Properties

Label 1800.2.b.a.251.1
Level $1800$
Weight $2$
Character 1800.251
Analytic conductor $14.373$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,2,Mod(251,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.1
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 1800.251
Dual form 1800.2.b.a.251.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} -4.24264i q^{7} +2.82843i q^{8} -1.41421i q^{11} -4.24264i q^{13} -6.00000 q^{14} +4.00000 q^{16} -2.82843i q^{17} -4.00000 q^{19} -2.00000 q^{22} +6.00000 q^{23} -6.00000 q^{26} +8.48528i q^{28} +6.00000 q^{29} +8.48528i q^{31} -5.65685i q^{32} -4.00000 q^{34} +4.24264i q^{37} +5.65685i q^{38} -9.89949i q^{41} -8.00000 q^{43} +2.82843i q^{44} -8.48528i q^{46} -11.0000 q^{49} +8.48528i q^{52} -12.0000 q^{53} +12.0000 q^{56} -8.48528i q^{58} -1.41421i q^{59} -8.48528i q^{61} +12.0000 q^{62} -8.00000 q^{64} -8.00000 q^{67} +5.65685i q^{68} -14.0000 q^{73} +6.00000 q^{74} +8.00000 q^{76} -6.00000 q^{77} +8.48528i q^{79} -14.0000 q^{82} -2.82843i q^{83} +11.3137i q^{86} +4.00000 q^{88} +7.07107i q^{89} -18.0000 q^{91} -12.0000 q^{92} +10.0000 q^{97} +15.5563i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} - 12 q^{14} + 8 q^{16} - 8 q^{19} - 4 q^{22} + 12 q^{23} - 12 q^{26} + 12 q^{29} - 8 q^{34} - 16 q^{43} - 22 q^{49} - 24 q^{53} + 24 q^{56} + 24 q^{62} - 16 q^{64} - 16 q^{67} - 28 q^{73}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 1.00000i
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.24264i − 1.60357i −0.597614 0.801784i \(-0.703885\pi\)
0.597614 0.801784i \(-0.296115\pi\)
\(8\) 2.82843i 1.00000i
\(9\) 0 0
\(10\) 0 0
\(11\) − 1.41421i − 0.426401i −0.977008 0.213201i \(-0.931611\pi\)
0.977008 0.213201i \(-0.0683888\pi\)
\(12\) 0 0
\(13\) − 4.24264i − 1.17670i −0.808608 0.588348i \(-0.799778\pi\)
0.808608 0.588348i \(-0.200222\pi\)
\(14\) −6.00000 −1.60357
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) − 2.82843i − 0.685994i −0.939336 0.342997i \(-0.888558\pi\)
0.939336 0.342997i \(-0.111442\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −6.00000 −1.17670
\(27\) 0 0
\(28\) 8.48528i 1.60357i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 8.48528i 1.52400i 0.647576 + 0.762001i \(0.275783\pi\)
−0.647576 + 0.762001i \(0.724217\pi\)
\(32\) − 5.65685i − 1.00000i
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) 0 0
\(36\) 0 0
\(37\) 4.24264i 0.697486i 0.937218 + 0.348743i \(0.113391\pi\)
−0.937218 + 0.348743i \(0.886609\pi\)
\(38\) 5.65685i 0.917663i
\(39\) 0 0
\(40\) 0 0
\(41\) − 9.89949i − 1.54604i −0.634381 0.773021i \(-0.718745\pi\)
0.634381 0.773021i \(-0.281255\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 2.82843i 0.426401i
\(45\) 0 0
\(46\) − 8.48528i − 1.25109i
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −11.0000 −1.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 8.48528i 1.17670i
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 12.0000 1.60357
\(57\) 0 0
\(58\) − 8.48528i − 1.11417i
\(59\) − 1.41421i − 0.184115i −0.995754 0.0920575i \(-0.970656\pi\)
0.995754 0.0920575i \(-0.0293443\pi\)
\(60\) 0 0
\(61\) − 8.48528i − 1.08643i −0.839594 0.543214i \(-0.817207\pi\)
0.839594 0.543214i \(-0.182793\pi\)
\(62\) 12.0000 1.52400
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 5.65685i 0.685994i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) 8.00000 0.917663
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) 8.48528i 0.954669i 0.878722 + 0.477334i \(0.158397\pi\)
