Properties

Label 1800.1.cj.b.1643.2
Level 18001800
Weight 11
Character 1800.1643
Analytic conductor 0.8980.898
Analytic rank 00
Dimension 88
Projective image D6D_{6}
CM discriminant -8
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,1,Mod(443,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 6, 2, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.443");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1800=233252 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1800.cj (of order 1212, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8983170227390.898317022739
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ12)\Q(\zeta_{12})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.0.157464000.2

Embedding invariants

Embedding label 1643.2
Root 0.258819+0.965926i0.258819 + 0.965926i of defining polynomial
Character χ\chi == 1800.1643
Dual form 1800.1.cj.b.1307.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.2588190.965926i)q2+(0.9659260.258819i)q3+(0.8660250.500000i)q4+(0.500000+0.866025i)q6+(0.707107+0.707107i)q8+(0.866025+0.500000i)q9+(1.500000.866025i)q11+(0.707107+0.707107i)q12+(0.500000+0.866025i)q16+(0.707107+0.707107i)q17+(0.7071070.707107i)q181.00000iq19+(0.4482881.67303i)q22+(0.8660250.500000i)q24+(0.7071070.707107i)q27+(0.9659260.258819i)q32+(1.67303+0.448288i)q33+(0.8660250.500000i)q34+(0.5000000.866025i)q36+(0.9659260.258819i)q38+(1.500000.866025i)q41+(0.4482881.67303i)q431.73205q44+(0.2588190.965926i)q48+(0.866025+0.500000i)q49+(0.5000000.866025i)q51+(0.866025+0.500000i)q54+(0.258819+0.965926i)q57+(0.866025+1.50000i)q591.00000iq64+1.73205iq66+(0.4482881.67303i)q67+(0.2588190.965926i)q68+(0.965926+0.258819i)q72+(1.224741.22474i)q73+(0.500000+0.866025i)q76+(0.500000+0.866025i)q81+(1.22474+1.22474i)q82+(1.93185+0.517638i)q83+(1.500000.866025i)q86+(0.448288+1.67303i)q881.00000q96+(1.67303+0.448288i)q97+(0.7071070.707107i)q98+1.73205q99+O(q100)q+(0.258819 - 0.965926i) q^{2} +(-0.965926 - 0.258819i) q^{3} +(-0.866025 - 0.500000i) q^{4} +(-0.500000 + 0.866025i) q^{6} +(-0.707107 + 0.707107i) q^{8} +(0.866025 + 0.500000i) q^{9} +(1.50000 - 0.866025i) q^{11} +(0.707107 + 0.707107i) q^{12} +(0.500000 + 0.866025i) q^{16} +(0.707107 + 0.707107i) q^{17} +(0.707107 - 0.707107i) q^{18} -1.00000i q^{19} +(-0.448288 - 1.67303i) q^{22} +(0.866025 - 0.500000i) q^{24} +(-0.707107 - 0.707107i) q^{27} +(0.965926 - 0.258819i) q^{32} +(-1.67303 + 0.448288i) q^{33} +(0.866025 - 0.500000i) q^{34} +(-0.500000 - 0.866025i) q^{36} +(-0.965926 - 0.258819i) q^{38} +(-1.50000 - 0.866025i) q^{41} +(0.448288 - 1.67303i) q^{43} -1.73205 q^{44} +(-0.258819 - 0.965926i) q^{48} +(0.866025 + 0.500000i) q^{49} +(-0.500000 - 0.866025i) q^{51} +(-0.866025 + 0.500000i) q^{54} +(-0.258819 + 0.965926i) q^{57} +(-0.866025 + 1.50000i) q^{59} -1.00000i q^{64} +1.73205i q^{66} +(-0.448288 - 1.67303i) q^{67} +(-0.258819 - 0.965926i) q^{68} +(-0.965926 + 0.258819i) q^{72} +(-1.22474 - 1.22474i) q^{73} +(-0.500000 + 0.866025i) q^{76} +(0.500000 + 0.866025i) q^{81} +(-1.22474 + 1.22474i) q^{82} +(1.93185 + 0.517638i) q^{83} +(-1.50000 - 0.866025i) q^{86} +(-0.448288 + 1.67303i) q^{88} -1.00000 q^{96} +(1.67303 + 0.448288i) q^{97} +(0.707107 - 0.707107i) q^{98} +1.73205 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q6+12q11+4q164q3612q414q514q76+4q8112q868q96+O(q100) 8 q - 4 q^{6} + 12 q^{11} + 4 q^{16} - 4 q^{36} - 12 q^{41} - 4 q^{51} - 4 q^{76} + 4 q^{81} - 12 q^{86} - 8 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1800Z)×\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times.

