Properties

Label 180.3.f.h.19.6
Level $180$
Weight $3$
Character 180.19
Analytic conductor $4.905$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [180,3,Mod(19,180)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(180, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("180.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 180.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.90464475849\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.389136420864.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 24x^{4} + 80x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.6
Root \(0.656712 + 1.88911i\) of defining polynomial
Character \(\chi\) \(=\) 180.19
Dual form 180.3.f.h.19.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.656712 + 1.88911i) q^{2} +(-3.13746 + 2.48120i) q^{4} +(3.27492 + 3.77822i) q^{5} -9.55505 q^{7} +(-6.74766 - 4.29756i) q^{8} +O(q^{10})\) \(q+(0.656712 + 1.88911i) q^{2} +(-3.13746 + 2.48120i) q^{4} +(3.27492 + 3.77822i) q^{5} -9.55505 q^{7} +(-6.74766 - 4.29756i) q^{8} +(-4.98678 + 8.66787i) q^{10} +9.92480i q^{11} +7.55643i q^{13} +(-6.27492 - 18.0505i) q^{14} +(3.68729 - 15.5693i) q^{16} +17.1903i q^{17} -26.1762i q^{19} +(-19.6494 - 3.72827i) q^{20} +(-18.7490 + 6.51774i) q^{22} -1.67451 q^{23} +(-3.54983 + 24.7467i) q^{25} +(-14.2749 + 4.96240i) q^{26} +(29.9786 - 23.7080i) q^{28} +0.350497 q^{29} +46.0258i q^{31} +(31.8336 - 3.25887i) q^{32} +(-32.4743 + 11.2890i) q^{34} +(-31.2920 - 36.1010i) q^{35} -22.6693i q^{37} +(49.4498 - 17.1903i) q^{38} +(-5.86091 - 39.5683i) q^{40} +77.2990 q^{41} +41.7994 q^{43} +(-24.6254 - 31.1386i) q^{44} +(-1.09967 - 3.16332i) q^{46} +14.0866 q^{47} +42.2990 q^{49} +(-49.0804 + 9.54543i) q^{50} +(-18.7490 - 23.7080i) q^{52} +22.6693i q^{53} +(-37.4980 + 32.5029i) q^{55} +(64.4743 + 41.0634i) q^{56} +(0.230175 + 0.662126i) q^{58} +94.7802i q^{59} +38.0000 q^{61} +(-86.9478 + 30.2257i) q^{62} +(27.0619 + 57.9970i) q^{64} +(-28.5498 + 24.7467i) q^{65} +29.8477 q^{67} +(-42.6525 - 53.9337i) q^{68} +(47.6489 - 82.8220i) q^{70} +7.19630i q^{71} -34.3805i q^{73} +(42.8248 - 14.8872i) q^{74} +(64.9485 + 82.1269i) q^{76} -94.8320i q^{77} -46.0258i q^{79} +(70.8999 - 37.0569i) q^{80} +(50.7632 + 146.026i) q^{82} +24.1336 q^{83} +(-64.9485 + 56.2967i) q^{85} +(27.4502 + 78.9636i) q^{86} +(42.6525 - 66.9692i) q^{88} -100.199 q^{89} -72.2021i q^{91} +(5.25370 - 4.15479i) q^{92} +(9.25083 + 26.6111i) q^{94} +(98.8995 - 85.7250i) q^{95} -131.861i q^{97} +(27.7783 + 79.9074i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 10 q^{4} - 4 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 10 q^{4} - 4 q^{5} - 42 q^{10} - 20 q^{14} - 46 q^{16} - 52 q^{20} + 32 q^{25} - 84 q^{26} + 184 q^{29} + 12 q^{34} - 6 q^{40} + 256 q^{41} - 348 q^{44} + 112 q^{46} - 24 q^{49} - 72 q^{50} + 244 q^{56} + 304 q^{61} - 10 q^{64} - 168 q^{65} - 104 q^{70} + 252 q^{74} - 24 q^{76} + 308 q^{80} + 24 q^{85} + 280 q^{86} - 560 q^{89} + 376 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.656712 + 1.88911i 0.328356 + 0.944554i
\(3\) 0 0
\(4\) −3.13746 + 2.48120i −0.784365 + 0.620300i
\(5\) 3.27492 + 3.77822i 0.654983 + 0.755643i
\(6\) 0 0
\(7\) −9.55505 −1.36501 −0.682504 0.730882i \(-0.739109\pi\)
−0.682504 + 0.730882i \(0.739109\pi\)
\(8\) −6.74766 4.29756i −0.843458 0.537196i
\(9\) 0 0
\(10\) −4.98678 + 8.66787i −0.498678 + 0.866787i
\(11\) 9.92480i 0.902255i 0.892460 + 0.451127i \(0.148978\pi\)
−0.892460 + 0.451127i \(0.851022\pi\)
\(12\) 0 0
\(13\) 7.55643i 0.581264i 0.956835 + 0.290632i \(0.0938655\pi\)
−0.956835 + 0.290632i \(0.906134\pi\)
\(14\) −6.27492 18.0505i −0.448208 1.28932i
\(15\) 0 0
\(16\) 3.68729 15.5693i 0.230456 0.973083i
\(17\) 17.1903i 1.01119i 0.862770 + 0.505596i \(0.168727\pi\)
−0.862770 + 0.505596i \(0.831273\pi\)
\(18\) 0 0
\(19\) 26.1762i 1.37770i −0.724905 0.688849i \(-0.758116\pi\)
0.724905 0.688849i \(-0.241884\pi\)
\(20\) −19.6494 3.72827i −0.982471 0.186414i
\(21\) 0 0
\(22\) −18.7490 + 6.51774i −0.852228 + 0.296261i
\(23\) −1.67451 −0.0728047 −0.0364023 0.999337i \(-0.511590\pi\)
−0.0364023 + 0.999337i \(0.511590\pi\)
\(24\) 0 0
\(25\) −3.54983 + 24.7467i −0.141993 + 0.989868i
\(26\) −14.2749 + 4.96240i −0.549035 + 0.190862i
\(27\) 0 0
\(28\) 29.9786 23.7080i 1.07066 0.846714i
\(29\) 0.350497 0.0120861 0.00604305 0.999982i \(-0.498076\pi\)
0.00604305 + 0.999982i \(0.498076\pi\)
\(30\) 0 0
\(31\) 46.0258i 1.48470i 0.670010 + 0.742352i \(0.266290\pi\)
−0.670010 + 0.742352i \(0.733710\pi\)
\(32\) 31.8336 3.25887i 0.994801 0.101840i
\(33\) 0 0
\(34\) −32.4743 + 11.2890i −0.955125 + 0.332031i
\(35\) −31.2920 36.1010i −0.894057 1.03146i
\(36\) 0 0
\(37\) 22.6693i 0.612684i −0.951922 0.306342i \(-0.900895\pi\)
0.951922 0.306342i \(-0.0991051\pi\)
\(38\) 49.4498 17.1903i 1.30131 0.452375i
\(39\) 0 0
\(40\) −5.86091 39.5683i −0.146523 0.989207i
\(41\) 77.2990 1.88534 0.942671 0.333724i \(-0.108305\pi\)
0.942671 + 0.333724i \(0.108305\pi\)
\(42\) 0 0
\(43\) 41.7994 0.972079 0.486039 0.873937i \(-0.338441\pi\)
0.486039 + 0.873937i \(0.338441\pi\)
\(44\) −24.6254 31.1386i −0.559668 0.707697i
\(45\) 0 0
\(46\) −1.09967 3.16332i −0.0239058 0.0687679i
\(47\) 14.0866 0.299715 0.149857 0.988708i \(-0.452119\pi\)
0.149857 + 0.988708i \(0.452119\pi\)
\(48\) 0 0
\(49\) 42.2990 0.863245
\(50\) −49.0804 + 9.54543i −0.981608 + 0.190909i
\(51\) 0 0
\(52\) −18.7490 23.7080i −0.360558 0.455923i
\(53\) 22.6693i 0.427723i 0.976864 + 0.213861i \(0.0686041\pi\)
−0.976864 + 0.213861i \(0.931396\pi\)
\(54\) 0 0
\(55\) −37.4980 + 32.5029i −0.681783 + 0.590962i
\(56\) 64.4743 + 41.0634i 1.15133 + 0.733276i
\(57\) 0 0
\(58\) 0.230175 + 0.662126i 0.00396854 + 0.0114160i
\(59\) 94.7802i 1.60644i 0.595680 + 0.803222i \(0.296883\pi\)
−0.595680 + 0.803222i \(0.703117\pi\)
\(60\) 0 0
\(61\) 38.0000 0.622951 0.311475 0.950254i \(-0.399177\pi\)