−0.878722 + 0.477334i \(0.841603\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −14.0000 −1.54604
\(83\) − 2.82843i − 0.310460i −0.987878 0.155230i \(-0.950388\pi\)
0.987878 0.155230i \(-0.0496119\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 11.3137i 1.21999i
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) 7.07107i 0.749532i 0.927119 + 0.374766i \(0.122277\pi\)
−0.927119 + 0.374766i \(0.877723\pi\)
\(90\) 0 0
\(91\) −18.0000 −1.88691
\(92\) −12.0000 −1.25109
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 15.5563i 1.57143i
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 4.24264i 0.418040i 0.977911 + 0.209020i \(0.0670273\pi\)
−0.977911 + 0.209020i \(0.932973\pi\)
\(104\) 12.0000 1.17670
\(105\) 0 0
\(106\) 16.9706i 1.64833i
\(107\) 14.1421i 1.36717i 0.729870 + 0.683586i \(0.239581\pi\)
−0.729870 + 0.683586i \(0.760419\pi\)
\(108\) 0 0
\(109\) − 8.48528i − 0.812743i −0.913708 0.406371i \(-0.866794\pi\)
0.913708 0.406371i \(-0.133206\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 16.9706i − 1.60357i
\(113\) − 11.3137i − 1.06430i −0.846649 0.532152i \(-0.821383\pi\)
0.846649 0.532152i \(-0.178617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −12.0000 −1.11417
\(117\) 0 0
\(118\) −2.00000 −0.184115
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) −12.0000 −1.08643
\(123\) 0 0
\(124\) − 16.9706i − 1.52400i
\(125\) 0 0
\(126\) 0 0
\(127\) 4.24264i 0.376473i 0.982124 + 0.188237i \(0.0602772\pi\)
−0.982124 + 0.188237i \(0.939723\pi\)
\(128\) 11.3137i 1.00000i
\(129\) 0 0
\(130\) 0 0
\(131\) − 1.41421i − 0.123560i −0.998090 0.0617802i \(-0.980322\pi\)
0.998090 0.0617802i \(-0.0196778\pi\)
\(132\) 0 0
\(133\) 16.9706i 1.47153i
\(134\) 11.3137i 0.977356i
\(135\) 0 0
\(136\) 8.00000 0.685994
\(137\) 5.65685i 0.483298i 0.970364 + 0.241649i \(0.0776882\pi\)
−0.970364 + 0.241649i \(0.922312\pi\)
\(138\) 0 0
\(139\) 2.00000 0.169638 0.0848189 0.996396i \(-0.472969\pi\)
0.0848189 + 0.996396i \(0.472969\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.00000 −0.501745
\(144\) 0 0
\(145\) 0 0
\(146\) 19.7990i 1.63858i
\(147\) 0 0
\(148\) − 8.48528i − 0.697486i
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) − 16.9706i − 1.38104i −0.723311 0.690522i \(-0.757381\pi\)
0.723311 0.690522i \(-0.242619\pi\)
\(152\) − 11.3137i − 0.917663i
\(153\) 0 0
\(154\) 8.48528i 0.683763i
\(155\) 0 0
\(156\) 0 0
\(157\) − 4.24264i − 0.338600i −0.985565 0.169300i \(-0.945849\pi\)
0.985565 0.169300i \(-0.0541506\pi\)
\(158\) 12.0000 0.954669
\(159\) 0 0
\(160\) 0 0
\(161\) − 25.4558i − 2.00620i
\(162\) 0 0
\(163\) −20.0000 −1.56652 −0.783260 0.621694i \(-0.786445\pi\)
−0.783260 + 0.621694i \(0.786445\pi\)
\(164\) 19.7990i 1.54604i
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) 0 0
\(172\) 16.0000 1.21999
\(173\) 24.0000 1.82469 0.912343 0.409426i \(-0.134271\pi\)
0.912343 + 0.409426i \(0.134271\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 5.65685i − 0.426401i
\(177\) 0 0
\(178\) 10.0000 0.749532
\(179\) 7.07107i 0.528516i 0.964452 + 0.264258i \(0.0851271\pi\)
−0.964452 + 0.264258i \(0.914873\pi\)
\(180\) 0 0
\(181\) 8.48528i 0.630706i 0.948974 + 0.315353i \(0.102123\pi\)
−0.948974 + 0.315353i \(0.897877\pi\)
\(182\) 25.4558i 1.88691i
\(183\) 0 0
\(184\) 16.9706i 1.25109i
\(185\) 0 0
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) − 14.1421i − 1.01535i
\(195\) 0 0
\(196\) 22.0000 1.57143
