Properties

Label 900.3.c.r.451.1
Level $900$
Weight $3$
Character 900.451
Analytic conductor $24.523$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,3,Mod(451,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.451");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 900.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.5232237924\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.6080256576.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 7x^{6} - 12x^{5} + 12x^{4} - 48x^{3} + 112x^{2} - 192x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 451.1
Root \(-1.51328 - 1.30766i\) of defining polynomial
Character \(\chi\) \(=\) 900.451
Dual form 900.3.c.r.451.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.88911 - 0.656712i) q^{2} +(3.13746 + 2.48120i) q^{4} +9.55505i q^{7} +(-4.29756 - 6.74766i) q^{8} +O(q^{10})\) \(q+(-1.88911 - 0.656712i) q^{2} +(3.13746 + 2.48120i) q^{4} +9.55505i q^{7} +(-4.29756 - 6.74766i) q^{8} -9.92480i q^{11} +7.55643 q^{13} +(6.27492 - 18.0505i) q^{14} +(3.68729 + 15.5693i) q^{16} -17.1903 q^{17} -26.1762i q^{19} +(-6.51774 + 18.7490i) q^{22} -1.67451i q^{23} +(-14.2749 - 4.96240i) q^{26} +(-23.7080 + 29.9786i) q^{28} -0.350497 q^{29} -46.0258i q^{31} +(3.25887 - 31.8336i) q^{32} +(32.4743 + 11.2890i) q^{34} +22.6693 q^{37} +(-17.1903 + 49.4498i) q^{38} +77.2990 q^{41} +41.7994i q^{43} +(24.6254 - 31.1386i) q^{44} +(-1.09967 + 3.16332i) q^{46} -14.0866i q^{47} -42.2990 q^{49} +(23.7080 + 18.7490i) q^{52} +22.6693 q^{53} +(64.4743 - 41.0634i) q^{56} +(0.662126 + 0.230175i) q^{58} +94.7802i q^{59} +38.0000 q^{61} +(-30.2257 + 86.9478i) q^{62} +(-27.0619 + 57.9970i) q^{64} -29.8477i q^{67} +(-53.9337 - 42.6525i) q^{68} -7.19630i q^{71} -34.3805 q^{73} +(-42.8248 - 14.8872i) q^{74} +(64.9485 - 82.1269i) q^{76} +94.8320 q^{77} -46.0258i q^{79} +(-146.026 - 50.7632i) q^{82} +24.1336i q^{83} +(27.4502 - 78.9636i) q^{86} +(-66.9692 + 42.6525i) q^{88} +100.199 q^{89} +72.2021i q^{91} +(4.15479 - 5.25370i) q^{92} +(-9.25083 + 26.6111i) q^{94} +131.861 q^{97} +(79.9074 + 27.7783i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 10 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 10 q^{4} + 20 q^{14} - 46 q^{16} - 84 q^{26} - 184 q^{29} - 12 q^{34} + 256 q^{41} + 348 q^{44} + 112 q^{46} + 24 q^{49} + 244 q^{56} + 304 q^{61} + 10 q^{64} - 252 q^{74} - 24 q^{76} + 280 q^{86} + 560 q^{89} - 376 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.88911 0.656712i −0.944554 0.328356i
\(3\) 0 0
\(4\) 3.13746 + 2.48120i 0.784365 + 0.620300i
\(5\) 0 0
\(6\) 0 0
\(7\) 9.55505i 1.36501i 0.730882 + 0.682504i \(0.239109\pi\)
−0.730882 + 0.682504i \(0.760891\pi\)
\(8\) −4.29756 6.74766i −0.537196 0.843458i
\(9\) 0 0
\(10\) 0 0
\(11\) 9.92480i 0.902255i −0.892460 0.451127i \(-0.851022\pi\)
0.892460 0.451127i \(-0.148978\pi\)
\(12\) 0 0
\(13\) 7.55643 0.581264 0.290632 0.956835i \(-0.406134\pi\)
0.290632 + 0.956835i \(0.406134\pi\)
\(14\) 6.27492 18.0505i 0.448208 1.28932i
\(15\) 0 0
\(16\) 3.68729 + 15.5693i 0.230456 + 0.973083i
\(17\) −17.1903 −1.01119 −0.505596 0.862770i \(-0.668727\pi\)
−0.505596 + 0.862770i \(0.668727\pi\)
\(18\) 0 0
\(19\) 26.1762i 1.37770i −0.724905 0.688849i \(-0.758116\pi\)
0.724905 0.688849i \(-0.241884\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −6.51774 + 18.7490i −0.296261 + 0.852228i
\(23\) 1.67451i 0.0728047i −0.999337 0.0364023i \(-0.988410\pi\)
0.999337 0.0364023i \(-0.0115898\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −14.2749 4.96240i −0.549035 0.190862i
\(27\) 0 0
\(28\) −23.7080 + 29.9786i −0.846714 + 1.07066i
\(29\) −0.350497 −0.0120861 −0.00604305 0.999982i \(-0.501924\pi\)
−0.00604305 + 0.999982i \(0.501924\pi\)
\(30\) 0 0
\(31\) 46.0258i 1.48470i −0.670010 0.742352i \(-0.733710\pi\)
0.670010 0.742352i \(-0.266290\pi\)
\(32\) 3.25887 31.8336i 0.101840 0.994801i
\(33\) 0 0
\(34\) 32.4743 + 11.2890i 0.955125 + 0.332031i
\(35\) 0 0
\(36\) 0 0
\(37\) 22.6693 0.612684 0.306342 0.951922i \(-0.400895\pi\)
0.306342 + 0.951922i \(0.400895\pi\)
\(38\) −17.1903 + 49.4498i −0.452375 + 1.30131i
\(39\) 0 0
\(40\) 0 0
\(41\) 77.2990 1.88534 0.942671 0.333724i \(-0.108305\pi\)
0.942671 + 0.333724i \(0.108305\pi\)
\(42\) 0 0
\(43\) 41.7994i 0.972079i 0.873937 + 0.486039i \(0.161559\pi\)
−0.873937 + 0.486039i \(0.838441\pi\)
\(44\) 24.6254 31.1386i 0.559668 0.707697i
\(45\) 0 0
\(46\) −1.09967 + 3.16332i −0.0239058 + 0.0687679i
\(47\) 14.0866i 0.299715i −0.988708 0.149857i \(-0.952119\pi\)
0.988708 0.149857i \(-0.0478814\pi\)
\(48\) 0 0
\(49\) −42.2990 −0.863245
\(50\) 0 0
\(51\) 0 0
\(52\) 23.7080 + 18.7490i 0.455923 + 0.360558i
\(53\) 22.6693 0.427723 0.213861 0.976864i \(-0.431396\pi\)
0.213861 + 0.976864i \(0.431396\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 64.4743 41.0634i 1.15133 0.733276i
\(57\) 0 0
\(58\) 0.662126 + 0.230175i 0.0114160 + 0.00396854i
\(59\) 94.7802i 1.60644i 0.595680 + 0.803222i \(0.296883\pi\)
−0.595680 + 0.803222i \(0.703117\pi\)
\(60\) 0 0
\(61\) 38.0000 0.622951 0.311475 0.950254i \(-0.399177\pi\)
0.311475 + 0.950254i \(0.399177\pi\)
\(62\) −30.2257 + 86.9478i −0.487512 + 1.40238i
\(63\) 0 0
\(64\) −27.0619 + 57.9970i −0.422842 + 0.906203i
\(65\) 0 0
\(66\) 0 0
\(67\) 29.8477i 0.445488i −0.974877 0.222744i \(-0.928499\pi\)