0.311475 + 0.950254i \(0.399177\pi\)
\(62\) −86.9478 + 30.2257i −1.40238 + 0.487512i
\(63\) 0 0
\(64\) 27.0619 + 57.9970i 0.422842 + 0.906203i
\(65\) −28.5498 + 24.7467i −0.439228 + 0.380718i
\(66\) 0 0
\(67\) 29.8477 0.445488 0.222744 0.974877i \(-0.428499\pi\)
0.222744 + 0.974877i \(0.428499\pi\)
\(68\) −42.6525 53.9337i −0.627242 0.793143i
\(69\) 0 0
\(70\) 47.6489 82.8220i 0.680699 1.18317i
\(71\) 7.19630i 0.101356i 0.998715 + 0.0506782i \(0.0161383\pi\)
−0.998715 + 0.0506782i \(0.983862\pi\)
\(72\) 0 0
\(73\) 34.3805i 0.470966i −0.971878 0.235483i \(-0.924333\pi\)
0.971878 0.235483i \(-0.0756672\pi\)
\(74\) 42.8248 14.8872i 0.578713 0.201178i
\(75\) 0 0
\(76\) 64.9485 + 82.1269i 0.854586 + 1.08062i
\(77\) 94.8320i 1.23158i
\(78\) 0 0
\(79\) 46.0258i 0.582606i −0.956631 0.291303i \(-0.905911\pi\)
0.956631 0.291303i \(-0.0940887\pi\)
\(80\) 70.8999 37.0569i 0.886248 0.463211i
\(81\) 0 0
\(82\) 50.7632 + 146.026i 0.619063 + 1.78081i
\(83\) 24.1336 0.290767 0.145383 0.989375i \(-0.453558\pi\)
0.145383 + 0.989375i \(0.453558\pi\)
\(84\) 0 0
\(85\) −64.9485 + 56.2967i −0.764100 + 0.662314i
\(86\) 27.4502 + 78.9636i 0.319188 + 0.918181i
\(87\) 0 0
\(88\) 42.6525 66.9692i 0.484687 0.761014i
\(89\) −100.199 −1.12584 −0.562918 0.826513i \(-0.690321\pi\)
−0.562918 + 0.826513i \(0.690321\pi\)
\(90\) 0 0
\(91\) 72.2021i 0.793430i
\(92\) 5.25370 4.15479i 0.0571054 0.0451607i
\(93\) 0 0
\(94\) 9.25083 + 26.6111i 0.0984131 + 0.283097i
\(95\) 98.8995 85.7250i 1.04105 0.902369i
\(96\) 0 0
\(97\) 131.861i 1.35939i −0.733494 0.679696i \(-0.762112\pi\)
0.733494 0.679696i \(-0.237888\pi\)
\(98\) 27.7783 + 79.9074i 0.283452 + 0.815382i
\(99\) 0 0
\(100\) −50.2640 86.4496i −0.502640 0.864496i
\(101\) −29.4502 −0.291586 −0.145793 0.989315i \(-0.546573\pi\)
−0.145793 + 0.989315i \(0.546573\pi\)
\(102\) 0 0
\(103\) −143.786 −1.39598 −0.697991 0.716107i \(-0.745922\pi\)
−0.697991 + 0.716107i \(0.745922\pi\)
\(104\) 32.4743 50.9882i 0.312252 0.490272i
\(105\) 0 0
\(106\) −42.8248 + 14.8872i −0.404007 + 0.140445i
\(107\) −35.1014 −0.328050 −0.164025 0.986456i \(-0.552448\pi\)
−0.164025 + 0.986456i \(0.552448\pi\)
\(108\) 0 0
\(109\) −151.498 −1.38989 −0.694947 0.719061i \(-0.744572\pi\)
−0.694947 + 0.719061i \(0.744572\pi\)
\(110\) −86.0269 49.4928i −0.782063 0.449935i
\(111\) 0 0
\(112\) −35.2323 + 148.766i −0.314574 + 1.32827i
\(113\) 32.3031i 0.285868i −0.989732 0.142934i \(-0.954346\pi\)
0.989732 0.142934i \(-0.0456537\pi\)
\(114\) 0 0
\(115\) −5.48387 6.32665i −0.0476858 0.0550143i
\(116\) −1.09967 + 0.869652i −0.00947990 + 0.00749700i
\(117\) 0 0
\(118\) −179.050 + 62.2433i −1.51737 + 0.527486i
\(119\) 164.254i 1.38028i
\(120\) 0 0
\(121\) 22.4983 0.185937
\(122\) 24.9551 + 71.7861i 0.204550 + 0.588411i
\(123\) 0 0
\(124\) −114.199 144.404i −0.920962 1.16455i
\(125\) −105.124 + 67.6313i −0.840990 + 0.541051i
\(126\) 0 0
\(127\) 192.053 1.51223 0.756116 0.654438i \(-0.227095\pi\)
0.756116 + 0.654438i \(0.227095\pi\)
\(128\) −91.7908 + 89.2102i −0.717115 + 0.696954i
\(129\) 0 0
\(130\) −65.4982 37.6823i −0.503832 0.289864i
\(131\) 42.4277i 0.323876i 0.986801 + 0.161938i \(0.0517744\pi\)
−0.986801 + 0.161938i \(0.948226\pi\)
\(132\) 0 0
\(133\) 250.115i 1.88057i
\(134\) 19.6013 + 56.3855i 0.146279 + 0.420787i
\(135\) 0 0
\(136\) 73.8762 115.994i 0.543208 0.852897i
\(137\) 206.854i 1.50988i −0.655791 0.754942i \(-0.727665\pi\)
0.655791 0.754942i \(-0.272335\pi\)
\(138\) 0 0
\(139\) 46.0258i 0.331121i 0.986200 + 0.165561i \(0.0529433\pi\)
−0.986200 + 0.165561i \(0.947057\pi\)
\(140\) 187.751 + 35.6238i 1.34108 + 0.254456i
\(141\) 0 0
\(142\) −13.5946 + 4.72590i −0.0957366 + 0.0332810i
\(143\) −74.9961 −0.524448
\(144\) 0 0
\(145\) 1.14785 + 1.32425i 0.00791619 + 0.00913277i
\(146\) 64.9485 22.5781i 0.444853 0.154645i
\(147\) 0 0
\(148\) 56.2471 + 71.1240i 0.380048 + 0.480567i
\(149\) −11.6495 −0.0781846 −0.0390923 0.999236i \(-0.512447\pi\)
−0.0390923 + 0.999236i \(0.512447\pi\)
\(150\) 0 0
\(151\) 125.424i 0.830624i 0.909679 + 0.415312i \(0.136328\pi\)
−0.909679 + 0.415312i \(0.863672\pi\)
\(152\) −112.494 + 176.628i −0.740093 + 1.16203i
\(153\) 0 0
\(154\) 179.148 62.2773i 1.16330 0.404398i
\(155\) −173.896 + 150.731i −1.12191 + 0.972457i
\(156\) 0 0
\(157\) 197.220i 1.25618i −0.778140 0.628090i \(-0.783837\pi\)
0.778140 0.628090i \(-0.216163\pi\)
\(158\) 86.9478 30.2257i 0.550303 0.191302i
\(159\) 0 0
\(160\) 116.565 + 109.602i 0.728532 + 0.685011i
\(161\) 16.0000 0.0993789
\(162\) 0 0
\(163\) 18.4196 0.113004 0.0565018 0.998402i \(-0.482005\pi\)
0.0565018 + 0.998402i \(0.482005\pi\)
\(164\) −242.522 + 191.794i −1.47880 + 1.16948i
\(165\) 0 0
\(166\) 15.8488 + 45.5910i 0.0954749 + 0.274645i
\(167\) 92.8920 0.556240 0.278120 0.960546i \(-0.410289\pi\)
0.278120 + 0.960546i \(0.410289\pi\)
\(168\) 0 0
\(169\) 111.900 0.662132
\(170\) −149.003 85.7241i −0.876488 0.504259i
\(171\) 0 0
\(172\) −131.144 + 103.713i −0.762464 + 0.602981i
\(173\) 117.501i 0.679198i 0.940570 + 0.339599i \(0.110291\pi\)
−0.940570 + 0.339599i \(0.889709\pi\)
\(174\) 0 0
\(175\) 33.9189 236.456i 0.193822 1.35118i
\(176\) 154.522 + 36.5956i 0.877968 + 0.207930i
\(177\) 0 0
\(178\) −65.8021 189.287i −0.369675 1.06341i
\(179\) 231.988i 1.29602i −0.761631 0.648011i \(-0.775601\pi\)
0.761631 0.648011i \(-0.224399\pi\)
\(180\) 0 0
\(181\) −218.096 −1.20495 −0.602476 0.798137i \(-0.705819\pi\)
−0.602476 + 0.798137i \(0.705819\pi\)
\(182\) 136.398 47.4160i 0.749437 0.260527i
\(183\) 0 0
\(184\) 11.2990 + 7.19630i 0.0614076 + 0.0391103i
\(185\) 85.6495 74.2401i 0.462970 0.401298i
\(186\) 0 0
\(187\) −170.610 −0.912352
\(188\) −44.1961 + 34.9516i −0.235085 + 0.185913i
\(189\) 0 0
\(190\) 226.892 + 130.535i 1.19417 + 0.687027i
\(191\) 137.208i 0.718366i 0.933267 + 0.359183i \(0.116945\pi\)
−0.933267 + 0.359183i \(0.883055\pi\)