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) − 16.9706i − 1.20301i −0.798869 0.601506i \(-0.794568\pi\)
0.798869 0.601506i \(-0.205432\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 8.48528i − 0.597022i
\(203\) − 25.4558i − 1.78665i
\(204\) 0 0
\(205\) 0 0
\(206\) 6.00000 0.418040
\(207\) 0 0
\(208\) − 16.9706i − 1.17670i
\(209\) 5.65685i 0.391293i
\(210\) 0 0
\(211\) −22.0000 −1.51454 −0.757271 0.653101i \(-0.773468\pi\)
−0.757271 + 0.653101i \(0.773468\pi\)
\(212\) 24.0000 1.64833
\(213\) 0 0
\(214\) 20.0000 1.36717
\(215\) 0 0
\(216\) 0 0
\(217\) 36.0000 2.44384
\(218\) −12.0000 −0.812743
\(219\) 0 0
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) − 21.2132i − 1.42054i −0.703929 0.710271i \(-0.748573\pi\)
0.703929 0.710271i \(-0.251427\pi\)
\(224\) −24.0000 −1.60357
\(225\) 0 0
\(226\) −16.0000 −1.06430
\(227\) 22.6274i 1.50183i 0.660396 + 0.750917i \(0.270388\pi\)
−0.660396 + 0.750917i \(0.729612\pi\)
\(228\) 0 0
\(229\) 16.9706i 1.12145i 0.828003 + 0.560723i \(0.189477\pi\)
−0.828003 + 0.560723i \(0.810523\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 16.9706i 1.11417i
\(233\) − 19.7990i − 1.29707i −0.761183 0.648537i \(-0.775381\pi\)
0.761183 0.648537i \(-0.224619\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.82843i 0.184115i
\(237\) 0 0
\(238\) 16.9706i 1.10004i
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 20.0000 1.28831 0.644157 0.764894i \(-0.277208\pi\)
0.644157 + 0.764894i \(0.277208\pi\)
\(242\) − 12.7279i − 0.818182i
\(243\) 0 0
\(244\) 16.9706i 1.08643i
\(245\) 0 0
\(246\) 0 0
\(247\) 16.9706i 1.07981i
\(248\) −24.0000 −1.52400
\(249\) 0 0
\(250\) 0 0
\(251\) − 1.41421i − 0.0892644i −0.999003 0.0446322i \(-0.985788\pi\)
0.999003 0.0446322i \(-0.0142116\pi\)
\(252\) 0 0
\(253\) − 8.48528i − 0.533465i
\(254\) 6.00000 0.376473
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) − 11.3137i − 0.705730i −0.935674 0.352865i \(-0.885208\pi\)
0.935674 0.352865i \(-0.114792\pi\)
\(258\) 0 0
\(259\) 18.0000 1.11847
\(260\) 0 0
\(261\) 0 0
\(262\) −2.00000 −0.123560
\(263\) −6.00000 −0.369976 −0.184988 0.982741i \(-0.559225\pi\)
−0.184988 + 0.982741i \(0.559225\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 24.0000 1.47153
\(267\) 0 0
\(268\) 16.0000 0.977356
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) − 11.3137i − 0.685994i
\(273\) 0 0
\(274\) 8.00000 0.483298
\(275\) 0 0
\(276\) 0 0
\(277\) − 4.24264i − 0.254916i −0.991844 0.127458i \(-0.959318\pi\)
0.991844 0.127458i \(-0.0406817\pi\)
\(278\) − 2.82843i − 0.169638i
\(279\) 0 0
\(280\) 0 0
\(281\) − 9.89949i − 0.590554i −0.955412 0.295277i \(-0.904588\pi\)
0.955412 0.295277i \(-0.0954120\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 8.48528i 0.501745i
\(287\) −42.0000 −2.47918
\(288\) 0 0
\(289\) 9.00000 0.529412
\(290\) 0 0
\(291\) 0 0
\(292\) 28.0000 1.63858
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −12.0000 −0.697486
\(297\) 0 0
\(298\) 25.4558i 1.47462i
\(299\) − 25.4558i − 1.47215i
\(300\) 0 0
\(301\) 33.9411i 1.95633i
\(302\) −24.0000 −1.38104
\(303\) 0 0
\(304\) −16.0000 −0.917663
\(305\) 0 0
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 12.0000 0.683763
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) −6.00000 −0.338600
\(315\) 0 0
\(316\) − 16.9706i − 0.954669i
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) − 8.48528i − 0.475085i
\(320\) 0 0
\(321\) 0 0
\(322\) −36.0000 −2.00620
\(323\) 11.3137i 0.629512i
\(324\) 0 0
\(325\) 0 0