0.974877 0.222744i \(-0.0715013\pi\)
\(68\) −53.9337 42.6525i −0.793143 0.627242i
\(69\) 0 0
\(70\) 0 0
\(71\) 7.19630i 0.101356i −0.998715 0.0506782i \(-0.983862\pi\)
0.998715 0.0506782i \(-0.0161383\pi\)
\(72\) 0 0
\(73\) −34.3805 −0.470966 −0.235483 0.971878i \(-0.575667\pi\)
−0.235483 + 0.971878i \(0.575667\pi\)
\(74\) −42.8248 14.8872i −0.578713 0.201178i
\(75\) 0 0
\(76\) 64.9485 82.1269i 0.854586 1.08062i
\(77\) 94.8320 1.23158
\(78\) 0 0
\(79\) 46.0258i 0.582606i −0.956631 0.291303i \(-0.905911\pi\)
0.956631 0.291303i \(-0.0940887\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −146.026 50.7632i −1.78081 0.619063i
\(83\) 24.1336i 0.290767i 0.989375 + 0.145383i \(0.0464415\pi\)
−0.989375 + 0.145383i \(0.953558\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 27.4502 78.9636i 0.319188 0.918181i
\(87\) 0 0
\(88\) −66.9692 + 42.6525i −0.761014 + 0.484687i
\(89\) 100.199 1.12584 0.562918 0.826513i \(-0.309679\pi\)
0.562918 + 0.826513i \(0.309679\pi\)
\(90\) 0 0
\(91\) 72.2021i 0.793430i
\(92\) 4.15479 5.25370i 0.0451607 0.0571054i
\(93\) 0 0
\(94\) −9.25083 + 26.6111i −0.0984131 + 0.283097i
\(95\) 0 0
\(96\) 0 0
\(97\) 131.861 1.35939 0.679696 0.733494i \(-0.262112\pi\)
0.679696 + 0.733494i \(0.262112\pi\)
\(98\) 79.9074 + 27.7783i 0.815382 + 0.283452i
\(99\) 0 0
\(100\) 0 0
\(101\) −29.4502 −0.291586 −0.145793 0.989315i \(-0.546573\pi\)
−0.145793 + 0.989315i \(0.546573\pi\)
\(102\) 0 0
\(103\) 143.786i 1.39598i −0.716107 0.697991i \(-0.754078\pi\)
0.716107 0.697991i \(-0.245922\pi\)
\(104\) −32.4743 50.9882i −0.312252 0.490272i
\(105\) 0 0
\(106\) −42.8248 14.8872i −0.404007 0.140445i
\(107\) 35.1014i 0.328050i 0.986456 + 0.164025i \(0.0524478\pi\)
−0.986456 + 0.164025i \(0.947552\pi\)
\(108\) 0 0
\(109\) 151.498 1.38989 0.694947 0.719061i \(-0.255428\pi\)
0.694947 + 0.719061i \(0.255428\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −148.766 + 35.2323i −1.32827 + 0.314574i
\(113\) −32.3031 −0.285868 −0.142934 0.989732i \(-0.545654\pi\)
−0.142934 + 0.989732i \(0.545654\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.09967 0.869652i −0.00947990 0.00749700i
\(117\) 0 0
\(118\) 62.2433 179.050i 0.527486 1.51737i
\(119\) 164.254i 1.38028i
\(120\) 0 0
\(121\) 22.4983 0.185937
\(122\) −71.7861 24.9551i −0.588411 0.204550i
\(123\) 0 0
\(124\) 114.199 144.404i 0.920962 1.16455i
\(125\) 0 0
\(126\) 0 0
\(127\) 192.053i 1.51223i −0.654438 0.756116i \(-0.727095\pi\)
0.654438 0.756116i \(-0.272905\pi\)
\(128\) 89.2102 91.7908i 0.696954 0.717115i
\(129\) 0 0
\(130\) 0 0
\(131\) 42.4277i 0.323876i −0.986801 0.161938i \(-0.948226\pi\)
0.986801 0.161938i \(-0.0517744\pi\)
\(132\) 0 0
\(133\) 250.115 1.88057
\(134\) −19.6013 + 56.3855i −0.146279 + 0.420787i
\(135\) 0 0
\(136\) 73.8762 + 115.994i 0.543208 + 0.852897i
\(137\) 206.854 1.50988 0.754942 0.655791i \(-0.227665\pi\)
0.754942 + 0.655791i \(0.227665\pi\)
\(138\) 0 0
\(139\) 46.0258i 0.331121i 0.986200 + 0.165561i \(0.0529433\pi\)
−0.986200 + 0.165561i \(0.947057\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.72590 + 13.5946i −0.0332810 + 0.0957366i
\(143\) 74.9961i 0.524448i
\(144\) 0 0
\(145\) 0 0
\(146\) 64.9485 + 22.5781i 0.444853 + 0.154645i
\(147\) 0 0
\(148\) 71.1240 + 56.2471i 0.480567 + 0.380048i
\(149\) 11.6495 0.0781846 0.0390923 0.999236i \(-0.487553\pi\)
0.0390923 + 0.999236i \(0.487553\pi\)
\(150\) 0 0
\(151\) 125.424i 0.830624i −0.909679 0.415312i \(-0.863672\pi\)
0.909679 0.415312i \(-0.136328\pi\)
\(152\) −176.628 + 112.494i −1.16203 + 0.740093i
\(153\) 0 0
\(154\) −179.148 62.2773i −1.16330 0.404398i
\(155\) 0 0
\(156\) 0 0
\(157\) 197.220 1.25618 0.628090 0.778140i \(-0.283837\pi\)
0.628090 + 0.778140i \(0.283837\pi\)
\(158\) −30.2257 + 86.9478i −0.191302 + 0.550303i
\(159\) 0 0
\(160\) 0 0
\(161\) 16.0000 0.0993789
\(162\) 0 0
\(163\) 18.4196i 0.113004i 0.998402 + 0.0565018i \(0.0179947\pi\)
−0.998402 + 0.0565018i \(0.982005\pi\)
\(164\) 242.522 + 191.794i 1.47880 + 1.16948i
\(165\) 0 0
\(166\) 15.8488 45.5910i 0.0954749 0.274645i
\(167\) 92.8920i 0.556240i −0.960546 0.278120i \(-0.910289\pi\)
0.960546 0.278120i \(-0.0897112\pi\)
\(168\) 0 0
\(169\) −111.900 −0.662132
\(170\) 0 0
\(171\) 0 0
\(172\) −103.713 + 131.144i −0.602981 + 0.762464i
\(173\) 117.501 0.679198 0.339599 0.940570i \(-0.389709\pi\)
0.339599 + 0.940570i \(0.389709\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 154.522 36.5956i 0.877968 0.207930i
\(177\) 0 0
\(178\) −189.287 65.8021i −1.06341 0.369675i
\(179\) 231.988i 1.29602i −0.761631 0.648011i \(-0.775601\pi\)
0.761631 0.648011i \(-0.224399\pi\)
\(180\) 0 0
\(181\) −218.096 −1.20495 −0.602476 0.798137i \(-0.705819\pi\)
−0.602476 + 0.798137i \(0.705819\pi\)
\(182\) 47.4160 136.398i 0.260527 0.749437i
\(183\) 0 0
\(184\) −11.2990 + 7.19630i −0.0614076 + 0.0391103i
\(185\) 0 0
\(186\) 0 0
\(187\) 170.610i 0.912352i
\(188\) 34.9516 44.1961i 0.185913 0.235085i
\(189\) 0 0
\(190\) 0 0
\(191\) 137.208i 0.718366i −0.933267 0.359183i \(-0.883055\pi\)
0.933267 0.359183i \(-0.116945\pi\)
\(192\) 0 0
\(193\) −37.0290 −0.191860 −0.0959301 0.995388i \(-0.530583\pi\)
−0.0959301 + 0.995388i \(0.530583\pi\)
\(194\) −249.100 86.5947i −1.28402 0.446364i
\(195\) 0 0
\(196\) −132.711 104.952i −0.677099 0.535471i