\(192\) 0 0
\(193\) 37.0290i 0.191860i −0.995388 0.0959301i \(-0.969417\pi\)
0.995388 0.0959301i \(-0.0305825\pi\)
\(194\) 249.100 86.5947i 1.28402 0.446364i
\(195\) 0 0
\(196\) −132.711 + 104.952i −0.677099 + 0.535471i
\(197\) 194.572i 0.987674i 0.869554 + 0.493837i \(0.164406\pi\)
−0.869554 + 0.493837i \(0.835594\pi\)
\(198\) 0 0
\(199\) 176.037i 0.884610i 0.896865 + 0.442305i \(0.145839\pi\)
−0.896865 + 0.442305i \(0.854161\pi\)
\(200\) 130.304 151.727i 0.651518 0.758633i
\(201\) 0 0
\(202\) −19.3403 55.6345i −0.0957440 0.275419i
\(203\) −3.34901 −0.0164976
\(204\) 0 0
\(205\) 253.148 + 292.052i 1.23487 + 1.42465i
\(206\) −94.4261 271.628i −0.458379 1.31858i
\(207\) 0 0
\(208\) 117.649 + 27.8628i 0.565618 + 0.133956i
\(209\) 259.794 1.24303
\(210\) 0 0
\(211\) 20.7193i 0.0981955i −0.998794 0.0490978i \(-0.984365\pi\)
0.998794 0.0490978i \(-0.0156346\pi\)
\(212\) −56.2471 71.1240i −0.265316 0.335490i
\(213\) 0 0
\(214\) −23.0515 66.3103i −0.107717 0.309861i
\(215\) 136.890 + 157.927i 0.636696 + 0.734545i
\(216\) 0 0
\(217\) 439.779i 2.02663i
\(218\) −99.4908 286.197i −0.456380 1.31283i
\(219\) 0 0
\(220\) 37.0024 195.017i 0.168193 0.886439i
\(221\) −129.897 −0.587769
\(222\) 0 0
\(223\) −97.0265 −0.435096 −0.217548 0.976050i \(-0.569806\pi\)
−0.217548 + 0.976050i \(0.569806\pi\)
\(224\) −304.172 + 31.1386i −1.35791 + 0.139012i
\(225\) 0 0
\(226\) 61.0241 21.2138i 0.270018 0.0938666i
\(227\) 407.256 1.79408 0.897040 0.441948i \(-0.145713\pi\)
0.897040 + 0.441948i \(0.145713\pi\)
\(228\) 0 0
\(229\) −7.89702 −0.0344848 −0.0172424 0.999851i \(-0.505489\pi\)
−0.0172424 + 0.999851i \(0.505489\pi\)
\(230\) 8.35040 14.5144i 0.0363061 0.0631061i
\(231\) 0 0
\(232\) −2.36503 1.50628i −0.0101941 0.00649260i
\(233\) 28.1483i 0.120808i −0.998174 0.0604042i \(-0.980761\pi\)
0.998174 0.0604042i \(-0.0192390\pi\)
\(234\) 0 0
\(235\) 46.1324 + 53.2222i 0.196308 + 0.226477i
\(236\) −235.169 297.369i −0.996477 1.26004i
\(237\) 0 0
\(238\) 310.293 107.867i 1.30375 0.453225i
\(239\) 296.005i 1.23851i 0.785189 + 0.619257i \(0.212566\pi\)
−0.785189 + 0.619257i \(0.787434\pi\)
\(240\) 0 0
\(241\) 465.794 1.93276 0.966378 0.257127i \(-0.0827758\pi\)
0.966378 + 0.257127i \(0.0827758\pi\)
\(242\) 14.7749 + 42.5018i 0.0610534 + 0.175627i
\(243\) 0 0
\(244\) −119.223 + 94.2856i −0.488621 + 0.386416i
\(245\) 138.526 + 159.815i 0.565411 + 0.652305i
\(246\) 0 0
\(247\) 197.799 0.800806
\(248\) 197.799 310.567i 0.797577 1.25229i
\(249\) 0 0
\(250\) −196.799 154.176i −0.787196 0.616703i
\(251\) 141.676i 0.564445i −0.959349 0.282223i \(-0.908928\pi\)
0.959349 0.282223i \(-0.0910716\pi\)
\(252\) 0 0
\(253\) 16.6191i 0.0656883i
\(254\) 126.124 + 362.810i 0.496550 + 1.42838i
\(255\) 0 0
\(256\) −228.808 114.817i −0.893780 0.448505i
\(257\) 41.7549i 0.162470i −0.996695 0.0812352i \(-0.974113\pi\)
0.996695 0.0812352i \(-0.0258865\pi\)
\(258\) 0 0
\(259\) 216.606i 0.836318i
\(260\) 28.1724 148.480i 0.108356 0.571075i
\(261\) 0 0
\(262\) −80.1505 + 27.8628i −0.305918 + 0.106346i
\(263\) −203.283 −0.772939 −0.386469 0.922302i \(-0.626306\pi\)
−0.386469 + 0.922302i \(0.626306\pi\)
\(264\) 0 0
\(265\) −85.6495 + 74.2401i −0.323206 + 0.280151i
\(266\) −472.495 + 164.254i −1.77630 + 0.617495i
\(267\) 0 0
\(268\) −93.6458 + 74.0580i −0.349425 + 0.276336i
\(269\) 244.048 0.907242 0.453621 0.891195i \(-0.350132\pi\)
0.453621 + 0.891195i \(0.350132\pi\)
\(270\) 0 0
\(271\) 466.585i 1.72172i −0.508845 0.860858i \(-0.669927\pi\)
0.508845 0.860858i \(-0.330073\pi\)
\(272\) 267.641 + 63.3855i 0.983973 + 0.233035i
\(273\) 0 0
\(274\) 390.770 135.844i 1.42617 0.495780i
\(275\) −245.606 35.2314i −0.893113 0.128114i
\(276\) 0 0
\(277\) 494.181i 1.78405i 0.451990 + 0.892023i \(0.350714\pi\)
−0.451990 + 0.892023i \(0.649286\pi\)
\(278\) −86.9478 + 30.2257i −0.312762 + 0.108726i
\(279\) 0 0
\(280\) 56.0013 + 378.077i 0.200005 + 1.35028i
\(281\) 43.4020 0.154455 0.0772277 0.997013i \(-0.475393\pi\)
0.0772277 + 0.997013i \(0.475393\pi\)
\(282\) 0 0
\(283\) 310.785 1.09818 0.549090 0.835763i \(-0.314974\pi\)
0.549090 + 0.835763i \(0.314974\pi\)
\(284\) −17.8555 22.5781i −0.0628714 0.0795003i
\(285\) 0 0
\(286\) −49.2508 141.676i −0.172206 0.495370i
\(287\) −738.596 −2.57351
\(288\) 0 0
\(289\) −6.50497 −0.0225085
\(290\) −1.74785 + 3.03806i −0.00602707 + 0.0104761i
\(291\) 0 0
\(292\) 85.3049 + 107.867i 0.292140 + 0.369409i
\(293\) 245.207i 0.836886i 0.908243 + 0.418443i \(0.137424\pi\)
−0.908243 + 0.418443i \(0.862576\pi\)
\(294\) 0 0
\(295\) −358.100 + 310.397i −1.21390 + 1.05219i
\(296\) −97.4228 + 152.965i −0.329131 + 0.516773i
\(297\) 0 0
\(298\) −7.65037 22.0072i −0.0256724 0.0738496i
\(299\) 12.6533i 0.0423187i
\(300\) 0 0
\(301\) −399.395 −1.32689
\(302\) −236.940 + 82.3676i −0.784569 + 0.272740i
\(303\) 0 0
\(304\) −407.547 96.5195i −1.34061 0.317498i
\(305\) 124.447 + 143.572i 0.408022 + 0.470729i
\(306\) 0 0
\(307\) −337.514 −1.09939 −0.549697 0.835364i \(-0.685257\pi\)
−0.549697 + 0.835364i \(0.685257\pi\)
\(308\) 235.297 + 297.531i 0.763952 + 0.966011i
\(309\) 0 0
\(310\) −398.946 229.521i −1.28692 0.740390i
\(311\) 427.756i 1.37542i −0.725986 0.687710i \(-0.758616\pi\)
0.725986 0.687710i \(-0.241384\pi\)
\(312\) 0 0
\(313\) 83.8739i 0.267968i 0.990984 + 0.133984i \(0.0427770\pi\)
−0.990984 + 0.133984i \(0.957223\pi\)
\(314\) 372.571 129.517i 1.18653 0.412475i
\(315\) 0 0
\(316\) 114.199 + 144.404i 0.361390 + 0.456975i
\(317\) 112.204i 0.353957i −0.984215 0.176978i \(-0.943368\pi\)
0.984215 0.176978i \(-0.0566323\pi\)
\(318\) 0 0
\(319\) 3.47861i 0.0109047i
\(320\) −130.500 + 292.181i −0.407812 + 0.913066i
\(321\) 0 0
\(322\) 10.5074 + 30.2257i 0.0326317 + 0.0938687i
\(323\) 449.976 1.39312
\(324\) 0 0
\(325\) −186.997 26.8241i −0.575374 0.0825356i
\(326\) 12.0964 + 34.7966i 0.0371054 + 0.106738i
\(327\) 0 0