\(326\) 28.2843i 1.56652i
\(327\) 0 0
\(328\) 28.0000 1.54604
\(329\) 0 0
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 5.65685i 0.310460i
\(333\) 0 0
\(334\) − 25.4558i − 1.39288i
\(335\) 0 0
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 7.07107i 0.384615i
\(339\) 0 0
\(340\) 0 0
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) − 22.6274i − 1.21999i
\(345\) 0 0
\(346\) − 33.9411i − 1.82469i
\(347\) 5.65685i 0.303676i 0.988405 + 0.151838i \(0.0485192\pi\)
−0.988405 + 0.151838i \(0.951481\pi\)
\(348\) 0 0
\(349\) − 8.48528i − 0.454207i −0.973871 0.227103i \(-0.927074\pi\)
0.973871 0.227103i \(-0.0729255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −8.00000 −0.426401
\(353\) − 2.82843i − 0.150542i −0.997163 0.0752710i \(-0.976018\pi\)
0.997163 0.0752710i \(-0.0239822\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 14.1421i − 0.749532i
\(357\) 0 0
\(358\) 10.0000 0.528516
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 12.0000 0.630706
\(363\) 0 0
\(364\) 36.0000 1.88691
\(365\) 0 0
\(366\) 0 0
\(367\) − 29.6985i − 1.55025i −0.631809 0.775124i \(-0.717687\pi\)
0.631809 0.775124i \(-0.282313\pi\)
\(368\) 24.0000 1.25109
\(369\) 0 0
\(370\) 0 0
\(371\) 50.9117i 2.64320i
\(372\) 0 0
\(373\) − 12.7279i − 0.659027i −0.944151 0.329513i \(-0.893115\pi\)
0.944151 0.329513i \(-0.106885\pi\)
\(374\) 5.65685i 0.292509i
\(375\) 0 0
\(376\) 0 0
\(377\) − 25.4558i − 1.31104i
\(378\) 0 0
\(379\) 26.0000 1.33553 0.667765 0.744372i \(-0.267251\pi\)
0.667765 + 0.744372i \(0.267251\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 16.9706i 0.868290i
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.82843i 0.143963i
\(387\) 0 0
\(388\) −20.0000 −1.01535
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) − 16.9706i − 0.858238i
\(392\) − 31.1127i − 1.57143i
\(393\) 0 0
\(394\) − 8.48528i − 0.427482i
\(395\) 0 0
\(396\) 0 0
\(397\) − 12.7279i − 0.638796i −0.947621 0.319398i \(-0.896519\pi\)
0.947621 0.319398i \(-0.103481\pi\)
\(398\) −24.0000 −1.20301
\(399\) 0 0
\(400\) 0 0
\(401\) − 18.3848i − 0.918092i −0.888413 0.459046i \(-0.848191\pi\)
0.888413 0.459046i \(-0.151809\pi\)
\(402\) 0 0
\(403\) 36.0000 1.79329
\(404\) −12.0000 −0.597022
\(405\) 0 0
\(406\) −36.0000 −1.78665
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 8.48528i − 0.418040i
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) 0 0
\(416\) −24.0000 −1.17670
\(417\) 0 0
\(418\) 8.00000 0.391293
\(419\) − 26.8701i − 1.31269i −0.754462 0.656344i \(-0.772102\pi\)
0.754462 0.656344i \(-0.227898\pi\)
\(420\) 0 0
\(421\) − 33.9411i − 1.65419i −0.562063 0.827095i \(-0.689992\pi\)
0.562063 0.827095i \(-0.310008\pi\)
\(422\) 31.1127i 1.51454i
\(423\) 0 0
\(424\) − 33.9411i − 1.64833i
\(425\) 0 0
\(426\) 0 0
\(427\) −36.0000 −1.74216
\(428\) − 28.2843i − 1.36717i
\(429\) 0 0
\(430\) 0 0
\(431\) 36.0000 1.73406 0.867029 0.498257i \(-0.166026\pi\)
0.867029 + 0.498257i \(0.166026\pi\)
\(432\) 0 0
\(433\) 10.0000 0.480569 0.240285 0.970702i \(-0.422759\pi\)
0.240285 + 0.970702i \(0.422759\pi\)
\(434\) − 50.9117i − 2.44384i
\(435\) 0 0
\(436\) 16.9706i 0.812743i
\(437\) −24.0000 −1.14808
\(438\) 0 0
\(439\) 16.9706i 0.809961i 0.914325 + 0.404980i \(0.132722\pi\)
−0.914325 + 0.404980i \(0.867278\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 16.9706i 0.807207i
\(443\) − 11.3137i − 0.537531i −0.963206 0.268765i \(-0.913384\pi\)
0.963206 0.268765i \(-0.0866156\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −30.0000 −1.42054