\(197\) −194.572 −0.987674 −0.493837 0.869554i \(-0.664406\pi\)
−0.493837 + 0.869554i \(0.664406\pi\)
\(198\) 0 0
\(199\) 176.037i 0.884610i 0.896865 + 0.442305i \(0.145839\pi\)
−0.896865 + 0.442305i \(0.854161\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 55.6345 + 19.3403i 0.275419 + 0.0957440i
\(203\) 3.34901i 0.0164976i
\(204\) 0 0
\(205\) 0 0
\(206\) −94.4261 + 271.628i −0.458379 + 1.31858i
\(207\) 0 0
\(208\) 27.8628 + 117.649i 0.133956 + 0.565618i
\(209\) −259.794 −1.24303
\(210\) 0 0
\(211\) 20.7193i 0.0981955i 0.998794 + 0.0490978i \(0.0156346\pi\)
−0.998794 + 0.0490978i \(0.984365\pi\)
\(212\) 71.1240 + 56.2471i 0.335490 + 0.265316i
\(213\) 0 0
\(214\) 23.0515 66.3103i 0.107717 0.309861i
\(215\) 0 0
\(216\) 0 0
\(217\) 439.779 2.02663
\(218\) −286.197 99.4908i −1.31283 0.456380i
\(219\) 0 0
\(220\) 0 0
\(221\) −129.897 −0.587769
\(222\) 0 0
\(223\) 97.0265i 0.435096i −0.976050 0.217548i \(-0.930194\pi\)
0.976050 0.217548i \(-0.0698059\pi\)
\(224\) 304.172 + 31.1386i 1.35791 + 0.139012i
\(225\) 0 0
\(226\) 61.0241 + 21.2138i 0.270018 + 0.0938666i
\(227\) 407.256i 1.79408i −0.441948 0.897040i \(-0.645713\pi\)
0.441948 0.897040i \(-0.354287\pi\)
\(228\) 0 0
\(229\) 7.89702 0.0344848 0.0172424 0.999851i \(-0.494511\pi\)
0.0172424 + 0.999851i \(0.494511\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.50628 + 2.36503i 0.00649260 + 0.0101941i
\(233\) −28.1483 −0.120808 −0.0604042 0.998174i \(-0.519239\pi\)
−0.0604042 + 0.998174i \(0.519239\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −235.169 + 297.369i −0.996477 + 1.26004i
\(237\) 0 0
\(238\) −107.867 + 310.293i −0.453225 + 1.30375i
\(239\) 296.005i 1.23851i 0.785189 + 0.619257i \(0.212566\pi\)
−0.785189 + 0.619257i \(0.787434\pi\)
\(240\) 0 0
\(241\) 465.794 1.93276 0.966378 0.257127i \(-0.0827758\pi\)
0.966378 + 0.257127i \(0.0827758\pi\)
\(242\) −42.5018 14.7749i −0.175627 0.0610534i
\(243\) 0 0
\(244\) 119.223 + 94.2856i 0.488621 + 0.386416i
\(245\) 0 0
\(246\) 0 0
\(247\) 197.799i 0.800806i
\(248\) −310.567 + 197.799i −1.25229 + 0.797577i
\(249\) 0 0
\(250\) 0 0
\(251\) 141.676i 0.564445i 0.959349 + 0.282223i \(0.0910716\pi\)
−0.959349 + 0.282223i \(0.908928\pi\)
\(252\) 0 0
\(253\) −16.6191 −0.0656883
\(254\) −126.124 + 362.810i −0.496550 + 1.42838i
\(255\) 0 0
\(256\) −228.808 + 114.817i −0.893780 + 0.448505i
\(257\) 41.7549 0.162470 0.0812352 0.996695i \(-0.474113\pi\)
0.0812352 + 0.996695i \(0.474113\pi\)
\(258\) 0 0
\(259\) 216.606i 0.836318i
\(260\) 0 0
\(261\) 0 0
\(262\) −27.8628 + 80.1505i −0.106346 + 0.305918i
\(263\) 203.283i 0.772939i −0.922302 0.386469i \(-0.873694\pi\)
0.922302 0.386469i \(-0.126306\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −472.495 164.254i −1.77630 0.617495i
\(267\) 0 0
\(268\) 74.0580 93.6458i 0.276336 0.349425i
\(269\) −244.048 −0.907242 −0.453621 0.891195i \(-0.649868\pi\)
−0.453621 + 0.891195i \(0.649868\pi\)
\(270\) 0 0
\(271\) 466.585i 1.72172i 0.508845 + 0.860858i \(0.330073\pi\)
−0.508845 + 0.860858i \(0.669927\pi\)
\(272\) −63.3855 267.641i −0.233035 0.983973i
\(273\) 0 0
\(274\) −390.770 135.844i −1.42617 0.495780i
\(275\) 0 0
\(276\) 0 0
\(277\) −494.181 −1.78405 −0.892023 0.451990i \(-0.850714\pi\)
−0.892023 + 0.451990i \(0.850714\pi\)
\(278\) 30.2257 86.9478i 0.108726 0.312762i
\(279\) 0 0
\(280\) 0 0
\(281\) 43.4020 0.154455 0.0772277 0.997013i \(-0.475393\pi\)
0.0772277 + 0.997013i \(0.475393\pi\)
\(282\) 0 0
\(283\) 310.785i 1.09818i 0.835763 + 0.549090i \(0.185026\pi\)
−0.835763 + 0.549090i \(0.814974\pi\)
\(284\) 17.8555 22.5781i 0.0628714 0.0795003i
\(285\) 0 0
\(286\) −49.2508 + 141.676i −0.172206 + 0.495370i
\(287\) 738.596i 2.57351i
\(288\) 0 0
\(289\) 6.50497 0.0225085
\(290\) 0 0
\(291\) 0 0
\(292\) −107.867 85.3049i −0.369409 0.292140i
\(293\) 245.207 0.836886 0.418443 0.908243i \(-0.362576\pi\)
0.418443 + 0.908243i \(0.362576\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −97.4228 152.965i −0.329131 0.516773i
\(297\) 0 0
\(298\) −22.0072 7.65037i −0.0738496 0.0256724i
\(299\) 12.6533i 0.0423187i
\(300\) 0 0
\(301\) −399.395 −1.32689
\(302\) −82.3676 + 236.940i −0.272740 + 0.784569i
\(303\) 0 0
\(304\) 407.547 96.5195i 1.34061 0.317498i
\(305\) 0 0
\(306\) 0 0
\(307\) 337.514i 1.09939i 0.835364 + 0.549697i \(0.185257\pi\)
−0.835364 + 0.549697i \(0.814743\pi\)
\(308\) 297.531 + 235.297i 0.966011 + 0.763952i
\(309\) 0 0
\(310\) 0 0
\(311\) 427.756i 1.37542i 0.725986 + 0.687710i \(0.241384\pi\)
−0.725986 + 0.687710i \(0.758616\pi\)
\(312\) 0 0
\(313\) 83.8739 0.267968 0.133984 0.990984i \(-0.457223\pi\)
0.133984 + 0.990984i \(0.457223\pi\)
\(314\) −372.571 129.517i −1.18653 0.412475i
\(315\) 0 0
\(316\) 114.199 144.404i 0.361390 0.456975i
\(317\) 112.204 0.353957 0.176978 0.984215i \(-0.443368\pi\)
0.176978 + 0.984215i \(0.443368\pi\)
\(318\) 0 0
\(319\) 3.47861i 0.0109047i
\(320\) 0 0
\(321\) 0 0
\(322\) −30.2257 10.5074i −0.0938687 0.0326317i
\(323\) 449.976i 1.39312i
\(324\) 0 0
\(325\) 0 0
\(326\) 12.0964 34.7966i 0.0371054 0.106738i
\(327\) 0 0
\(328\) −332.197 521.588i −1.01280 1.59021i
\(329\) 134.598 0.409113
\(330\) 0 0
\(331\) 132.621i 0.400666i −0.979728 0.200333i \(-0.935798\pi\)
0.979728 0.200333i \(-0.0642025\pi\)