\(328\) −521.588 332.197i −1.59021 1.01280i
\(329\) −134.598 −0.409113
\(330\) 0 0
\(331\) 132.621i 0.400666i 0.979728 + 0.200333i \(0.0642025\pi\)
−0.979728 + 0.200333i \(0.935798\pi\)
\(332\) −75.7182 + 59.8803i −0.228067 + 0.180362i
\(333\) 0 0
\(334\) 61.0033 + 175.483i 0.182645 + 0.525398i
\(335\) 97.7487 + 112.771i 0.291787 + 0.336630i
\(336\) 0 0
\(337\) 20.7739i 0.0616437i 0.999525 + 0.0308219i \(0.00981246\pi\)
−0.999525 + 0.0308219i \(0.990188\pi\)
\(338\) 73.4863 + 211.392i 0.217415 + 0.625420i
\(339\) 0 0
\(340\) 64.0900 337.779i 0.188500 0.993467i
\(341\) −456.797 −1.33958
\(342\) 0 0
\(343\) 64.0283 0.186672
\(344\) −282.048 179.636i −0.819907 0.522196i
\(345\) 0 0
\(346\) −221.973 + 77.1645i −0.641539 + 0.223019i
\(347\) 8.89616 0.0256374 0.0128187 0.999918i \(-0.495920\pi\)
0.0128187 + 0.999918i \(0.495920\pi\)
\(348\) 0 0
\(349\) 19.4020 0.0555931 0.0277965 0.999614i \(-0.491151\pi\)
0.0277965 + 0.999614i \(0.491151\pi\)
\(350\) 468.966 91.2071i 1.33990 0.260592i
\(351\) 0 0
\(352\) 32.3436 + 315.942i 0.0918853 + 0.897564i
\(353\) 80.2902i 0.227451i −0.993512 0.113726i \(-0.963722\pi\)
0.993512 0.113726i \(-0.0362784\pi\)
\(354\) 0 0
\(355\) −27.1892 + 23.5673i −0.0765892 + 0.0663867i
\(356\) 314.371 248.615i 0.883065 0.698356i
\(357\) 0 0
\(358\) 438.251 152.349i 1.22416 0.425557i
\(359\) 314.115i 0.874972i 0.899225 + 0.437486i \(0.144131\pi\)
−0.899225 + 0.437486i \(0.855869\pi\)
\(360\) 0 0
\(361\) −324.196 −0.898050
\(362\) −143.227 412.008i −0.395653 1.13814i
\(363\) 0 0
\(364\) 179.148 + 226.531i 0.492164 + 0.622338i
\(365\) 129.897 112.593i 0.355882 0.308475i
\(366\) 0 0
\(367\) 476.800 1.29918 0.649592 0.760283i \(-0.274940\pi\)
0.649592 + 0.760283i \(0.274940\pi\)
\(368\) −6.17440 + 26.0709i −0.0167783 + 0.0708450i
\(369\) 0 0
\(370\) 196.495 + 113.047i 0.531066 + 0.305532i
\(371\) 216.606i 0.583844i
\(372\) 0 0
\(373\) 86.1333i 0.230920i −0.993312 0.115460i \(-0.963166\pi\)
0.993312 0.115460i \(-0.0368343\pi\)
\(374\) −112.042 322.300i −0.299576 0.861766i
\(375\) 0 0
\(376\) −95.0515 60.5380i −0.252797 0.161005i
\(377\) 2.64850i 0.00702521i
\(378\) 0 0
\(379\) 638.035i 1.68347i −0.539891 0.841735i \(-0.681534\pi\)
0.539891 0.841735i \(-0.318466\pi\)
\(380\) −97.5922 + 514.348i −0.256822 + 1.35355i
\(381\) 0 0
\(382\) −259.201 + 90.1061i −0.678535 + 0.235880i
\(383\) 216.742 0.565907 0.282953 0.959134i \(-0.408686\pi\)
0.282953 + 0.959134i \(0.408686\pi\)
\(384\) 0 0
\(385\) 358.296 310.567i 0.930638 0.806667i
\(386\) 69.9518 24.3174i 0.181222 0.0629985i
\(387\) 0 0
\(388\) 327.174 + 413.708i 0.843231 + 1.06626i
\(389\) −476.640 −1.22529 −0.612647 0.790356i \(-0.709895\pi\)
−0.612647 + 0.790356i \(0.709895\pi\)
\(390\) 0 0
\(391\) 28.7852i 0.0736195i
\(392\) −285.419 181.783i −0.728111 0.463731i
\(393\) 0 0
\(394\) −367.567 + 127.778i −0.932912 + 0.324309i
\(395\) 173.896 150.731i 0.440242 0.381597i
\(396\) 0 0
\(397\) 43.0792i 0.108512i 0.998527 + 0.0542559i \(0.0172787\pi\)
−0.998527 + 0.0542559i \(0.982721\pi\)
\(398\) −332.554 + 115.606i −0.835562 + 0.290467i
\(399\) 0 0
\(400\) 372.200 + 146.517i 0.930500 + 0.366292i
\(401\) 168.694 0.420684 0.210342 0.977628i \(-0.432542\pi\)
0.210342 + 0.977628i \(0.432542\pi\)
\(402\) 0 0
\(403\) −347.791 −0.863005
\(404\) 92.3987 73.0718i 0.228710 0.180871i
\(405\) 0 0
\(406\) −2.19934 6.32665i −0.00541709 0.0155829i
\(407\) 224.988 0.552797
\(408\) 0 0
\(409\) 373.890 0.914157 0.457079 0.889426i \(-0.348896\pi\)
0.457079 + 0.889426i \(0.348896\pi\)
\(410\) −385.473 + 670.018i −0.940179 + 1.63419i
\(411\) 0 0
\(412\) 451.123 356.762i 1.09496 0.865927i
\(413\) 905.630i 2.19281i
\(414\) 0 0
\(415\) 79.0356 + 91.1820i 0.190447 + 0.219716i
\(416\) 24.6254 + 240.549i 0.0591957 + 0.578242i
\(417\) 0 0
\(418\) 170.610 + 490.779i 0.408158 + 1.17411i
\(419\) 87.5839i 0.209031i 0.994523 + 0.104515i \(0.0333291\pi\)
−0.994523 + 0.104515i \(0.966671\pi\)
\(420\) 0 0
\(421\) 70.3023 0.166989 0.0834944 0.996508i \(-0.473392\pi\)
0.0834944 + 0.996508i \(0.473392\pi\)
\(422\) 39.1409 13.6066i 0.0927510 0.0322431i
\(423\) 0 0
\(424\) 97.4228 152.965i 0.229771 0.360766i
\(425\) −425.402 61.0226i −1.00095 0.143583i
\(426\) 0 0
\(427\) −363.092 −0.850332
\(428\) 110.129 87.0935i 0.257311 0.203490i
\(429\) 0 0
\(430\) −208.444 + 362.312i −0.484754 + 0.842586i
\(431\) 247.370i 0.573944i 0.957939 + 0.286972i \(0.0926487\pi\)
−0.957939 + 0.286972i \(0.907351\pi\)
\(432\) 0 0
\(433\) 636.247i 1.46939i −0.678397 0.734696i \(-0.737325\pi\)
0.678397 0.734696i \(-0.262675\pi\)
\(434\) 830.791 288.808i 1.91426 0.665457i
\(435\) 0 0
\(436\) 475.320 375.898i 1.09018 0.862151i
\(437\) 43.8323i 0.100303i
\(438\) 0 0
\(439\) 769.786i 1.75350i −0.480947 0.876750i \(-0.659707\pi\)
0.480947 0.876750i \(-0.340293\pi\)
\(440\) 392.707 58.1683i 0.892517 0.132201i
\(441\) 0 0
\(442\) −85.3049 245.390i −0.192998 0.555180i
\(443\) −612.214 −1.38197 −0.690986 0.722868i \(-0.742823\pi\)
−0.690986 + 0.722868i \(0.742823\pi\)
\(444\) 0 0
\(445\) −328.145 378.575i −0.737403 0.850730i
\(446\) −63.7185 183.294i −0.142867 0.410972i
\(447\) 0 0
\(448\) −258.578 554.165i −0.577182 1.23697i
\(449\) −175.897 −0.391753 −0.195876 0.980629i \(-0.562755\pi\)
−0.195876 + 0.980629i \(0.562755\pi\)
\(450\) 0 0
\(451\) 767.177i 1.70106i
\(452\) 80.1505 + 101.350i 0.177324 + 0.224225i
\(453\) 0 0
\(454\) 267.450 + 769.351i 0.589097 + 1.69461i
\(455\) 272.795 236.456i 0.599550 0.519683i
\(456\) 0 0
\(457\) 365.357i 0.799469i 0.916631 + 0.399734i \(0.130898\pi\)
−0.916631 + 0.399734i \(0.869102\pi\)
\(458\) −5.18607 14.9183i −0.0113233 0.0325728i
\(459\) 0 0
\(460\) 32.9031 + 6.24302i 0.0715285 + 0.0135718i
\(461\) −308.350 −0.668873 −0.334437 0.942418i \(-0.608546\pi\)
−0.334437 + 0.942418i \(0.608546\pi\)
\(462\) 0 0
\(463\) 92.6302 0.200065 0.100033 0.994984i \(-0.468105\pi\)
0.100033 + 0.994984i \(0.468105\pi\)