nn 577577 901901 10011001 13511351
χ(n)\chi(n) e(34)e\left(\frac{3}{4}\right) 1-1 e(56)e\left(\frac{5}{6}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.258819 0.965926i 0.258819 0.965926i
33 −0.965926 0.258819i −0.965926 0.258819i
44 −0.866025 0.500000i −0.866025 0.500000i
55 0 0
66 −0.500000 + 0.866025i −0.500000 + 0.866025i
77 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
88 −0.707107 + 0.707107i −0.707107 + 0.707107i
99 0.866025 + 0.500000i 0.866025 + 0.500000i
1010 0 0
1111 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
1.00000 00
1212 0.707107 + 0.707107i 0.707107 + 0.707107i
1313 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
1414 0 0
1515 0 0
1616 0.500000 + 0.866025i 0.500000 + 0.866025i
1717 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
1818 0.707107 0.707107i 0.707107 0.707107i
1919 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
2020 0 0
2121 0 0
2222 −0.448288 1.67303i −0.448288 1.67303i
2323 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
2424 0.866025 0.500000i 0.866025 0.500000i
2525 0 0
2626 0 0
2727 −0.707107 0.707107i −0.707107 0.707107i
2828 0 0
2929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3030 0 0
3131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 0.965926 0.258819i 0.965926 0.258819i
3333 −1.67303 + 0.448288i −1.67303 + 0.448288i
3434 0.866025 0.500000i 0.866025 0.500000i
3535 0 0
3636 −0.500000 0.866025i −0.500000 0.866025i
3737 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3838 −0.965926 0.258819i −0.965926 0.258819i
3939 0 0
4040 0 0
4141 −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
−1.00000 π\pi
4242 0 0
4343 0.448288 1.67303i 0.448288 1.67303i −0.258819 0.965926i 0.583333π-0.583333\pi
0.707107 0.707107i 0.250000π-0.250000\pi
4444 −1.73205 −1.73205
4545 0 0
4646 0 0
4747 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
4848 −0.258819 0.965926i −0.258819 0.965926i
4949 0.866025 + 0.500000i 0.866025 + 0.500000i
5050 0 0
5151 −0.500000 0.866025i −0.500000 0.866025i
5252 0 0
5353 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
5454 −0.866025 + 0.500000i −0.866025 + 0.500000i
5555 0 0
5656 0 0
5757 −0.258819 + 0.965926i −0.258819 + 0.965926i
5858 0 0
5959 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6060 0 0
6161 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6262 0 0
6363 0 0
6464 1.00000i 1.00000i
6565 0 0
6666 1.73205i 1.73205i
6767 −0.448288 1.67303i −0.448288 1.67303i −0.707107 0.707107i 0.750000π-0.750000\pi
0.258819 0.965926i 0.416667π-0.416667\pi
6868 −0.258819 0.965926i −0.258819 0.965926i
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 −0.965926 + 0.258819i −0.965926 + 0.258819i
7373 −1.22474 1.22474i −1.22474 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.258819 0.965926i 0.583333π-0.583333\pi
7474 0 0
7575 0 0
7676 −0.500000 + 0.866025i −0.500000 + 0.866025i
7777 0 0
7878 0 0
7979 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
8080 0 0
8181 0.500000 + 0.866025i 0.500000 + 0.866025i
8282 −1.22474 + 1.22474i −1.22474 + 1.22474i
8383 1.93185 + 0.517638i 1.93185 + 0.517638i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
8484 0 0
8585 0 0
8686 −1.50000 0.866025i −1.50000 0.866025i
8787 0 0
8888 −0.448288 + 1.67303i −0.448288 + 1.67303i
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 −1.00000 −1.00000
9797 1.67303 + 0.448288i 1.67303 + 0.448288i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
9898 0.707107 0.707107i 0.707107 0.707107i
9999 1.73205 1.73205
100100 0 0
101101 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
102102 −0.965926 + 0.258819i −0.965926 + 0.258819i
103103 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
104104 0 0
105105 0 0
106106 0 0