\(332\) −59.8803 + 75.7182i −0.180362 + 0.228067i
\(333\) 0 0
\(334\) −61.0033 + 175.483i −0.182645 + 0.525398i
\(335\) 0 0
\(336\) 0 0
\(337\) −20.7739 −0.0616437 −0.0308219 0.999525i \(-0.509812\pi\)
−0.0308219 + 0.999525i \(0.509812\pi\)
\(338\) 211.392 + 73.4863i 0.625420 + 0.217415i
\(339\) 0 0
\(340\) 0 0
\(341\) −456.797 −1.33958
\(342\) 0 0
\(343\) 64.0283i 0.186672i
\(344\) 282.048 179.636i 0.819907 0.522196i
\(345\) 0 0
\(346\) −221.973 77.1645i −0.641539 0.223019i
\(347\) 8.89616i 0.0256374i −0.999918 0.0128187i \(-0.995920\pi\)
0.999918 0.0128187i \(-0.00408042\pi\)
\(348\) 0 0
\(349\) −19.4020 −0.0555931 −0.0277965 0.999614i \(-0.508849\pi\)
−0.0277965 + 0.999614i \(0.508849\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −315.942 32.3436i −0.897564 0.0918853i
\(353\) −80.2902 −0.227451 −0.113726 0.993512i \(-0.536278\pi\)
−0.113726 + 0.993512i \(0.536278\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 314.371 + 248.615i 0.883065 + 0.698356i
\(357\) 0 0
\(358\) −152.349 + 438.251i −0.425557 + 1.22416i
\(359\) 314.115i 0.874972i 0.899225 + 0.437486i \(0.144131\pi\)
−0.899225 + 0.437486i \(0.855869\pi\)
\(360\) 0 0
\(361\) −324.196 −0.898050
\(362\) 412.008 + 143.227i 1.13814 + 0.395653i
\(363\) 0 0
\(364\) −179.148 + 226.531i −0.492164 + 0.622338i
\(365\) 0 0
\(366\) 0 0
\(367\) 476.800i 1.29918i −0.760283 0.649592i \(-0.774940\pi\)
0.760283 0.649592i \(-0.225060\pi\)
\(368\) 26.0709 6.17440i 0.0708450 0.0167783i
\(369\) 0 0
\(370\) 0 0
\(371\) 216.606i 0.583844i
\(372\) 0 0
\(373\) −86.1333 −0.230920 −0.115460 0.993312i \(-0.536834\pi\)
−0.115460 + 0.993312i \(0.536834\pi\)
\(374\) 112.042 322.300i 0.299576 0.861766i
\(375\) 0 0
\(376\) −95.0515 + 60.5380i −0.252797 + 0.161005i
\(377\) −2.64850 −0.00702521
\(378\) 0 0
\(379\) 638.035i 1.68347i −0.539891 0.841735i \(-0.681534\pi\)
0.539891 0.841735i \(-0.318466\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −90.1061 + 259.201i −0.235880 + 0.678535i
\(383\) 216.742i 0.565907i 0.959134 + 0.282953i \(0.0913142\pi\)
−0.959134 + 0.282953i \(0.908686\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 69.9518 + 24.3174i 0.181222 + 0.0629985i
\(387\) 0 0
\(388\) 413.708 + 327.174i 1.06626 + 0.843231i
\(389\) 476.640 1.22529 0.612647 0.790356i \(-0.290105\pi\)
0.612647 + 0.790356i \(0.290105\pi\)
\(390\) 0 0
\(391\) 28.7852i 0.0736195i
\(392\) 181.783 + 285.419i 0.463731 + 0.728111i
\(393\) 0 0
\(394\) 367.567 + 127.778i 0.932912 + 0.324309i
\(395\) 0 0
\(396\) 0 0
\(397\) −43.0792 −0.108512 −0.0542559 0.998527i \(-0.517279\pi\)
−0.0542559 + 0.998527i \(0.517279\pi\)
\(398\) 115.606 332.554i 0.290467 0.835562i
\(399\) 0 0
\(400\) 0 0
\(401\) 168.694 0.420684 0.210342 0.977628i \(-0.432542\pi\)
0.210342 + 0.977628i \(0.432542\pi\)
\(402\) 0 0
\(403\) 347.791i 0.863005i
\(404\) −92.3987 73.0718i −0.228710 0.180871i
\(405\) 0 0
\(406\) −2.19934 + 6.32665i −0.00541709 + 0.0155829i
\(407\) 224.988i 0.552797i
\(408\) 0 0
\(409\) −373.890 −0.914157 −0.457079 0.889426i \(-0.651104\pi\)
−0.457079 + 0.889426i \(0.651104\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 356.762 451.123i 0.865927 1.09496i
\(413\) −905.630 −2.19281
\(414\) 0 0
\(415\) 0 0
\(416\) 24.6254 240.549i 0.0591957 0.578242i
\(417\) 0 0
\(418\) 490.779 + 170.610i 1.17411 + 0.408158i
\(419\) 87.5839i 0.209031i 0.994523 + 0.104515i \(0.0333291\pi\)
−0.994523 + 0.104515i \(0.966671\pi\)
\(420\) 0 0
\(421\) 70.3023 0.166989 0.0834944 0.996508i \(-0.473392\pi\)
0.0834944 + 0.996508i \(0.473392\pi\)
\(422\) 13.6066 39.1409i 0.0322431 0.0927510i
\(423\) 0 0
\(424\) −97.4228 152.965i −0.229771 0.360766i
\(425\) 0 0
\(426\) 0 0
\(427\) 363.092i 0.850332i
\(428\) −87.0935 + 110.129i −0.203490 + 0.257311i
\(429\) 0 0
\(430\) 0 0
\(431\) 247.370i 0.573944i −0.957939 0.286972i \(-0.907351\pi\)
0.957939 0.286972i \(-0.0926487\pi\)
\(432\) 0 0
\(433\) −636.247 −1.46939 −0.734696 0.678397i \(-0.762675\pi\)
−0.734696 + 0.678397i \(0.762675\pi\)
\(434\) −830.791 288.808i −1.91426 0.665457i
\(435\) 0 0
\(436\) 475.320 + 375.898i 1.09018 + 0.862151i
\(437\) −43.8323 −0.100303
\(438\) 0 0
\(439\) 769.786i 1.75350i −0.480947 0.876750i \(-0.659707\pi\)
0.480947 0.876750i \(-0.340293\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 245.390 + 85.3049i 0.555180 + 0.192998i
\(443\) 612.214i 1.38197i −0.722868 0.690986i \(-0.757177\pi\)
0.722868 0.690986i \(-0.242823\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −63.7185 + 183.294i −0.142867 + 0.410972i
\(447\) 0 0
\(448\) −554.165 258.578i −1.23697 0.577182i
\(449\) 175.897 0.391753 0.195876 0.980629i \(-0.437245\pi\)
0.195876 + 0.980629i \(0.437245\pi\)
\(450\) 0 0
\(451\) 767.177i 1.70106i
\(452\) −101.350 80.1505i −0.224225 0.177324i
\(453\) 0 0
\(454\) −267.450 + 769.351i −0.589097 + 1.69461i
\(455\) 0 0
\(456\) 0 0
\(457\) −365.357 −0.799469 −0.399734 0.916631i \(-0.630898\pi\)
−0.399734 + 0.916631i \(0.630898\pi\)
\(458\) −14.9183 5.18607i −0.0325728 0.0113233i
\(459\) 0 0
\(460\) 0 0
\(461\) −308.350 −0.668873 −0.334437 0.942418i \(-0.608546\pi\)
−0.334437 + 0.942418i \(0.608546\pi\)
\(462\) 0 0
\(463\) 92.6302i 0.200065i 0.994984 + 0.100033i \(0.0318947\pi\)
−0.994984 + 0.100033i \(0.968105\pi\)
\(464\) −1.29238 5.45700i −0.00278531 0.0117608i
\(465\) 0 0