\(464\) 1.29238 5.45700i 0.00278531 0.0117608i
\(465\) 0 0
\(466\) 53.1752 18.4854i 0.114110 0.0396681i
\(467\) 606.103 1.29786 0.648932 0.760846i \(-0.275216\pi\)
0.648932 + 0.760846i \(0.275216\pi\)
\(468\) 0 0
\(469\) −285.196 −0.608094
\(470\) −70.2467 + 122.101i −0.149461 + 0.259789i
\(471\) 0 0
\(472\) 407.324 639.545i 0.862975 1.35497i
\(473\) 414.851i 0.877063i
\(474\) 0 0
\(475\) 647.776 + 92.9214i 1.36374 + 0.195624i
\(476\) 407.547 + 515.339i 0.856190 + 1.08265i
\(477\) 0 0
\(478\) −559.185 + 194.390i −1.16984 + 0.406673i
\(479\) 138.947i 0.290078i −0.989426 0.145039i \(-0.953669\pi\)
0.989426 0.145039i \(-0.0463307\pi\)
\(480\) 0 0
\(481\) 171.299 0.356131
\(482\) 305.893 + 879.935i 0.634632 + 1.82559i
\(483\) 0 0
\(484\) −70.5876 + 55.8229i −0.145842 + 0.115337i
\(485\) 498.199 431.834i 1.02722 0.890379i
\(486\) 0 0
\(487\) 201.243 0.413230 0.206615 0.978422i \(-0.433755\pi\)
0.206615 + 0.978422i \(0.433755\pi\)
\(488\) −256.411 163.307i −0.525433 0.334646i
\(489\) 0 0
\(490\) −210.936 + 366.642i −0.430481 + 0.748250i
\(491\) 347.368i 0.707470i 0.935346 + 0.353735i \(0.115089\pi\)
−0.935346 + 0.353735i \(0.884911\pi\)
\(492\) 0 0
\(493\) 6.02513i 0.0122214i
\(494\) 129.897 + 373.664i 0.262949 + 0.756404i
\(495\) 0 0
\(496\) 716.591 + 169.711i 1.44474 + 0.342159i
\(497\) 68.7610i 0.138352i
\(498\) 0 0
\(499\) 672.277i 1.34725i 0.739074 + 0.673625i \(0.235264\pi\)
−0.739074 + 0.673625i \(0.764736\pi\)
\(500\) 162.015 473.024i 0.324029 0.946047i
\(501\) 0 0
\(502\) 267.641 93.0401i 0.533149 0.185339i
\(503\) 436.350 0.867496 0.433748 0.901034i \(-0.357191\pi\)
0.433748 + 0.901034i \(0.357191\pi\)
\(504\) 0 0
\(505\) −96.4469 111.269i −0.190984 0.220335i
\(506\) 31.3954 10.9140i 0.0620462 0.0215692i
\(507\) 0 0
\(508\) −602.559 + 476.523i −1.18614 + 0.938037i
\(509\) 109.547 0.215219 0.107610 0.994193i \(-0.465680\pi\)
0.107610 + 0.994193i \(0.465680\pi\)
\(510\) 0 0
\(511\) 328.508i 0.642872i
\(512\) 66.6415 507.644i 0.130159 0.991493i
\(513\) 0 0
\(514\) 78.8796 27.4210i 0.153462 0.0533482i
\(515\) −470.888 543.255i −0.914345 1.05486i
\(516\) 0 0
\(517\) 139.807i 0.270419i
\(518\) −409.193 + 142.248i −0.789947 + 0.274610i
\(519\) 0 0
\(520\) 298.995 44.2875i 0.574991 0.0851683i
\(521\) 743.100 1.42629 0.713147 0.701014i \(-0.247269\pi\)
0.713147 + 0.701014i \(0.247269\pi\)
\(522\) 0 0
\(523\) 366.211 0.700212 0.350106 0.936710i \(-0.386146\pi\)
0.350106 + 0.936710i \(0.386146\pi\)
\(524\) −105.272 133.115i −0.200900 0.254037i
\(525\) 0 0
\(526\) −133.498 384.023i −0.253799 0.730083i
\(527\) −791.196 −1.50132
\(528\) 0 0
\(529\) −526.196 −0.994699
\(530\) −196.495 113.047i −0.370744 0.213296i
\(531\) 0 0
\(532\) −620.586 784.727i −1.16652 1.47505i
\(533\) 584.105i 1.09588i
\(534\) 0 0
\(535\) −114.954 132.621i −0.214867 0.247889i
\(536\) −201.402 128.272i −0.375750 0.239314i
\(537\) 0 0
\(538\) 160.269 + 461.033i 0.297898 + 0.856939i
\(539\) 419.809i 0.778867i
\(540\) 0 0
\(541\) 170.688 0.315504 0.157752 0.987479i \(-0.449575\pi\)
0.157752 + 0.987479i \(0.449575\pi\)
\(542\) 881.430 306.412i 1.62625 0.565336i
\(543\) 0 0
\(544\) 56.0208 + 547.228i 0.102979 + 1.00593i
\(545\) −496.145 572.393i −0.910357 1.05026i
\(546\) 0 0
\(547\) −507.600 −0.927971 −0.463986 0.885843i \(-0.653581\pi\)
−0.463986 + 0.885843i \(0.653581\pi\)
\(548\) 513.247 + 648.997i 0.936581 + 1.18430i
\(549\) 0 0
\(550\) −94.7365 487.113i −0.172248 0.885660i
\(551\) 9.17469i 0.0166510i
\(552\) 0 0
\(553\) 439.779i 0.795261i
\(554\) −933.561 + 324.534i −1.68513 + 0.585802i
\(555\) 0 0
\(556\) −114.199 144.404i −0.205394 0.259720i
\(557\) 788.492i 1.41561i 0.706410 + 0.707803i \(0.250314\pi\)
−0.706410 + 0.707803i \(0.749686\pi\)
\(558\) 0 0
\(559\) 315.854i 0.565035i
\(560\) −677.452 + 354.080i −1.20974 + 0.632286i
\(561\) 0 0
\(562\) 28.5026 + 81.9910i 0.0507164 + 0.145892i
\(563\) −936.102 −1.66270 −0.831351 0.555747i \(-0.812432\pi\)
−0.831351 + 0.555747i \(0.812432\pi\)
\(564\) 0 0
\(565\) 122.048 105.790i 0.216014 0.187239i
\(566\) 204.096 + 587.107i 0.360594 + 1.03729i
\(567\) 0 0
\(568\) 30.9266 48.5582i 0.0544482 0.0854898i
\(569\) 95.4983 0.167835 0.0839177 0.996473i \(-0.473257\pi\)
0.0839177 + 0.996473i \(0.473257\pi\)
\(570\) 0 0
\(571\) 889.123i 1.55713i −0.627562 0.778566i \(-0.715947\pi\)
0.627562 0.778566i \(-0.284053\pi\)
\(572\) 235.297 186.080i 0.411359 0.325315i
\(573\) 0 0
\(574\) −485.045 1395.29i −0.845026 2.43081i
\(575\) 5.94422 41.4385i 0.0103378 0.0720670i
\(576\) 0 0
\(577\) 522.147i 0.904934i 0.891781 + 0.452467i \(0.149456\pi\)
−0.891781 + 0.452467i \(0.850544\pi\)
\(578\) −4.27189 12.2886i −0.00739081 0.0212605i
\(579\) 0 0
\(580\) −6.88706 1.30675i −0.0118742 0.00225301i
\(581\) −230.598 −0.396898
\(582\) 0 0
\(583\) −224.988 −0.385915
\(584\) −147.752 + 231.988i −0.253001 + 0.397240i
\(585\) 0 0
\(586\) −463.223 + 161.031i −0.790484 + 0.274796i
\(587\) 95.8440 0.163278 0.0816388 0.996662i \(-0.473985\pi\)
0.0816388 + 0.996662i \(0.473985\pi\)
\(588\) 0 0
\(589\) 1204.78 2.04547
\(590\) −821.543 472.648i −1.39245 0.801098i
\(591\) 0 0
\(592\) −352.946 83.5883i −0.596192 0.141197i
\(593\) 878.624i 1.48166i −0.671693 0.740829i \(-0.734433\pi\)
0.671693 0.740829i \(-0.265567\pi\)
\(594\) 0 0
\(595\) 620.586 537.918i 1.04300 0.904063i
\(596\) 36.5498 28.9047i 0.0613252 0.0484979i
\(597\) 0 0
\(598\) 23.9034 8.30957i 0.0399723 0.0138956i
\(599\) 967.652i 1.61545i −0.589563 0.807723i \(-0.700700\pi\)
0.589563 0.807723i \(-0.299300\pi\)
\(600\) 0 0
\(601\) 279.704 0.465398 0.232699 0.972549i \(-0.425244\pi\)
0.232699 + 0.972549i \(0.425244\pi\)
\(602\) −262.288 754.501i −0.435694 1.25332i
\(603\) 0 0
\(604\) −311.203 393.513i −0.515236 0.651512i
\(605\) 73.6802 + 85.0036i 0.121785 + 0.140502i
\(606\) 0 0
\(607\) −747.564 −1.23157 −0.615786 0.787914i \(-0.711161\pi\)
