + 0.175791i \(0.0562482\pi\)
−0.984428 + 0.175791i \(0.943752\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 6.00000 6.00000i 0.209785 0.209785i
\(819\) 0 0
\(820\) 40.0000 + 20.0000i 1.39686 + 0.698430i
\(821\) 50.0000 1.74501 0.872506 0.488603i \(-0.162493\pi\)
0.872506 + 0.488603i \(0.162493\pi\)
\(822\) 0 0
\(823\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 0 0
\(829\) 54.0000i 1.87550i −0.347314 0.937749i \(-0.612906\pi\)
0.347314 0.937749i \(-0.387094\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −40.0000 40.0000i −1.38675 1.38675i
\(833\) 21.0000 21.0000i 0.727607 0.727607i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −71.0000 −2.44828
\(842\) 28.0000 + 28.0000i 0.964944 + 0.964944i
\(843\) 0 0
\(844\) 0 0
\(845\) −74.0000 37.0000i −2.54568 1.27284i
\(846\) 0 0
\(847\) 0 0
\(848\) 36.0000 36.0000i 1.23625 1.23625i
\(849\) 0 0
\(850\) 24.0000 18.0000i 0.823193 0.617395i
\(851\) 0 0
\(852\) 0 0
\(853\) −5.00000 + 5.00000i −0.171197 + 0.171197i −0.787505 0.616308i \(-0.788628\pi\)
0.616308 + 0.787505i \(0.288628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −33.0000 33.0000i −1.12726 1.12726i −0.990621 0.136637i \(-0.956370\pi\)
−0.136637 0.990621i \(-0.543630\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) 0 0
\(865\) 11.0000 + 33.0000i 0.374011 + 1.12203i
\(866\) −10.0000 −0.339814
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 12.0000 + 12.0000i 0.406371 + 0.406371i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 35.0000 + 35.0000i 1.18187 + 1.18187i 0.979260 + 0.202606i \(0.0649409\pi\)
0.202606 + 0.979260i \(0.435059\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 50.0000 1.68454 0.842271 0.539054i \(-0.181218\pi\)
0.842271 + 0.539054i \(0.181218\pi\)
\(882\) 0 0
\(883\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(884\) 60.0000i 2.01802i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 10.0000 + 30.0000i 0.335201 + 1.00560i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −40.0000 + 40.0000i −1.33482 + 1.33482i
\(899\) 0 0
\(900\) 0 0
\(901\) 54.0000 1.79900
\(902\) 0 0
\(903\) 0 0
\(904\) 4.00000i 0.133038i
\(905\) 18.0000 36.0000i 0.598340 1.19668i
\(906\) 0 0
\(907\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 50.0000i 1.65385i
\(915\) 0 0
\(916\) −8.00000 −0.264327
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 20.0000 + 20.0000i 0.658665 + 0.658665i
\(923\) 0 0
\(924\) 0 0
\(925\) 5.00000 35.0000i 0.164399 1.15079i
\(926\) 0 0
\(927\) 0 0
\(928\) −40.0000 + 40.0000i −1.31306 + 1.31306i
\(929\) 40.0000i 1.31236i −0.754606 0.656179i \(-0.772172\pi\)
0.754606 0.656179i \(-0.227828\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 42.0000 + 42.0000i 1.37576 + 1.37576i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −5.00000 5.00000i −0.163343 0.163343i 0.620703 0.784046i \(-0.286847\pi\)
−0.784046 + 0.620703i \(0.786847\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.0000 0.651981 0.325991 0.945373i \(-0.394302\pi\)
0.325991 + 0.945373i \(0.394302\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(948\) 0 0
\(949\) 50.0000i 1.62307i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −41.0000 + 41.0000i −1.32812 + 1.32812i −0.421111 + 0.907009i \(0.638360\pi\)
−0.907009 + 0.421111i \(0.861640\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) −50.0000 50.0000i −1.61206 1.61206i
\(963\) 0 0
\(964\) 16.0000i 0.515325i
\(965\) 5.00000 + 15.0000i 0.160956 + 0.482867i
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 22.0000 22.0000i 0.707107 0.707107i
\(969\) 0 0
\(970\) 20.0000 + 10.0000i 0.642161 + 0.321081i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 48.0000 1.53644
\(977\) 27.0000 + 27.0000i 0.863807 + 0.863807i 0.991778 0.127971i \(-0.0408466\pi\)
−0.127971 + 0.991778i \(0.540847\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −14.0000 + 28.0000i −0.447214 + 0.894427i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 39.0000 13.0000i 1.24264 0.414214i
\(986\) −60.0000 −1.91079
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −25.0000 25.0000i −0.791758 0.791758i 0.190022 0.981780i \(-0.439144\pi\)
−0.981780 + 0.190022i \(0.939144\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.2.k.a.127.1 2
3.2 odd 2 180.2.k.b.127.1 yes 2
4.3 odd 2 CM 180.2.k.a.127.1 2
5.2 odd 4 900.2.k.d.343.1 2
5.3 odd 4 inner 180.2.k.a.163.1 yes 2
5.4 even 2 900.2.k.d.307.1 2
12.11 even 2 180.2.k.b.127.1 yes 2
15.2 even 4 900.2.k.b.343.1 2
15.8 even 4 180.2.k.b.163.1 yes 2
15.14 odd 2 900.2.k.b.307.1 2
20.3 even 4 inner 180.2.k.a.163.1 yes 2
20.7 even 4 900.2.k.d.343.1 2
20.19 odd 2 900.2.k.d.307.1 2
60.23 odd 4 180.2.k.b.163.1 yes 2
60.47 odd 4 900.2.k.b.343.1 2
60.59 even 2 900.2.k.b.307.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.k.a.127.1 2 1.1 even 1 trivial
180.2.k.a.127.1 2 4.3 odd 2 CM
180.2.k.a.163.1 yes 2 5.3 odd 4 inner
180.2.k.a.163.1 yes 2 20.3 even 4 inner
180.2.k.b.127.1 yes 2 3.2 odd 2
180.2.k.b.127.1 yes 2 12.11 even 2
180.2.k.b.163.1 yes 2 15.8 even 4
180.2.k.b.163.1 yes 2 60.23 odd 4
900.2.k.b.307.1 2 15.14 odd 2
900.2.k.b.307.1 2 60.59 even 2
900.2.k.b.343.1 2 15.2 even 4
900.2.k.b.343.1 2 60.47 odd 4
900.2.k.d.307.1 2 5.4 even 2
900.2.k.d.307.1 2 20.19 odd 2
900.2.k.d.343.1 2 5.2 odd 4
900.2.k.d.343.1 2 20.7 even 4