\(466\) 53.1752 + 18.4854i 0.114110 + 0.0396681i
\(467\) 606.103i 1.29786i −0.760846 0.648932i \(-0.775216\pi\)
0.760846 0.648932i \(-0.224784\pi\)
\(468\) 0 0
\(469\) 285.196 0.608094
\(470\) 0 0
\(471\) 0 0
\(472\) 639.545 407.324i 1.35497 0.862975i
\(473\) 414.851 0.877063
\(474\) 0 0
\(475\) 0 0
\(476\) 407.547 515.339i 0.856190 1.08265i
\(477\) 0 0
\(478\) 194.390 559.185i 0.406673 1.16984i
\(479\) 138.947i 0.290078i −0.989426 0.145039i \(-0.953669\pi\)
0.989426 0.145039i \(-0.0463307\pi\)
\(480\) 0 0
\(481\) 171.299 0.356131
\(482\) −879.935 305.893i −1.82559 0.634632i
\(483\) 0 0
\(484\) 70.5876 + 55.8229i 0.145842 + 0.115337i
\(485\) 0 0
\(486\) 0 0
\(487\) 201.243i 0.413230i −0.978422 0.206615i \(-0.933755\pi\)
0.978422 0.206615i \(-0.0662447\pi\)
\(488\) −163.307 256.411i −0.334646 0.525433i
\(489\) 0 0
\(490\) 0 0
\(491\) 347.368i 0.707470i −0.935346 0.353735i \(-0.884911\pi\)
0.935346 0.353735i \(-0.115089\pi\)
\(492\) 0 0
\(493\) 6.02513 0.0122214
\(494\) −129.897 + 373.664i −0.262949 + 0.756404i
\(495\) 0 0
\(496\) 716.591 169.711i 1.44474 0.342159i
\(497\) 68.7610 0.138352
\(498\) 0 0
\(499\) 672.277i 1.34725i 0.739074 + 0.673625i \(0.235264\pi\)
−0.739074 + 0.673625i \(0.764736\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 93.0401 267.641i 0.185339 0.533149i
\(503\) 436.350i 0.867496i 0.901034 + 0.433748i \(0.142809\pi\)
−0.901034 + 0.433748i \(0.857191\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 31.3954 + 10.9140i 0.0620462 + 0.0215692i
\(507\) 0 0
\(508\) 476.523 602.559i 0.938037 1.18614i
\(509\) −109.547 −0.215219 −0.107610 0.994193i \(-0.534320\pi\)
−0.107610 + 0.994193i \(0.534320\pi\)
\(510\) 0 0
\(511\) 328.508i 0.642872i
\(512\) 507.644 66.6415i 0.991493 0.130159i
\(513\) 0 0
\(514\) −78.8796 27.4210i −0.153462 0.0533482i
\(515\) 0 0
\(516\) 0 0
\(517\) −139.807 −0.270419
\(518\) 142.248 409.193i 0.274610 0.789947i
\(519\) 0 0
\(520\) 0 0
\(521\) 743.100 1.42629 0.713147 0.701014i \(-0.247269\pi\)
0.713147 + 0.701014i \(0.247269\pi\)
\(522\) 0 0
\(523\) 366.211i 0.700212i 0.936710 + 0.350106i \(0.113854\pi\)
−0.936710 + 0.350106i \(0.886146\pi\)
\(524\) 105.272 133.115i 0.200900 0.254037i
\(525\) 0 0
\(526\) −133.498 + 384.023i −0.253799 + 0.730083i
\(527\) 791.196i 1.50132i
\(528\) 0 0
\(529\) 526.196 0.994699
\(530\) 0 0
\(531\) 0 0
\(532\) 784.727 + 620.586i 1.47505 + 1.16652i
\(533\) 584.105 1.09588
\(534\) 0 0
\(535\) 0 0
\(536\) −201.402 + 128.272i −0.375750 + 0.239314i
\(537\) 0 0
\(538\) 461.033 + 160.269i 0.856939 + 0.297898i
\(539\) 419.809i 0.778867i
\(540\) 0 0
\(541\) 170.688 0.315504 0.157752 0.987479i \(-0.449575\pi\)
0.157752 + 0.987479i \(0.449575\pi\)
\(542\) 306.412 881.430i 0.565336 1.62625i
\(543\) 0 0
\(544\) −56.0208 + 547.228i −0.102979 + 1.00593i
\(545\) 0 0
\(546\) 0 0
\(547\) 507.600i 0.927971i 0.885843 + 0.463986i \(0.153581\pi\)
−0.885843 + 0.463986i \(0.846419\pi\)
\(548\) 648.997 + 513.247i 1.18430 + 0.936581i
\(549\) 0 0
\(550\) 0 0
\(551\) 9.17469i 0.0166510i
\(552\) 0 0
\(553\) 439.779 0.795261
\(554\) 933.561 + 324.534i 1.68513 + 0.585802i
\(555\) 0 0
\(556\) −114.199 + 144.404i −0.205394 + 0.259720i
\(557\) −788.492 −1.41561 −0.707803 0.706410i \(-0.750314\pi\)
−0.707803 + 0.706410i \(0.750314\pi\)
\(558\) 0 0
\(559\) 315.854i 0.565035i
\(560\) 0 0
\(561\) 0 0
\(562\) −81.9910 28.5026i −0.145892 0.0507164i
\(563\) 936.102i 1.66270i −0.555747 0.831351i \(-0.687568\pi\)
0.555747 0.831351i \(-0.312432\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 204.096 587.107i 0.360594 1.03729i
\(567\) 0 0
\(568\) −48.5582 + 30.9266i −0.0854898 + 0.0544482i
\(569\) −95.4983 −0.167835 −0.0839177 0.996473i \(-0.526743\pi\)
−0.0839177 + 0.996473i \(0.526743\pi\)
\(570\) 0 0
\(571\) 889.123i 1.55713i 0.627562 + 0.778566i \(0.284053\pi\)
−0.627562 + 0.778566i \(0.715947\pi\)
\(572\) 186.080 235.297i 0.325315 0.411359i
\(573\) 0 0
\(574\) 485.045 1395.29i 0.845026 2.43081i
\(575\) 0 0
\(576\) 0 0
\(577\) −522.147 −0.904934 −0.452467 0.891781i \(-0.649456\pi\)
−0.452467 + 0.891781i \(0.649456\pi\)
\(578\) −12.2886 4.27189i −0.0212605 0.00739081i
\(579\) 0 0
\(580\) 0 0
\(581\) −230.598 −0.396898
\(582\) 0 0
\(583\) 224.988i 0.385915i
\(584\) 147.752 + 231.988i 0.253001 + 0.397240i
\(585\) 0 0
\(586\) −463.223 161.031i −0.790484 0.274796i
\(587\) 95.8440i 0.163278i −0.996662 0.0816388i \(-0.973985\pi\)
0.996662 0.0816388i \(-0.0260154\pi\)
\(588\) 0 0
\(589\) −1204.78 −2.04547
\(590\) 0 0
\(591\) 0 0
\(592\) 83.5883 + 352.946i 0.141197 + 0.596192i
\(593\) −878.624 −1.48166 −0.740829 0.671693i \(-0.765567\pi\)
−0.740829 + 0.671693i \(0.765567\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 36.5498 + 28.9047i 0.0613252 + 0.0484979i
\(597\) 0 0
\(598\) −8.30957 + 23.9034i −0.0138956 + 0.0399723i
\(599\) 967.652i 1.61545i −0.589563 0.807723i \(-0.700700\pi\)
0.589563 0.807723i \(-0.299300\pi\)
\(600\) 0 0
\(601\) 279.704 0.465398 0.232699 0.972549i \(-0.425244\pi\)
0.232699 + 0.972549i \(0.425244\pi\)
\(602\) 754.501 + 262.288i 1.25332 + 0.435694i
\(603\) 0 0
\(604\) 311.203 393.513i 0.515236 0.651512i
\(605\) 0 0
\(606\) 0 0
\(607\) 747.564i 1.23157i 0.787914 + 0.615786i \(0.211161\pi\)
−0.787914 + 0.615786i \(0.788839\pi\)
\(608\) −833.285 85.3049i −1.37053 0.140304i