−0.615786 + 0.787914i \(0.711161\pi\)
\(608\) −85.3049 833.285i −0.140304 1.37053i
\(609\) 0 0
\(610\) −189.498 + 329.379i −0.310652 + 0.539966i
\(611\) 106.444i 0.174213i
\(612\) 0 0
\(613\) 457.152i 0.745761i 0.927879 + 0.372881i \(0.121630\pi\)
−0.927879 + 0.372881i \(0.878370\pi\)
\(614\) −221.650 637.600i −0.360993 1.03844i
\(615\) 0 0
\(616\) −407.547 + 639.894i −0.661601 + 1.03879i
\(617\) 764.888i 1.23969i 0.784725 + 0.619844i \(0.212804\pi\)
−0.784725 + 0.619844i \(0.787196\pi\)
\(618\) 0 0
\(619\) 365.359i 0.590240i −0.955460 0.295120i \(-0.904640\pi\)
0.955460 0.295120i \(-0.0953597\pi\)
\(620\) 171.597 904.382i 0.276769 1.45868i
\(621\) 0 0
\(622\) 808.077 280.912i 1.29916 0.451627i
\(623\) 957.410 1.53677
\(624\) 0 0
\(625\) −599.797 175.693i −0.959676 0.281109i
\(626\) −158.447 + 55.0810i −0.253110 + 0.0879888i
\(627\) 0 0
\(628\) 489.343 + 618.771i 0.779209 + 0.985304i
\(629\) 389.691 0.619541
\(630\) 0 0
\(631\) 62.1578i 0.0985067i 0.998786 + 0.0492534i \(0.0156842\pi\)
−0.998786 + 0.0492534i \(0.984316\pi\)
\(632\) −197.799 + 310.567i −0.312973 + 0.491403i
\(633\) 0 0
\(634\) 211.966 73.6859i 0.334331 0.116224i
\(635\) 628.959 + 725.619i 0.990486 + 1.14271i
\(636\) 0 0
\(637\) 319.630i 0.501773i
\(638\) −6.57147 + 2.28444i −0.0103001 + 0.00358063i
\(639\) 0 0
\(640\) −637.662 54.6495i −0.996348 0.0853899i
\(641\) 1111.69 1.73431 0.867154 0.498041i \(-0.165947\pi\)
0.867154 + 0.498041i \(0.165947\pi\)
\(642\) 0 0
\(643\) −468.983 −0.729367 −0.364683 0.931132i \(-0.618823\pi\)
−0.364683 + 0.931132i \(0.618823\pi\)
\(644\) −50.1993 + 39.6992i −0.0779493 + 0.0616447i
\(645\) 0 0
\(646\) 295.505 + 850.054i 0.457438 + 1.31587i
\(647\) −96.7647 −0.149559 −0.0747795 0.997200i \(-0.523825\pi\)
−0.0747795 + 0.997200i \(0.523825\pi\)
\(648\) 0 0
\(649\) −940.675 −1.44942
\(650\) −72.1294 370.873i −0.110968 0.570573i
\(651\) 0 0
\(652\) −57.7907 + 45.7027i −0.0886360 + 0.0700961i
\(653\) 920.353i 1.40942i 0.709494 + 0.704712i \(0.248924\pi\)
−0.709494 + 0.704712i \(0.751076\pi\)
\(654\) 0 0
\(655\) −160.301 + 138.947i −0.244734 + 0.212133i
\(656\) 285.024 1203.49i 0.434488 1.83459i
\(657\) 0 0
\(658\) −88.3921 254.270i −0.134335 0.386429i
\(659\) 591.020i 0.896844i 0.893822 + 0.448422i \(0.148014\pi\)
−0.893822 + 0.448422i \(0.851986\pi\)
\(660\) 0 0
\(661\) −306.193 −0.463226 −0.231613 0.972808i \(-0.574400\pi\)
−0.231613 + 0.972808i \(0.574400\pi\)
\(662\) −250.535 + 87.0935i −0.378451 + 0.131561i
\(663\) 0 0
\(664\) −162.846 103.716i −0.245249 0.156198i
\(665\) −944.990 + 819.107i −1.42104 + 1.23174i
\(666\) 0 0
\(667\) −0.586909 −0.000879924
\(668\) −291.445 + 230.484i −0.436295 + 0.345035i
\(669\) 0 0
\(670\) −148.844 + 258.716i −0.222155 + 0.386143i
\(671\) 377.142i 0.562060i
\(672\) 0 0
\(673\) 556.892i 0.827476i −0.910396 0.413738i \(-0.864223\pi\)
0.910396 0.413738i \(-0.135777\pi\)
\(674\) −39.2442 + 13.6425i −0.0582258 + 0.0202411i
\(675\) 0 0
\(676\) −351.083 + 277.647i −0.519353 + 0.410721i
\(677\) 58.1920i 0.0859557i 0.999076 + 0.0429779i \(0.0136845\pi\)
−0.999076 + 0.0429779i \(0.986316\pi\)
\(678\) 0 0
\(679\) 1259.94i 1.85558i
\(680\) 680.189 100.750i 1.00028 0.148162i
\(681\) 0 0
\(682\) −299.984 862.940i −0.439860 1.26531i
\(683\) −357.274 −0.523096 −0.261548 0.965191i \(-0.584233\pi\)
−0.261548 + 0.965191i \(0.584233\pi\)
\(684\) 0 0
\(685\) 781.540 677.430i 1.14093 0.988949i
\(686\) 42.0482 + 120.956i 0.0612947 + 0.176321i
\(687\) 0 0
\(688\) 154.127 650.788i 0.224021 0.945913i
\(689\) −171.299 −0.248620
\(690\) 0 0
\(691\) 614.707i 0.889590i −0.895632 0.444795i \(-0.853276\pi\)
0.895632 0.444795i \(-0.146724\pi\)
\(692\) −291.544 368.655i −0.421307 0.532739i
\(693\) 0 0
\(694\) 5.84222 + 16.8058i 0.00841818 + 0.0242159i
\(695\) −173.896 + 150.731i −0.250210 + 0.216879i
\(696\) 0 0
\(697\) 1328.79i 1.90644i
\(698\) 12.7415 + 36.6524i 0.0182543 + 0.0525107i
\(699\) 0 0
\(700\) 480.275 + 826.030i 0.686108 + 1.18004i
\(701\) 886.028 1.26395 0.631975 0.774989i \(-0.282245\pi\)
0.631975 + 0.774989i \(0.282245\pi\)
\(702\) 0 0
\(703\) −593.397 −0.844093
\(704\) −575.609 + 268.584i −0.817626 + 0.381511i
\(705\) 0 0
\(706\) 151.677 52.7276i 0.214840 0.0746849i
\(707\) 281.398 0.398017
\(708\) 0 0
\(709\) −760.887 −1.07318 −0.536592 0.843842i \(-0.680288\pi\)
−0.536592 + 0.843842i \(0.680288\pi\)
\(710\) −62.3766 35.8864i −0.0878544 0.0505442i
\(711\) 0 0
\(712\) 676.111 + 430.613i 0.949594 + 0.604794i
\(713\) 77.0706i 0.108093i
\(714\) 0 0
\(715\) −245.606 283.351i −0.343505 0.396296i
\(716\) 575.609 + 727.853i 0.803923 + 1.01655i
\(717\) 0 0
\(718\) −593.397 + 206.283i −0.826458 + 0.287302i
\(719\) 575.877i 0.800942i −0.916309 0.400471i \(-0.868846\pi\)
0.916309 0.400471i \(-0.131154\pi\)
\(720\) 0 0
\(721\) 1373.88 1.90553
\(722\) −212.903 612.441i −0.294880 0.848257i
\(723\) 0 0
\(724\) 684.268 541.141i 0.945122 0.747432i
\(725\) −1.24421 + 8.67363i −0.00171615 + 0.0119636i
\(726\) 0 0
\(727\) 327.332 0.450250 0.225125 0.974330i \(-0.427721\pi\)
0.225125 + 0.974330i \(0.427721\pi\)
\(728\) −310.293 + 487.195i −0.426227 + 0.669224i
\(729\) 0 0
\(730\) 298.006 + 171.448i 0.408227 + 0.234860i
\(731\) 718.542i 0.982958i
\(732\) 0 0
\(733\) 947.567i 1.29272i −0.763031 0.646362i \(-0.776290\pi\)
0.763031 0.646362i \(-0.223710\pi\)
\(734\) 313.120 + 900.727i 0.426595 + 1.22715i
\(735\) 0 0
\(736\) −53.3056 + 5.45700i −0.0724261 + 0.00741440i
\(737\) 296.232i 0.401943i
\(738\) 0 0
\(739\) 183.234i 0.247948i −0.992285 0.123974i \(-0.960436\pi\)
0.992285 0.123974i \(-0.0395640\pi\)
\(740\) −84.5173 + 445.439i −0.114213 + 0.601944i
\(741\) 0 0
\(742\) 409.193 142.248i 0.551473 0.191709i
\(743\) −183.712 −0.247258 −0.123629 0.992329i \(-0.539453\pi\)
−0.123629 + 0.992329i \(0.539453\pi\)
\(744\) 0 0
\(745\) −38.1512 44.0143i −0.0512096 0.0590797i