107107 −0.707107 0.707107i −0.707107 0.707107i 0.258819 0.965926i 0.416667π-0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
108108 0.258819 + 0.965926i 0.258819 + 0.965926i
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 0 0
112112 0 0
113113 0.517638 + 1.93185i 0.517638 + 1.93185i 0.258819 + 0.965926i 0.416667π0.416667\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
114114 0.866025 + 0.500000i 0.866025 + 0.500000i
115115 0 0
116116 0 0
117117 0 0
118118 1.22474 + 1.22474i 1.22474 + 1.22474i
119119 0 0
120120 0 0
121121 1.00000 1.73205i 1.00000 1.73205i
122122 0 0
123123 1.22474 + 1.22474i 1.22474 + 1.22474i
124124 0 0
125125 0 0
126126 0 0
127127 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
128128 −0.965926 0.258819i −0.965926 0.258819i
129129 −0.866025 + 1.50000i −0.866025 + 1.50000i
130130 0 0
131131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 1.67303 + 0.448288i 1.67303 + 0.448288i
133133 0 0
134134 −1.73205 −1.73205
135135 0 0
136136 −1.00000 −1.00000
137137 −0.258819 + 0.965926i −0.258819 + 0.965926i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
138138 0 0
139139 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 1.00000i 1.00000i
145145 0 0
146146 −1.50000 + 0.866025i −1.50000 + 0.866025i
147147 −0.707107 0.707107i −0.707107 0.707107i
148148 0 0
149149 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
152152 0.707107 + 0.707107i 0.707107 + 0.707107i
153153 0.258819 + 0.965926i 0.258819 + 0.965926i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0.965926 0.258819i 0.965926 0.258819i
163163 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
164164 0.866025 + 1.50000i 0.866025 + 1.50000i
165165 0 0
166166 1.00000 1.73205i 1.00000 1.73205i
167167 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
168168 0 0
169169 0.866025 0.500000i 0.866025 0.500000i
170170 0 0
171171 0.500000 0.866025i 0.500000 0.866025i
172172 −1.22474 + 1.22474i −1.22474 + 1.22474i
173173 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
174174 0 0
175175 0 0
176176 1.50000 + 0.866025i 1.50000 + 0.866025i
177177 1.22474 1.22474i 1.22474 1.22474i
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 1.67303 + 0.448288i 1.67303 + 0.448288i
188188 0 0
189189 0 0
190190 0 0
191191 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
192192 −0.258819 + 0.965926i −0.258819 + 0.965926i
193193 1.67303 0.448288i 1.67303 0.448288i 0.707107 0.707107i 0.250000π-0.250000\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
194194 0.866025 1.50000i 0.866025 1.50000i
195195 0 0
196196 −0.500000 0.866025i −0.500000 0.866025i
197197 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
198198 0.448288 1.67303i 0.448288 1.67303i
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 1.73205i 1.73205i
202202 0 0
203203 0 0
204204 1.00000i 1.00000i
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 −0.866025 1.50000i −0.866025 1.50000i
210210 0 0
211211 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
212212 0 0
213213 0 0
214214 −0.866025 + 0.500000i −0.866025 + 0.500000i
215215 0 0
216216 1.00000 1.00000
217217 0 0
218218 0 0
219219 0.866025 + 1.50000i 0.866025 + 1.50000i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
224224 0 0
225225 0 0
226226 2.00000 2.00000
227227 −0.258819 + 0.965926i −0.258819 + 0.965926i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
228228 0.707107 0.707107i 0.707107 0.707107i
229229 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
230230 0 0
231231 0 0
232232 0 0
233233 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
234234 0 0
235235 0 0
236236 1.50000 0.866025i 1.50000 0.866025i
237237 0 0
238238 0 0
239239 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
240240 0 0
241241 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
242242 −1.41421 1.41421i −1.41421 1.41421i