\(609\) 0 0
\(610\) 0 0
\(611\) 106.444i 0.174213i
\(612\) 0 0
\(613\) 457.152 0.745761 0.372881 0.927879i \(-0.378370\pi\)
0.372881 + 0.927879i \(0.378370\pi\)
\(614\) 221.650 637.600i 0.360993 1.03844i
\(615\) 0 0
\(616\) −407.547 639.894i −0.661601 1.03879i
\(617\) −764.888 −1.23969 −0.619844 0.784725i \(-0.712804\pi\)
−0.619844 + 0.784725i \(0.712804\pi\)
\(618\) 0 0
\(619\) 365.359i 0.590240i −0.955460 0.295120i \(-0.904640\pi\)
0.955460 0.295120i \(-0.0953597\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 280.912 808.077i 0.451627 1.29916i
\(623\) 957.410i 1.53677i
\(624\) 0 0
\(625\) 0 0
\(626\) −158.447 55.0810i −0.253110 0.0879888i
\(627\) 0 0
\(628\) 618.771 + 489.343i 0.985304 + 0.779209i
\(629\) −389.691 −0.619541
\(630\) 0 0
\(631\) 62.1578i 0.0985067i −0.998786 0.0492534i \(-0.984316\pi\)
0.998786 0.0492534i \(-0.0156842\pi\)
\(632\) −310.567 + 197.799i −0.491403 + 0.312973i
\(633\) 0 0
\(634\) −211.966 73.6859i −0.334331 0.116224i
\(635\) 0 0
\(636\) 0 0
\(637\) −319.630 −0.501773
\(638\) 2.28444 6.57147i 0.00358063 0.0103001i
\(639\) 0 0
\(640\) 0 0
\(641\) 1111.69 1.73431 0.867154 0.498041i \(-0.165947\pi\)
0.867154 + 0.498041i \(0.165947\pi\)
\(642\) 0 0
\(643\) 468.983i 0.729367i −0.931132 0.364683i \(-0.881177\pi\)
0.931132 0.364683i \(-0.118823\pi\)
\(644\) 50.1993 + 39.6992i 0.0779493 + 0.0616447i
\(645\) 0 0
\(646\) 295.505 850.054i 0.457438 1.31587i
\(647\) 96.7647i 0.149559i 0.997200 + 0.0747795i \(0.0238253\pi\)
−0.997200 + 0.0747795i \(0.976175\pi\)
\(648\) 0 0
\(649\) 940.675 1.44942
\(650\) 0 0
\(651\) 0 0
\(652\) −45.7027 + 57.7907i −0.0700961 + 0.0886360i
\(653\) 920.353 1.40942 0.704712 0.709494i \(-0.251076\pi\)
0.704712 + 0.709494i \(0.251076\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 285.024 + 1203.49i 0.434488 + 1.83459i
\(657\) 0 0
\(658\) −254.270 88.3921i −0.386429 0.134335i
\(659\) 591.020i 0.896844i 0.893822 + 0.448422i \(0.148014\pi\)
−0.893822 + 0.448422i \(0.851986\pi\)
\(660\) 0 0
\(661\) −306.193 −0.463226 −0.231613 0.972808i \(-0.574400\pi\)
−0.231613 + 0.972808i \(0.574400\pi\)
\(662\) −87.0935 + 250.535i −0.131561 + 0.378451i
\(663\) 0 0
\(664\) 162.846 103.716i 0.245249 0.156198i
\(665\) 0 0
\(666\) 0 0
\(667\) 0.586909i 0.000879924i
\(668\) 230.484 291.445i 0.345035 0.436295i
\(669\) 0 0
\(670\) 0 0
\(671\) 377.142i 0.562060i
\(672\) 0 0
\(673\) −556.892 −0.827476 −0.413738 0.910396i \(-0.635777\pi\)
−0.413738 + 0.910396i \(0.635777\pi\)
\(674\) 39.2442 + 13.6425i 0.0582258 + 0.0202411i
\(675\) 0 0
\(676\) −351.083 277.647i −0.519353 0.410721i
\(677\) −58.1920 −0.0859557 −0.0429779 0.999076i \(-0.513684\pi\)
−0.0429779 + 0.999076i \(0.513684\pi\)
\(678\) 0 0
\(679\) 1259.94i 1.85558i
\(680\) 0 0
\(681\) 0 0
\(682\) 862.940 + 299.984i 1.26531 + 0.439860i
\(683\) 357.274i 0.523096i −0.965191 0.261548i \(-0.915767\pi\)
0.965191 0.261548i \(-0.0842329\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 42.0482 120.956i 0.0612947 0.176321i
\(687\) 0 0
\(688\) −650.788 + 154.127i −0.945913 + 0.224021i
\(689\) 171.299 0.248620
\(690\) 0 0
\(691\) 614.707i 0.889590i 0.895632 + 0.444795i \(0.146724\pi\)
−0.895632 + 0.444795i \(0.853276\pi\)
\(692\) 368.655 + 291.544i 0.532739 + 0.421307i
\(693\) 0 0
\(694\) −5.84222 + 16.8058i −0.00841818 + 0.0242159i
\(695\) 0 0
\(696\) 0 0
\(697\) −1328.79 −1.90644
\(698\) 36.6524 + 12.7415i 0.0525107 + 0.0182543i
\(699\) 0 0
\(700\) 0 0
\(701\) 886.028 1.26395 0.631975 0.774989i \(-0.282245\pi\)
0.631975 + 0.774989i \(0.282245\pi\)
\(702\) 0 0
\(703\) 593.397i 0.844093i
\(704\) 575.609 + 268.584i 0.817626 + 0.381511i
\(705\) 0 0
\(706\) 151.677 + 52.7276i 0.214840 + 0.0746849i
\(707\) 281.398i 0.398017i
\(708\) 0 0
\(709\) 760.887 1.07318 0.536592 0.843842i \(-0.319712\pi\)
0.536592 + 0.843842i \(0.319712\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −430.613 676.111i −0.604794 0.949594i
\(713\) −77.0706 −0.108093
\(714\) 0 0
\(715\) 0 0
\(716\) 575.609 727.853i 0.803923 1.01655i
\(717\) 0 0
\(718\) 206.283 593.397i 0.287302 0.826458i
\(719\) 575.877i 0.800942i −0.916309 0.400471i \(-0.868846\pi\)
0.916309 0.400471i \(-0.131154\pi\)
\(720\) 0 0
\(721\) 1373.88 1.90553
\(722\) 612.441 + 212.903i 0.848257 + 0.294880i
\(723\) 0 0
\(724\) −684.268 541.141i −0.945122 0.747432i
\(725\) 0 0
\(726\) 0 0
\(727\) 327.332i 0.450250i −0.974330 0.225125i \(-0.927721\pi\)
0.974330 0.225125i \(-0.0722790\pi\)
\(728\) 487.195 310.293i 0.669224 0.426227i
\(729\) 0 0
\(730\) 0 0
\(731\) 718.542i 0.982958i
\(732\) 0 0
\(733\) −947.567 −1.29272 −0.646362 0.763031i \(-0.723710\pi\)
−0.646362 + 0.763031i \(0.723710\pi\)
\(734\) −313.120 + 900.727i −0.426595 + 1.22715i
\(735\) 0 0
\(736\) −53.3056 5.45700i −0.0724261 0.00741440i
\(737\) −296.232 −0.401943
\(738\) 0 0
\(739\) 183.234i 0.247948i −0.992285 0.123974i \(-0.960436\pi\)
0.992285 0.123974i \(-0.0395640\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 142.248 409.193i 0.191709 0.551473i
\(743\) 183.712i 0.247258i −0.992329 0.123629i \(-0.960547\pi\)
0.992329 0.123629i \(-0.0394532\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 162.715 + 56.5648i 0.218117 + 0.0758241i
\(747\) 0 0
\(748\) −423.317 + 535.281i −0.565932 + 0.715617i
\(749\) −335.395 −0.447791