\(746\) 162.715 56.5648i 0.218117 0.0758241i
\(747\) 0 0
\(748\) 535.281 423.317i 0.715617 0.565932i
\(749\) 335.395 0.447791
\(750\) 0 0
\(751\) 345.748i 0.460384i 0.973145 + 0.230192i \(0.0739354\pi\)
−0.973145 + 0.230192i \(0.926065\pi\)
\(752\) 51.9414 219.319i 0.0690710 0.291647i
\(753\) 0 0
\(754\) −5.00331 + 1.73930i −0.00663569 + 0.00230677i
\(755\) −473.880 + 410.754i −0.627656 + 0.544045i
\(756\) 0 0
\(757\) 549.335i 0.725674i 0.931853 + 0.362837i \(0.118192\pi\)
−0.931853 + 0.362837i \(0.881808\pi\)
\(758\) 1205.32 419.005i 1.59013 0.552778i
\(759\) 0 0
\(760\) −1035.75 + 153.417i −1.36283 + 0.201864i
\(761\) −251.485 −0.330467 −0.165233 0.986255i \(-0.552838\pi\)
−0.165233 + 0.986255i \(0.552838\pi\)
\(762\) 0 0
\(763\) 1447.57 1.89721
\(764\) −340.440 430.484i −0.445602 0.563461i
\(765\) 0 0
\(766\) 142.337 + 409.450i 0.185819 + 0.534529i
\(767\) −716.200 −0.933768
\(768\) 0 0
\(769\) 583.691 0.759026 0.379513 0.925186i \(-0.376092\pi\)
0.379513 + 0.925186i \(0.376092\pi\)
\(770\) 821.991 + 472.906i 1.06752 + 0.614164i
\(771\) 0 0
\(772\) 91.8764 + 116.177i 0.119011 + 0.150488i
\(773\) 1328.04i 1.71803i −0.511951 0.859015i \(-0.671077\pi\)
0.511951 0.859015i \(-0.328923\pi\)
\(774\) 0 0
\(775\) −1138.99 163.384i −1.46966 0.210818i
\(776\) −566.681 + 889.753i −0.730259 + 1.14659i
\(777\) 0 0
\(778\) −313.015 900.424i −0.402333 1.15736i
\(779\) 2023.40i 2.59743i
\(780\) 0 0
\(781\) −71.4219 −0.0914492
\(782\) 54.3784 18.9036i 0.0695376 0.0241734i
\(783\) 0 0
\(784\) 155.969 658.567i 0.198940 0.840009i
\(785\) 745.141 645.880i 0.949224 0.822778i
\(786\) 0 0
\(787\) 1318.83 1.67577 0.837883 0.545850i \(-0.183793\pi\)
0.837883 + 0.545850i \(0.183793\pi\)
\(788\) −482.772 610.461i −0.612654 0.774697i
\(789\) 0 0
\(790\) 398.946 + 229.521i 0.504995 + 0.290533i
\(791\) 308.658i 0.390212i
\(792\) 0 0
\(793\) 287.144i 0.362099i
\(794\) −81.3812 + 28.2906i −0.102495 + 0.0356305i
\(795\) 0 0
\(796\) −436.784 552.310i −0.548724 0.693857i
\(797\) 1277.40i 1.60276i −0.598154 0.801381i \(-0.704099\pi\)
0.598154 0.801381i \(-0.295901\pi\)
\(798\) 0 0
\(799\) 242.152i 0.303069i
\(800\) −32.3579 + 799.345i −0.0404474 + 0.999182i
\(801\) 0 0
\(802\) 110.784 + 318.682i 0.138134 + 0.397359i
\(803\) 341.220 0.424931
\(804\) 0 0
\(805\) 52.3987 + 60.4515i 0.0650915 + 0.0750950i
\(806\) −228.399 657.015i −0.283373 0.815155i
\(807\) 0 0
\(808\) 198.720 + 126.564i 0.245940 + 0.156639i
\(809\) −321.093 −0.396901 −0.198451 0.980111i \(-0.563591\pi\)
−0.198451 + 0.980111i \(0.563591\pi\)
\(810\) 0 0
\(811\) 946.932i 1.16761i 0.811894 + 0.583805i \(0.198437\pi\)
−0.811894 + 0.583805i \(0.801563\pi\)
\(812\) 10.5074 8.30957i 0.0129401 0.0102335i
\(813\) 0 0
\(814\) 147.752 + 425.027i 0.181514 + 0.522146i
\(815\) 60.3226 + 69.5931i 0.0740154 + 0.0853904i
\(816\) 0 0
\(817\) 1094.15i 1.33923i
\(818\) 245.538 + 706.319i 0.300169 + 0.863471i
\(819\) 0 0
\(820\) −1518.88 288.192i −1.85229 0.351453i
\(821\) −1169.34 −1.42429 −0.712144 0.702033i \(-0.752276\pi\)
−0.712144 + 0.702033i \(0.752276\pi\)
\(822\) 0 0
\(823\) 1251.71 1.52091 0.760457 0.649389i \(-0.224975\pi\)
0.760457 + 0.649389i \(0.224975\pi\)
\(824\) 970.220 + 617.930i 1.17745 + 0.749915i
\(825\) 0 0
\(826\) 1710.83 594.738i 2.07123 0.720022i
\(827\) −892.104 −1.07872 −0.539362 0.842074i \(-0.681334\pi\)
−0.539362 + 0.842074i \(0.681334\pi\)
\(828\) 0 0
\(829\) 998.688 1.20469 0.602345 0.798236i \(-0.294233\pi\)
0.602345 + 0.798236i \(0.294233\pi\)
\(830\) −120.349 + 209.187i −0.144999 + 0.252033i
\(831\) 0 0
\(832\) −438.251 + 204.491i −0.526743 + 0.245783i
\(833\) 727.131i 0.872906i
\(834\) 0 0
\(835\) 304.214 + 350.966i 0.364328 + 0.420319i
\(836\) −815.093 + 644.601i −0.974992 + 0.771054i
\(837\) 0 0
\(838\) −165.455 + 57.5174i −0.197441 + 0.0686365i
\(839\) 610.359i 0.727484i 0.931500 + 0.363742i \(0.118501\pi\)
−0.931500 + 0.363742i \(0.881499\pi\)
\(840\) 0 0
\(841\) −840.877 −0.999854
\(842\) 46.1684 + 132.809i 0.0548318 + 0.157730i
\(843\) 0 0
\(844\) 51.4086 + 65.0058i 0.0609107 + 0.0770211i
\(845\) 366.464 + 422.784i 0.433686 + 0.500336i
\(846\) 0 0
\(847\) −214.973 −0.253805
\(848\) 352.946 + 83.5883i 0.416209 + 0.0985712i
\(849\) 0 0
\(850\) −164.088 843.705i −0.193045 0.992594i
\(851\) 37.9599i 0.0446062i
\(852\) 0 0
\(853\) 832.689i 0.976189i −0.872791 0.488094i \(-0.837692\pi\)
0.872791 0.488094i \(-0.162308\pi\)
\(854\) −238.447 685.920i −0.279212 0.803185i
\(855\) 0 0
\(856\) 236.852 + 150.850i 0.276696 + 0.176227i
\(857\) 149.415i 0.174347i 0.996193 + 0.0871735i \(0.0277834\pi\)
−0.996193 + 0.0871735i \(0.972217\pi\)
\(858\) 0 0
\(859\) 394.144i 0.458840i 0.973327 + 0.229420i \(0.0736830\pi\)
−0.973327 + 0.229420i \(0.926317\pi\)
\(860\) −821.334 155.840i −0.955040 0.181209i
\(861\) 0 0
\(862\) −467.308 + 162.451i −0.542121 + 0.188458i
\(863\) 1409.58 1.63335 0.816677 0.577095i \(-0.195814\pi\)
0.816677 + 0.577095i \(0.195814\pi\)
\(864\) 0 0
\(865\) −443.945 + 384.807i −0.513231 + 0.444864i
\(866\) 1201.94 417.831i 1.38792 0.482484i
\(867\) 0 0
\(868\) 1091.18 + 1379.79i 1.25712 + 1.58962i
\(869\) 456.797 0.525659
\(870\) 0 0
\(871\) 225.542i 0.258946i
\(872\) 1022.26 + 651.074i 1.17232 + 0.746644i
\(873\) 0 0
\(874\) −82.8040 + 28.7852i −0.0947414 + 0.0329350i
\(875\) 1004.46 646.221i 1.14796 0.738538i
\(876\) 0 0
\(877\) 872.780i 0.995189i −0.867410 0.497594i \(-0.834217\pi\)
0.867410 0.497594i \(-0.165783\pi\)
\(878\) 1454.21 505.528i 1.65627 0.575772i
\(879\) 0 0
\(880\) 367.782 + 703.667i 0.417934 + 0.799621i
\(881\) −1103.38 −1.25241 −0.626206 0.779657i \(-0.715393\pi\)
−0.626206 + 0.779657i \(0.715393\pi\)
\(882\) 0 0
\(883\) −536.884 −0.608023 −0.304011 0.952668i \(-0.598326\pi\)
−0.304011 + 0.952668i \(0.598326\pi\)
\(884\) 407.547 322.300i 0.461025 0.364593i
\(885\) 0 0
\(886\) −402.048 1156.54i −0.453779 1.30535i