243243 −0.258819 0.965926i −0.258819 0.965926i
244244 0 0
245245 0 0
246246 1.50000 0.866025i 1.50000 0.866025i
247247 0 0
248248 0 0
249249 −1.73205 1.00000i −1.73205 1.00000i
250250 0 0
251251 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −0.500000 + 0.866025i −0.500000 + 0.866025i
257257 −0.965926 + 0.258819i −0.965926 + 0.258819i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
258258 1.22474 + 1.22474i 1.22474 + 1.22474i
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
264264 0.866025 1.50000i 0.866025 1.50000i
265265 0 0
266266 0 0
267267 0 0
268268 −0.448288 + 1.67303i −0.448288 + 1.67303i
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 −0.258819 + 0.965926i −0.258819 + 0.965926i
273273 0 0
274274 0.866025 + 0.500000i 0.866025 + 0.500000i
275275 0 0
276276 0 0
277277 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
278278 −0.707107 + 0.707107i −0.707107 + 0.707107i
279279 0 0
280280 0 0
281281 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
282282 0 0
283283 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0.965926 + 0.258819i 0.965926 + 0.258819i
289289 0 0
290290 0 0
291291 −1.50000 0.866025i −1.50000 0.866025i
292292 0.448288 + 1.67303i 0.448288 + 1.67303i
293293 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
294294 −0.866025 + 0.500000i −0.866025 + 0.500000i
295295 0 0
296296 0 0
297297 −1.67303 0.448288i −1.67303 0.448288i
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0.866025 0.500000i 0.866025 0.500000i
305305 0 0
306306 1.00000 1.00000
307307 −1.22474 + 1.22474i −1.22474 + 1.22474i −0.258819 + 0.965926i 0.583333π0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
312312 0 0
313313 −0.448288 + 1.67303i −0.448288 + 1.67303i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
318318 0 0
319319 0 0
320320 0 0
321321 0.500000 + 0.866025i 0.500000 + 0.866025i
322322 0 0
323323 0.707107 0.707107i 0.707107 0.707107i
324324 1.00000i 1.00000i
325325 0 0
326326 0 0
327327 0 0
328328 1.67303 0.448288i 1.67303 0.448288i
329329 0 0
330330 0 0
331331 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
332332 −1.41421 1.41421i −1.41421 1.41421i
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0.448288 + 1.67303i 0.448288 + 1.67303i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
338338 −0.258819 0.965926i −0.258819 0.965926i
339339 2.00000i 2.00000i
340340 0 0
341341 0 0
342342 −0.707107 0.707107i −0.707107 0.707107i
343343 0 0
344344 0.866025 + 1.50000i 0.866025 + 1.50000i
345345 0 0
346346 0 0
347347 −0.965926 + 0.258819i −0.965926 + 0.258819i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
348348 0 0
349349 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
350350 0 0
351351 0 0
352352 1.22474 1.22474i 1.22474 1.22474i
353353 0.965926 + 0.258819i 0.965926 + 0.258819i 0.707107 0.707107i 0.250000π-0.250000\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
354354 −0.866025 1.50000i −0.866025 1.50000i
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 0 0
362362 0 0
363363 −1.41421 + 1.41421i −1.41421 + 1.41421i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
368368 0 0
369369 −0.866025 1.50000i −0.866025 1.50000i
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
374374 0.866025 1.50000i 0.866025 1.50000i
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
384384 0.866025 + 0.500000i 0.866025 + 0.500000i
385385 0 0
386386 1.73205i 1.73205i
387387 1.22474 1.22474i 1.22474 1.22474i
388388 −1.22474 1.22474i −1.22474 1.22474i
389389 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
390390 0 0
391391 0 0
392392 −0.965926 + 0.258819i −0.965926 + 0.258819i
393393 0 0
394394 0 0
395395 0 0
396396 −1.50000 0.866025i −1.50000 0.866025i
397397 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
398398 0 0
399399 0 0
400400 0 0