\(750\) 0 0
\(751\) 345.748i 0.460384i −0.973145 0.230192i \(-0.926065\pi\)
0.973145 0.230192i \(-0.0739354\pi\)
\(752\) 219.319 51.9414i 0.291647 0.0690710i
\(753\) 0 0
\(754\) 5.00331 + 1.73930i 0.00663569 + 0.00230677i
\(755\) 0 0
\(756\) 0 0
\(757\) −549.335 −0.725674 −0.362837 0.931853i \(-0.618192\pi\)
−0.362837 + 0.931853i \(0.618192\pi\)
\(758\) −419.005 + 1205.32i −0.552778 + 1.59013i
\(759\) 0 0
\(760\) 0 0
\(761\) −251.485 −0.330467 −0.165233 0.986255i \(-0.552838\pi\)
−0.165233 + 0.986255i \(0.552838\pi\)
\(762\) 0 0
\(763\) 1447.57i 1.89721i
\(764\) 340.440 430.484i 0.445602 0.563461i
\(765\) 0 0
\(766\) 142.337 409.450i 0.185819 0.534529i
\(767\) 716.200i 0.933768i
\(768\) 0 0
\(769\) −583.691 −0.759026 −0.379513 0.925186i \(-0.623908\pi\)
−0.379513 + 0.925186i \(0.623908\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −116.177 91.8764i −0.150488 0.119011i
\(773\) −1328.04 −1.71803 −0.859015 0.511951i \(-0.828923\pi\)
−0.859015 + 0.511951i \(0.828923\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −566.681 889.753i −0.730259 1.14659i
\(777\) 0 0
\(778\) −900.424 313.015i −1.15736 0.402333i
\(779\) 2023.40i 2.59743i
\(780\) 0 0
\(781\) −71.4219 −0.0914492
\(782\) 18.9036 54.3784i 0.0241734 0.0695376i
\(783\) 0 0
\(784\) −155.969 658.567i −0.198940 0.840009i
\(785\) 0 0
\(786\) 0 0
\(787\) 1318.83i 1.67577i −0.545850 0.837883i \(-0.683793\pi\)
0.545850 0.837883i \(-0.316207\pi\)
\(788\) −610.461 482.772i −0.774697 0.612654i
\(789\) 0 0
\(790\) 0 0
\(791\) 308.658i 0.390212i
\(792\) 0 0
\(793\) 287.144 0.362099
\(794\) 81.3812 + 28.2906i 0.102495 + 0.0356305i
\(795\) 0 0
\(796\) −436.784 + 552.310i −0.548724 + 0.693857i
\(797\) 1277.40 1.60276 0.801381 0.598154i \(-0.204099\pi\)
0.801381 + 0.598154i \(0.204099\pi\)
\(798\) 0 0
\(799\) 242.152i 0.303069i
\(800\) 0 0
\(801\) 0 0
\(802\) −318.682 110.784i −0.397359 0.138134i
\(803\) 341.220i 0.424931i
\(804\) 0 0
\(805\) 0 0
\(806\) −228.399 + 657.015i −0.283373 + 0.815155i
\(807\) 0 0
\(808\) 126.564 + 198.720i 0.156639 + 0.245940i
\(809\) 321.093 0.396901 0.198451 0.980111i \(-0.436409\pi\)
0.198451 + 0.980111i \(0.436409\pi\)
\(810\) 0 0
\(811\) 946.932i 1.16761i −0.811894 0.583805i \(-0.801563\pi\)
0.811894 0.583805i \(-0.198437\pi\)
\(812\) 8.30957 10.5074i 0.0102335 0.0129401i
\(813\) 0 0
\(814\) −147.752 + 425.027i −0.181514 + 0.522146i
\(815\) 0 0
\(816\) 0 0
\(817\) 1094.15 1.33923
\(818\) 706.319 + 245.538i 0.863471 + 0.300169i
\(819\) 0 0
\(820\) 0 0
\(821\) −1169.34 −1.42429 −0.712144 0.702033i \(-0.752276\pi\)
−0.712144 + 0.702033i \(0.752276\pi\)
\(822\) 0 0
\(823\) 1251.71i 1.52091i 0.649389 + 0.760457i \(0.275025\pi\)
−0.649389 + 0.760457i \(0.724975\pi\)
\(824\) −970.220 + 617.930i −1.17745 + 0.749915i
\(825\) 0 0
\(826\) 1710.83 + 594.738i 2.07123 + 0.720022i
\(827\) 892.104i 1.07872i 0.842074 + 0.539362i \(0.181334\pi\)
−0.842074 + 0.539362i \(0.818666\pi\)
\(828\) 0 0
\(829\) −998.688 −1.20469 −0.602345 0.798236i \(-0.705767\pi\)
−0.602345 + 0.798236i \(0.705767\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −204.491 + 438.251i −0.245783 + 0.526743i
\(833\) 727.131 0.872906
\(834\) 0 0
\(835\) 0 0
\(836\) −815.093 644.601i −0.974992 0.771054i
\(837\) 0 0
\(838\) 57.5174 165.455i 0.0686365 0.197441i
\(839\) 610.359i 0.727484i 0.931500 + 0.363742i \(0.118501\pi\)
−0.931500 + 0.363742i \(0.881499\pi\)
\(840\) 0 0
\(841\) −840.877 −0.999854
\(842\) −132.809 46.1684i −0.157730 0.0548318i
\(843\) 0 0
\(844\) −51.4086 + 65.0058i −0.0609107 + 0.0770211i
\(845\) 0 0
\(846\) 0 0
\(847\) 214.973i 0.253805i
\(848\) 83.5883 + 352.946i 0.0985712 + 0.416209i
\(849\) 0 0
\(850\) 0 0
\(851\) 37.9599i 0.0446062i
\(852\) 0 0
\(853\) −832.689 −0.976189 −0.488094 0.872791i \(-0.662308\pi\)
−0.488094 + 0.872791i \(0.662308\pi\)
\(854\) 238.447 685.920i 0.279212 0.803185i
\(855\) 0 0
\(856\) 236.852 150.850i 0.276696 0.176227i
\(857\) −149.415 −0.174347 −0.0871735 0.996193i \(-0.527783\pi\)
−0.0871735 + 0.996193i \(0.527783\pi\)
\(858\) 0 0
\(859\) 394.144i 0.458840i 0.973327 + 0.229420i \(0.0736830\pi\)
−0.973327 + 0.229420i \(0.926317\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −162.451 + 467.308i −0.188458 + 0.542121i
\(863\) 1409.58i 1.63335i 0.577095 + 0.816677i \(0.304186\pi\)
−0.577095 + 0.816677i \(0.695814\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1201.94 + 417.831i 1.38792 + 0.482484i
\(867\) 0 0
\(868\) 1379.79 + 1091.18i 1.58962 + 1.25712i
\(869\) −456.797 −0.525659
\(870\) 0 0
\(871\) 225.542i 0.258946i
\(872\) −651.074 1022.26i −0.746644 1.17232i
\(873\) 0 0
\(874\) 82.8040 + 28.7852i 0.0947414 + 0.0329350i
\(875\) 0 0
\(876\) 0 0
\(877\) 872.780 0.995189 0.497594 0.867410i \(-0.334217\pi\)
0.497594 + 0.867410i \(0.334217\pi\)
\(878\) −505.528 + 1454.21i −0.575772 + 1.65627i
\(879\) 0 0
\(880\) 0 0
\(881\) −1103.38 −1.25241 −0.626206 0.779657i \(-0.715393\pi\)
−0.626206 + 0.779657i \(0.715393\pi\)
\(882\) 0 0
\(883\) 536.884i 0.608023i −0.952668 0.304011i \(-0.901674\pi\)
0.952668 0.304011i \(-0.0983261\pi\)
\(884\) −407.547 322.300i −0.461025 0.364593i
\(885\) 0 0
\(886\) −402.048 + 1156.54i −0.453779 + 1.30535i
\(887\) 888.945i 1.00219i −0.865392 0.501096i \(-0.832930\pi\)
0.865392 0.501096i \(-0.167070\pi\)