\(887\) 888.945 1.00219 0.501096 0.865392i \(-0.332930\pi\)
0.501096 + 0.865392i \(0.332930\pi\)
\(888\) 0 0
\(889\) −1835.08 −2.06421
\(890\) 499.672 868.515i 0.561429 0.975860i
\(891\) 0 0
\(892\) 304.417 240.742i 0.341274 0.269890i
\(893\) 368.734i 0.412916i
\(894\) 0 0
\(895\) 876.501 759.742i 0.979331 0.848874i
\(896\) 877.066 852.408i 0.978868 0.951348i
\(897\) 0 0
\(898\) −115.514 332.288i −0.128634 0.370032i
\(899\) 16.1319i 0.0179443i
\(900\) 0 0
\(901\) −389.691 −0.432510
\(902\) −1449.28 + 503.814i −1.60674 + 0.558553i
\(903\) 0 0
\(904\) −138.825 + 217.971i −0.153567 + 0.241118i
\(905\) −714.248 824.015i −0.789224 0.910514i
\(906\) 0 0
\(907\) −1668.40 −1.83947 −0.919734 0.392543i \(-0.871595\pi\)
−0.919734 + 0.392543i \(0.871595\pi\)
\(908\) −1277.75 + 1010.48i −1.40721 + 1.11287i
\(909\) 0 0
\(910\) 625.839 + 360.056i 0.687735 + 0.395666i
\(911\) 1498.13i 1.64449i −0.569131 0.822247i \(-0.692720\pi\)
0.569131 0.822247i \(-0.307280\pi\)
\(912\) 0 0
\(913\) 239.521i 0.262345i
\(914\) −690.199 + 239.935i −0.755142 + 0.262510i
\(915\) 0 0
\(916\) 24.7766 19.5941i 0.0270487 0.0213909i
\(917\) 405.399i 0.442093i
\(918\) 0 0
\(919\) 1094.82i 1.19131i −0.803240 0.595656i \(-0.796892\pi\)
0.803240 0.595656i \(-0.203108\pi\)
\(920\) 9.81413 + 66.2574i 0.0106675 + 0.0720189i
\(921\) 0 0
\(922\) −202.497 582.507i −0.219629 0.631787i
\(923\) −54.3784 −0.0589148
\(924\) 0 0
\(925\) 560.990 + 80.4723i 0.606476 + 0.0869970i
\(926\) 60.8314 + 174.988i 0.0656926 + 0.188972i
\(927\) 0 0
\(928\) 11.1576 1.14222i 0.0120233 0.00123084i
\(929\) −1145.90 −1.23348 −0.616740 0.787167i \(-0.711547\pi\)
−0.616740 + 0.787167i \(0.711547\pi\)
\(930\) 0 0
\(931\) 1107.23i 1.18929i
\(932\) 69.8417 + 88.3142i 0.0749374 + 0.0947578i
\(933\) 0 0
\(934\) 398.035 + 1144.99i 0.426162 + 1.22590i
\(935\) −558.733 644.601i −0.597576 0.689413i
\(936\) 0 0
\(937\) 1272.49i 1.35805i 0.734115 + 0.679025i \(0.237597\pi\)
−0.734115 + 0.679025i \(0.762403\pi\)
\(938\) −187.292 538.766i −0.199671 0.574378i
\(939\) 0 0
\(940\) −276.793 52.5186i −0.294461 0.0558709i
\(941\) −707.360 −0.751711 −0.375856 0.926678i \(-0.622651\pi\)
−0.375856 + 0.926678i \(0.622651\pi\)
\(942\) 0 0
\(943\) −129.438 −0.137262
\(944\) 1475.66 + 349.482i 1.56320 + 0.370214i
\(945\) 0 0
\(946\) −783.698 + 272.437i −0.828433 + 0.287989i
\(947\) 284.977 0.300926 0.150463 0.988616i \(-0.451924\pi\)
0.150463 + 0.988616i \(0.451924\pi\)
\(948\) 0 0
\(949\) 259.794 0.273756
\(950\) 249.864 + 1284.74i 0.263014 + 1.35236i
\(951\) 0 0
\(952\) −705.891 + 1108.33i −0.741482 + 1.16421i
\(953\) 295.247i 0.309808i 0.987930 + 0.154904i \(0.0495068\pi\)
−0.987930 + 0.154904i \(0.950493\pi\)
\(954\) 0 0
\(955\) −518.401 + 449.344i −0.542828 + 0.470518i
\(956\) −734.447 928.702i −0.768250 0.971446i
\(957\) 0 0
\(958\) 262.486 91.2483i 0.273994 0.0952487i
\(959\) 1976.50i 2.06100i
\(960\) 0 0
\(961\) −1157.38 −1.20435
\(962\) 112.494 + 323.602i 0.116938 + 0.336385i
\(963\) 0 0
\(964\) −1461.41 + 1155.73i −1.51598 + 1.19889i
\(965\) 139.904 121.267i 0.144978 0.125665i
\(966\) 0 0
\(967\) −348.013 −0.359889 −0.179945 0.983677i \(-0.557592\pi\)
−0.179945 + 0.983677i \(0.557592\pi\)
\(968\) −151.811 96.6881i −0.156830 0.0998844i
\(969\) 0 0
\(970\) 1142.95 + 657.562i 1.17830 + 0.677899i
\(971\) 798.691i 0.822545i −0.911513 0.411272i \(-0.865085\pi\)
0.911513 0.411272i \(-0.134915\pi\)
\(972\) 0 0
\(973\) 439.779i 0.451983i
\(974\) 132.159 + 380.170i 0.135687 + 0.390318i
\(975\) 0 0
\(976\) 140.117 591.634i 0.143563 0.606183i
\(977\) 721.834i 0.738827i −0.929265 0.369413i \(-0.879559\pi\)
0.929265 0.369413i \(-0.120441\pi\)
\(978\) 0 0
\(979\) 994.458i 1.01579i
\(980\) −831.151 157.702i −0.848114 0.160921i
\(981\) 0 0
\(982\) −656.216 + 228.121i −0.668244 + 0.232302i
\(983\) −1717.25 −1.74695 −0.873474 0.486870i \(-0.838139\pi\)
−0.873474 + 0.486870i \(0.838139\pi\)
\(984\) 0 0
\(985\) −735.135 + 637.207i −0.746330 + 0.646910i
\(986\) −11.3821 + 3.95677i −0.0115437 + 0.00401296i
\(987\) 0 0
\(988\) −620.586 + 490.779i −0.628124 + 0.496740i
\(989\) −69.9934 −0.0707719
\(990\) 0 0
\(991\) 342.270i 0.345378i −0.984976 0.172689i \(-0.944754\pi\)
0.984976 0.172689i \(-0.0552456\pi\)
\(992\) 149.992 + 1465.17i 0.151202 + 1.47699i
\(993\) 0 0
\(994\) 129.897 45.1562i 0.130681 0.0454288i
\(995\) −665.108 + 576.508i −0.668450 + 0.579405i
\(996\) 0 0
\(997\) 1586.05i 1.59082i −0.606072 0.795410i \(-0.707256\pi\)
0.606072 0.795410i \(-0.292744\pi\)
\(998\) −1270.00 + 441.493i −1.27255 + 0.442377i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.3.f.h.19.6 8
3.2 odd 2 60.3.f.b.19.3 8
4.3 odd 2 inner 180.3.f.h.19.4 8
5.2 odd 4 900.3.c.r.451.2 8
5.3 odd 4 900.3.c.r.451.7 8
5.4 even 2 inner 180.3.f.h.19.3 8
12.11 even 2 60.3.f.b.19.5 yes 8
15.2 even 4 300.3.c.f.151.7 8
15.8 even 4 300.3.c.f.151.2 8
15.14 odd 2 60.3.f.b.19.6 yes 8
20.3 even 4 900.3.c.r.451.8 8
20.7 even 4 900.3.c.r.451.1 8
20.19 odd 2 inner 180.3.f.h.19.5 8
24.5 odd 2 960.3.j.e.319.8 8
24.11 even 2 960.3.j.e.319.4 8
60.23 odd 4 300.3.c.f.151.1 8
60.47 odd 4 300.3.c.f.151.8 8
60.59 even 2 60.3.f.b.19.4 yes 8
120.29 odd 2 960.3.j.e.319.3 8
120.59 even 2 960.3.j.e.319.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.3.f.b.19.3 8 3.2 odd 2
60.3.f.b.19.4 yes 8 60.59 even 2
60.3.f.b.19.5 yes 8 12.11 even 2
60.3.f.b.19.6 yes 8 15.14 odd 2
180.3.f.h.19.3 8 5.4 even 2 inner
180.3.f.h.19.4 8 4.3 odd 2 inner
180.3.f.h.19.5 8 20.19 odd 2 inner
180.3.f.h.19.6 8 1.1 even 1 trivial
300.3.c.f.151.1 8 60.23 odd 4
300.3.c.f.151.2 8 15.8 even 4
300.3.c.f.151.7 8 15.2 even 4
300.3.c.f.151.8 8 60.47 odd 4
900.3.c.r.451.1 8 20.7 even 4
900.3.c.r.451.2 8 5.2 odd 4
900.3.c.r.451.7 8 5.3 odd 4
900.3.c.r.451.8 8 20.3 even 4
960.3.j.e.319.3 8 120.29 odd 2
960.3.j.e.319.4 8 24.11 even 2
960.3.j.e.319.7 8 120.59 even 2
960.3.j.e.319.8 8 24.5 odd 2