401401 −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
−1.00000 π\pi
402402 1.67303 + 0.448288i 1.67303 + 0.448288i
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0.965926 + 0.258819i 0.965926 + 0.258819i
409409 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
410410 0 0
411411 0.500000 0.866025i 0.500000 0.866025i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0.707107 + 0.707107i 0.707107 + 0.707107i
418418 −1.67303 + 0.448288i −1.67303 + 0.448288i
419419 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
420420 0 0
421421 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
422422 1.41421 + 1.41421i 1.41421 + 1.41421i
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0.258819 + 0.965926i 0.258819 + 0.965926i
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0.258819 0.965926i 0.258819 0.965926i
433433 −1.22474 1.22474i −1.22474 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.258819 0.965926i 0.583333π-0.583333\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 1.67303 0.448288i 1.67303 0.448288i
439439 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
440440 0 0
441441 0.500000 + 0.866025i 0.500000 + 0.866025i
442442 0 0
443443 −0.965926 0.258819i −0.965926 0.258819i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
450450 0 0
451451 −3.00000 −3.00000
452452 0.517638 1.93185i 0.517638 1.93185i
453453 0 0
454454 0.866025 + 0.500000i 0.866025 + 0.500000i
455455 0 0
456456 −0.500000 0.866025i −0.500000 0.866025i
457457 −1.67303 0.448288i −1.67303 0.448288i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
458458 0 0
459459 1.00000i 1.00000i
460460 0 0
461461 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
462462 0 0
463463 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
464464 0 0
465465 0 0
466466 −0.500000 0.866025i −0.500000 0.866025i
467467 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 −0.448288 1.67303i −0.448288 1.67303i
473473 −0.776457 2.89778i −0.776457 2.89778i
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
480480 0 0
481481 0 0
482482 −0.965926 + 0.258819i −0.965926 + 0.258819i
483483 0 0
484484 −1.73205 + 1.00000i −1.73205 + 1.00000i
485485 0 0
486486 −1.00000 −1.00000
487487 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
488488 0 0
489489 0 0
490490 0 0
491491 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 00
0.500000 + 0.866025i 0.333333π0.333333\pi
492492 −0.448288 1.67303i −0.448288 1.67303i
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 −1.41421 + 1.41421i −1.41421 + 1.41421i
499499 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
500500 0 0
501501 0 0
502502 1.67303 + 0.448288i 1.67303 + 0.448288i
503503 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
504504 0 0
505505 0 0
506506 0 0
507507 −0.965926 + 0.258819i −0.965926 + 0.258819i
508508 0 0
509509 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
510510 0 0
511511 0 0
512512 0.707107 + 0.707107i 0.707107 + 0.707107i
513513 −0.707107 + 0.707107i −0.707107 + 0.707107i
514514 1.00000i 1.00000i
515515 0 0
516516 1.50000 0.866025i 1.50000 0.866025i
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
522522 0 0
523523 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 −1.22474 1.22474i −1.22474 1.22474i
529529 −0.866025 + 0.500000i −0.866025 + 0.500000i
530530 0 0
531531 −1.50000 + 0.866025i −1.50000 + 0.866025i
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 1.50000 + 0.866025i 1.50000 + 0.866025i
537537 0 0
538538 0 0
539539 1.73205 1.73205
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0.866025 + 0.500000i 0.866025 + 0.500000i
545545 0 0
546546 0 0
547547 1.67303 + 0.448288i 1.67303 + 0.448288i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