\(888\) 0 0
\(889\) 1835.08 2.06421
\(890\) 0 0
\(891\) 0 0
\(892\) 240.742 304.417i 0.269890 0.341274i
\(893\) −368.734 −0.412916
\(894\) 0 0
\(895\) 0 0
\(896\) 877.066 + 852.408i 0.978868 + 0.951348i
\(897\) 0 0
\(898\) −332.288 115.514i −0.370032 0.128634i
\(899\) 16.1319i 0.0179443i
\(900\) 0 0
\(901\) −389.691 −0.432510
\(902\) −503.814 + 1449.28i −0.558553 + 1.60674i
\(903\) 0 0
\(904\) 138.825 + 217.971i 0.153567 + 0.241118i
\(905\) 0 0
\(906\) 0 0
\(907\) 1668.40i 1.83947i 0.392543 + 0.919734i \(0.371595\pi\)
−0.392543 + 0.919734i \(0.628405\pi\)
\(908\) 1010.48 1277.75i 1.11287 1.40721i
\(909\) 0 0
\(910\) 0 0
\(911\) 1498.13i 1.64449i 0.569131 + 0.822247i \(0.307280\pi\)
−0.569131 + 0.822247i \(0.692720\pi\)
\(912\) 0 0
\(913\) 239.521 0.262345
\(914\) 690.199 + 239.935i 0.755142 + 0.262510i
\(915\) 0 0
\(916\) 24.7766 + 19.5941i 0.0270487 + 0.0213909i
\(917\) 405.399 0.442093
\(918\) 0 0
\(919\) 1094.82i 1.19131i −0.803240 0.595656i \(-0.796892\pi\)
0.803240 0.595656i \(-0.203108\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 582.507 + 202.497i 0.631787 + 0.219629i
\(923\) 54.3784i 0.0589148i
\(924\) 0 0
\(925\) 0 0
\(926\) 60.8314 174.988i 0.0656926 0.188972i
\(927\) 0 0
\(928\) −1.14222 + 11.1576i −0.00123084 + 0.0120233i
\(929\) 1145.90 1.23348 0.616740 0.787167i \(-0.288453\pi\)
0.616740 + 0.787167i \(0.288453\pi\)
\(930\) 0 0
\(931\) 1107.23i 1.18929i
\(932\) −88.3142 69.8417i −0.0947578 0.0749374i
\(933\) 0 0
\(934\) −398.035 + 1144.99i −0.426162 + 1.22590i
\(935\) 0 0
\(936\) 0 0
\(937\) −1272.49 −1.35805 −0.679025 0.734115i \(-0.737597\pi\)
−0.679025 + 0.734115i \(0.737597\pi\)
\(938\) −538.766 187.292i −0.574378 0.199671i
\(939\) 0 0
\(940\) 0 0
\(941\) −707.360 −0.751711 −0.375856 0.926678i \(-0.622651\pi\)
−0.375856 + 0.926678i \(0.622651\pi\)
\(942\) 0 0
\(943\) 129.438i 0.137262i
\(944\) −1475.66 + 349.482i −1.56320 + 0.370214i
\(945\) 0 0
\(946\) −783.698 272.437i −0.828433 0.287989i
\(947\) 284.977i 0.300926i −0.988616 0.150463i \(-0.951924\pi\)
0.988616 0.150463i \(-0.0480765\pi\)
\(948\) 0 0
\(949\) −259.794 −0.273756
\(950\) 0 0
\(951\) 0 0
\(952\) −1108.33 + 705.891i −1.16421 + 0.741482i
\(953\) 295.247 0.309808 0.154904 0.987930i \(-0.450493\pi\)
0.154904 + 0.987930i \(0.450493\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −734.447 + 928.702i −0.768250 + 0.971446i
\(957\) 0 0
\(958\) −91.2483 + 262.486i −0.0952487 + 0.273994i
\(959\) 1976.50i 2.06100i
\(960\) 0 0
\(961\) −1157.38 −1.20435
\(962\) −323.602 112.494i −0.336385 0.116938i
\(963\) 0 0
\(964\) 1461.41 + 1155.73i 1.51598 + 1.19889i
\(965\) 0 0
\(966\) 0 0
\(967\) 348.013i 0.359889i 0.983677 + 0.179945i \(0.0575918\pi\)
−0.983677 + 0.179945i \(0.942408\pi\)
\(968\) −96.6881 151.811i −0.0998844 0.156830i
\(969\) 0 0
\(970\) 0 0
\(971\) 798.691i 0.822545i 0.911513 + 0.411272i \(0.134915\pi\)
−0.911513 + 0.411272i \(0.865085\pi\)
\(972\) 0 0
\(973\) −439.779 −0.451983
\(974\) −132.159 + 380.170i −0.135687 + 0.390318i
\(975\) 0 0
\(976\) 140.117 + 591.634i 0.143563 + 0.606183i
\(977\) 721.834 0.738827 0.369413 0.929265i \(-0.379559\pi\)
0.369413 + 0.929265i \(0.379559\pi\)
\(978\) 0 0
\(979\) 994.458i 1.01579i
\(980\) 0 0
\(981\) 0 0
\(982\) −228.121 + 656.216i −0.232302 + 0.668244i
\(983\) 1717.25i 1.74695i −0.486870 0.873474i \(-0.661861\pi\)
0.486870 0.873474i \(-0.338139\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −11.3821 3.95677i −0.0115437 0.00401296i
\(987\) 0 0
\(988\) 490.779 620.586i 0.496740 0.628124i
\(989\) 69.9934 0.0707719
\(990\) 0 0
\(991\) 342.270i 0.345378i 0.984976 + 0.172689i \(0.0552456\pi\)
−0.984976 + 0.172689i \(0.944754\pi\)
\(992\) −1465.17 149.992i −1.47699 0.151202i
\(993\) 0 0
\(994\) −129.897 45.1562i −0.130681 0.0454288i
\(995\) 0 0
\(996\) 0 0
\(997\) 1586.05 1.59082 0.795410 0.606072i \(-0.207256\pi\)
0.795410 + 0.606072i \(0.207256\pi\)
\(998\) 441.493 1270.00i 0.442377 1.27255i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.3.c.r.451.1 8
3.2 odd 2 300.3.c.f.151.8 8
4.3 odd 2 inner 900.3.c.r.451.2 8
5.2 odd 4 180.3.f.h.19.5 8
5.3 odd 4 180.3.f.h.19.4 8
5.4 even 2 inner 900.3.c.r.451.8 8
12.11 even 2 300.3.c.f.151.7 8
15.2 even 4 60.3.f.b.19.4 yes 8
15.8 even 4 60.3.f.b.19.5 yes 8
15.14 odd 2 300.3.c.f.151.1 8
20.3 even 4 180.3.f.h.19.6 8
20.7 even 4 180.3.f.h.19.3 8
20.19 odd 2 inner 900.3.c.r.451.7 8
60.23 odd 4 60.3.f.b.19.3 8
60.47 odd 4 60.3.f.b.19.6 yes 8
60.59 even 2 300.3.c.f.151.2 8
120.53 even 4 960.3.j.e.319.4 8
120.77 even 4 960.3.j.e.319.7 8
120.83 odd 4 960.3.j.e.319.8 8
120.107 odd 4 960.3.j.e.319.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.3.f.b.19.3 8 60.23 odd 4
60.3.f.b.19.4 yes 8 15.2 even 4
60.3.f.b.19.5 yes 8 15.8 even 4
60.3.f.b.19.6 yes 8 60.47 odd 4
180.3.f.h.19.3 8 20.7 even 4
180.3.f.h.19.4 8 5.3 odd 4
180.3.f.h.19.5 8 5.2 odd 4
180.3.f.h.19.6 8 20.3 even 4
300.3.c.f.151.1 8 15.14 odd 2
300.3.c.f.151.2 8 60.59 even 2
300.3.c.f.151.7 8 12.11 even 2
300.3.c.f.151.8 8 3.2 odd 2
900.3.c.r.451.1 8 1.1 even 1 trivial
900.3.c.r.451.2 8 4.3 odd 2 inner
900.3.c.r.451.7 8 20.19 odd 2 inner
900.3.c.r.451.8 8 5.4 even 2 inner
960.3.j.e.319.3 8 120.107 odd 4
960.3.j.e.319.4 8 120.53 even 4
960.3.j.e.319.7 8 120.77 even 4
960.3.j.e.319.8 8 120.83 odd 4