548548 0.707107 0.707107i 0.707107 0.707107i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0.500000 + 0.866025i 0.500000 + 0.866025i
557557 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
558558 0 0
559559 0 0
560560 0 0
561561 −1.50000 0.866025i −1.50000 0.866025i
562562 0 0
563563 0.258819 + 0.965926i 0.258819 + 0.965926i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
570570 0 0
571571 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0.500000 0.866025i 0.500000 0.866025i
577577 1.22474 1.22474i 1.22474 1.22474i 0.258819 0.965926i 0.416667π-0.416667\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
578578 0 0
579579 −1.73205 −1.73205
580580 0 0
581581 0 0
582582 −1.22474 + 1.22474i −1.22474 + 1.22474i
583583 0 0
584584 1.73205 1.73205
585585 0 0
586586 0 0
587587 0.258819 0.965926i 0.258819 0.965926i −0.707107 0.707107i 0.750000π-0.750000\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
588588 0.258819 + 0.965926i 0.258819 + 0.965926i
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
594594 −0.866025 + 1.50000i −0.866025 + 1.50000i
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 0 0
601601 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
602602 0 0
603603 0.448288 1.67303i 0.448288 1.67303i
604604 0 0
605605 0 0
606606 0 0
607607 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
608608 −0.258819 0.965926i −0.258819 0.965926i
609609 0 0
610610 0 0
611611 0 0
612612 0.258819 0.965926i 0.258819 0.965926i
613613 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
614614 0.866025 + 1.50000i 0.866025 + 1.50000i
615615 0 0
616616 0 0
617617 0.965926 0.258819i 0.965926 0.258819i 0.258819 0.965926i 0.416667π-0.416667\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
618618 0 0
619619 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 1.50000 + 0.866025i 1.50000 + 0.866025i
627627 0.448288 + 1.67303i 0.448288 + 1.67303i
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 1.41421 1.41421i 1.41421 1.41421i
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.666667π0.666667\pi
−1.00000 π\pi
642642 0.965926 0.258819i 0.965926 0.258819i
643643 −1.67303 + 0.448288i −1.67303 + 0.448288i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
644644 0 0
645645 0 0
646646 −0.500000 0.866025i −0.500000 0.866025i
647647 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
648648 −0.965926 0.258819i −0.965926 0.258819i
649649 3.00000i 3.00000i
650650 0 0
651651 0 0
652652 0 0
653653 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
654654 0 0
655655 0 0
656656 1.73205i 1.73205i
657657 −0.448288 1.67303i −0.448288 1.67303i
658658 0 0
659659 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
660660 0 0
661661 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
662662 1.93185 0.517638i 1.93185 0.517638i
663663 0 0
664664 −1.73205 + 1.00000i −1.73205 + 1.00000i
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
674674 1.73205 1.73205
675675 0 0
676676 −1.00000 −1.00000
677677 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
678678 −1.93185 0.517638i −1.93185 0.517638i
679679 0 0
680680 0 0
681681 0.500000 0.866025i 0.500000 0.866025i
682682 0 0
683683 −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
684684 −0.866025 + 0.500000i −0.866025 + 0.500000i
685685 0 0
686686 0 0
687687 0 0
688688 1.67303 0.448288i 1.67303 0.448288i
689689 0 0
690690 0 0
691691 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
692692 0 0
693693 0 0
694694 1.00000i 1.00000i
695695 0 0
696696 0 0
697697 −0.448288 1.67303i −0.448288 1.67303i
698698 0 0
699699 −0.866025 + 0.500000i −0.866025 + 0.500000i
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 −0.866025 1.50000i −0.866025 1.50000i
705705 0 0
706706 0.500000 0.866025i 0.500000 0.866025i
707707 0 0
708708 −1.67303 + 0.448288i −1.67303 + 0.448288i
709709 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 0 0
723723 0.258819 + 0.965926i 0.258819 + 0.965926i
724724 0 0
725725 0 0
726726 1.00000 + 1.73205i 1.00000 + 1.73205i
727727 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
728728 0 0
729729 1.00000i 1.00000i
730730 0 0
731731 1.50000 0.866025i 1.50000 0.866025i
732732 0 0
733733 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
734734 0 0
735735 0 0
736736 0 0
737737 −2.12132 2.12132i −2.12132 2.12132i
738738 −1.67303 + 0.448288i −1.67303 + 0.448288i
739739 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
744744 0 0
745745 0 0
746746 0 0
747747 1.41421 + 1.41421i 1.41421 + 1.41421i
748748 −1.22474 1.22474i −1.22474 1.22474i
749749 0 0
750750 0 0
751751 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 0 0
753753 0.448288 1.67303i 0.448288 1.67303i
754754 0 0
755755 0 0
756756 0 0
757757 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
758758 0.965926 + 0.258819i 0.965926 + 0.258819i
759759 0 0
760760 0 0
761761 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0.707107 0.707107i 0.707107 0.707107i
769769 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
770770 0 0
771771 1.00000 1.00000
772772 −1.67303 0.448288i −1.67303 0.448288i
773773 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
774774 −0.866025 1.50000i −0.866025 1.50000i
775775 0 0
776776 −1.50000 + 0.866025i −1.50000 + 0.866025i
777777 0 0
778778 0 0
779779 −0.866025 + 1.50000i −0.866025 + 1.50000i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 1.00000i 1.00000i
785785 0 0
786786 0 0
787787 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 −1.22474 + 1.22474i −1.22474 + 1.22474i
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 −1.22474 + 1.22474i −1.22474 + 1.22474i
803803 −2.89778 0.776457i −2.89778 0.776457i
804804 0.866025 1.50000i 0.866025 1.50000i
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
810810 0 0
811811 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0.500000 0.866025i 0.500000 0.866025i
817817 −1.67303 0.448288i −1.67303 0.448288i
818818 −0.707107 + 0.707107i −0.707107 + 0.707107i
819819 0 0
820820 0 0
821821 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
822822 −0.707107 0.707107i −0.707107 0.707107i
823823 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
824824 0 0
825825 0 0
826826 0 0
827827 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 0 0
832832 0 0
833833 0.258819 + 0.965926i 0.258819 + 0.965926i
834834 0.866025 0.500000i 0.866025 0.500000i
835835 0 0
836836 1.73205i 1.73205i
837837 0 0
838838 0 0
839839 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
840840 0 0
841841 −0.500000 + 0.866025i −0.500000 + 0.866025i
842842 0 0
843843 0 0
844844 1.73205 1.00000i 1.73205 1.00000i
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
854854 0 0
855855 0 0
856856 1.00000 1.00000
857857 0.517638 1.93185i 0.517638 1.93185i 0.258819 0.965926i 0.416667π-0.416667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
858858 0 0
859859 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
864864 −0.866025 0.500000i −0.866025 0.500000i
865865 0 0
866866 −1.50000 + 0.866025i −1.50000 + 0.866025i
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 1.22474 + 1.22474i 1.22474 + 1.22474i
874874 0 0
875875 0 0
876876 1.73205i 1.73205i
877877 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0.965926 0.258819i 0.965926 0.258819i
883883 1.22474 + 1.22474i 1.22474 + 1.22474i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
884884 0 0
885885 0 0
886886 −0.500000 + 0.866025i −0.500000 + 0.866025i
887887 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
888888 0 0
889889 0 0
890890 0 0
891891 1.50000 + 0.866025i 1.50000 + 0.866025i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0.448288 1.67303i 0.448288 1.67303i
899899 0 0
900900 0 0
901901 0 0
902902 −0.776457 + 2.89778i −0.776457 + 2.89778i
903903 0 0
904904 −1.73205 1.00000i −1.73205 1.00000i
905905 0 0
906906 0 0
907907 −1.67303 0.448288i −1.67303 0.448288i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
908908 0.707107 0.707107i 0.707107 0.707107i
909909 0 0
910910 0 0
911911 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
912912 −0.965926 + 0.258819i −0.965926 + 0.258819i
913913 3.34607 0.896575i 3.34607 0.896575i
914914 −0.866025 + 1.50000i −0.866025 + 1.50000i
915915 0 0
916916 0 0
917917 0 0
918918 −0.965926 0.258819i −0.965926 0.258819i
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 1.50000 0.866025i 1.50000 0.866025i
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
930930 0 0
931931 0.500000 0.866025i 0.500000 0.866025i
932932 −0.965926 + 0.258819i −0.965926 + 0.258819i
933933 0 0
934934 0.866025 0.500000i 0.866025 0.500000i
935935 0 0
936936 0 0
937937 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
938938 0 0
939939 0.866025 1.50000i 0.866025 1.50000i
940940 0 0
941941 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
942942 0 0
943943 0 0
944944 −1.73205 −1.73205
945945 0 0
946946 −3.00000 −3.00000
947947 0.258819 0.965926i 0.258819 0.965926i −0.707107 0.707107i 0.750000π-0.750000\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −0.500000 0.866025i −0.500000 0.866025i
962962 0 0
963963 −0.258819 0.965926i −0.258819 0.965926i
964964 1.00000i 1.00000i
965965 0 0
966966 0 0
967967 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
968968 0.517638 + 1.93185i 0.517638 + 1.93185i
969969 −0.866025 + 0.500000i −0.866025 + 0.500000i
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 −0.258819 + 0.965926i −0.258819 + 0.965926i
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0.965926 0.258819i 0.965926 0.258819i 0.258819 0.965926i 0.416667π-0.416667\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 1.22474 1.22474i 1.22474 1.22474i
983983 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
984984 −1.73205 −1.73205
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 −0.517638 1.93185i −0.517638 1.93185i
994994 0 0
995995 0 0
996996 1.00000 + 1.73205i 1.00000 + 1.73205i
997997 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
998998 −0.707107 + 0.707107i −0.707107 + 0.707107i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.1.cj.b.1643.2 yes 8
5.2 odd 4 inner 1800.1.cj.b.707.2 yes 8
5.3 odd 4 inner 1800.1.cj.b.707.1 yes 8
5.4 even 2 inner 1800.1.cj.b.1643.1 yes 8
8.3 odd 2 CM 1800.1.cj.b.1643.2 yes 8
9.2 odd 6 inner 1800.1.cj.b.443.2 yes 8
40.3 even 4 inner 1800.1.cj.b.707.1 yes 8
40.19 odd 2 inner 1800.1.cj.b.1643.1 yes 8
40.27 even 4 inner 1800.1.cj.b.707.2 yes 8
45.2 even 12 inner 1800.1.cj.b.1307.2 yes 8
45.29 odd 6 inner 1800.1.cj.b.443.1 8
45.38 even 12 inner 1800.1.cj.b.1307.1 yes 8
72.11 even 6 inner 1800.1.cj.b.443.2 yes 8
360.83 odd 12 inner 1800.1.cj.b.1307.1 yes 8
360.227 odd 12 inner 1800.1.cj.b.1307.2 yes 8
360.299 even 6 inner 1800.1.cj.b.443.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1800.1.cj.b.443.1 8 45.29 odd 6 inner
1800.1.cj.b.443.1 8 360.299 even 6 inner
1800.1.cj.b.443.2 yes 8 9.2 odd 6 inner
1800.1.cj.b.443.2 yes 8 72.11 even 6 inner
1800.1.cj.b.707.1 yes 8 5.3 odd 4 inner
1800.1.cj.b.707.1 yes 8 40.3 even 4 inner
1800.1.cj.b.707.2 yes 8 5.2 odd 4 inner
1800.1.cj.b.707.2 yes 8 40.27 even 4 inner
1800.1.cj.b.1307.1 yes 8 45.38 even 12 inner
1800.1.cj.b.1307.1 yes 8 360.83 odd 12 inner
1800.1.cj.b.1307.2 yes 8 45.2 even 12 inner
1800.1.cj.b.1307.2 yes 8 360.227 odd 12 inner
1800.1.cj.b.1643.1 yes 8 5.4 even 2 inner
1800.1.cj.b.1643.1 yes 8 40.19 odd 2 inner
1800.1.cj.b.1643.2 yes 8 1.1 even 1 trivial
1800.1.cj.b.1643.2 yes 8 8.3 odd 2 CM