\(447\) 0 0
\(448\) 33.9411i 1.60357i
\(449\) − 26.8701i − 1.26808i −0.773302 0.634038i \(-0.781396\pi\)
0.773302 0.634038i \(-0.218604\pi\)
\(450\) 0 0
\(451\) −14.0000 −0.659234
\(452\) 22.6274i 1.06430i
\(453\) 0 0
\(454\) 32.0000 1.50183
\(455\) 0 0
\(456\) 0 0
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 24.0000 1.12145
\(459\) 0 0
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 12.7279i 0.591517i 0.955263 + 0.295758i \(0.0955723\pi\)
−0.955263 + 0.295758i \(0.904428\pi\)
\(464\) 24.0000 1.11417
\(465\) 0 0
\(466\) −28.0000 −1.29707
\(467\) − 19.7990i − 0.916188i −0.888904 0.458094i \(-0.848532\pi\)
0.888904 0.458094i \(-0.151468\pi\)
\(468\) 0 0
\(469\) 33.9411i 1.56726i
\(470\) 0 0
\(471\) 0 0
\(472\) 4.00000 0.184115
\(473\) 11.3137i 0.520205i
\(474\) 0 0
\(475\) 0 0
\(476\) 24.0000 1.10004
\(477\) 0 0
\(478\) − 33.9411i − 1.55243i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) − 28.2843i − 1.28831i
\(483\) 0 0
\(484\) −18.0000 −0.818182
\(485\) 0 0
\(486\) 0 0
\(487\) 21.2132i 0.961262i 0.876923 + 0.480631i \(0.159592\pi\)
−0.876923 + 0.480631i \(0.840408\pi\)
\(488\) 24.0000 1.08643
\(489\) 0 0
\(490\) 0 0
\(491\) − 1.41421i − 0.0638226i −0.999491 0.0319113i \(-0.989841\pi\)
0.999491 0.0319113i \(-0.0101594\pi\)
\(492\) 0 0
\(493\) − 16.9706i − 0.764316i
\(494\) 24.0000 1.07981
\(495\) 0 0
\(496\) 33.9411i 1.52400i
\(497\) 0 0
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2.00000 −0.0892644
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −12.0000 −0.533465
\(507\) 0 0
\(508\) − 8.48528i − 0.376473i
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 59.3970i 2.62757i
\(512\) − 22.6274i − 1.00000i
\(513\) 0 0
\(514\) −16.0000 −0.705730
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) − 25.4558i − 1.11847i
\(519\) 0 0
\(520\) 0 0
\(521\) 15.5563i 0.681536i 0.940147 + 0.340768i \(0.110687\pi\)
−0.940147 + 0.340768i \(0.889313\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 2.82843i 0.123560i
\(525\) 0 0
\(526\) 8.48528i 0.369976i
\(527\) 24.0000 1.04546
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) − 33.9411i − 1.47153i
\(533\) −42.0000 −1.81922
\(534\) 0 0
\(535\) 0 0
\(536\) − 22.6274i − 0.977356i
\(537\) 0 0
\(538\) − 42.4264i − 1.82913i
\(539\) 15.5563i 0.670059i
\(540\) 0 0
\(541\) − 8.48528i − 0.364811i −0.983223 0.182405i \(-0.941612\pi\)
0.983223 0.182405i \(-0.0583883\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −16.0000 −0.685994
\(545\) 0 0
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) − 11.3137i − 0.483298i
\(549\) 0 0
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) 36.0000 1.53088
\(554\) −6.00000 −0.254916
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) 33.9411i 1.43556i
\(560\) 0 0
\(561\) 0 0
\(562\) −14.0000 −0.590554
\(563\) 39.5980i 1.66886i 0.551117 + 0.834428i \(0.314202\pi\)
−0.551117 + 0.834428i \(0.685798\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 5.65685i − 0.237775i
\(567\) 0 0
\(568\) 0 0
\(569\) − 1.41421i − 0.0592869i −0.999561 0.0296435i \(-0.990563\pi\)
0.999561 0.0296435i \(-0.00943719\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 12.0000 0.501745
\(573\) 0 0
\(574\) 59.3970i 2.47918i
\(575\) 0 0
\(576\) 0 0
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) − 12.7279i − 0.529412i
\(579\) 0 0
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 16.9706i 0.702849i
\(584\) − 39.5980i − 1.63858i
\(585\) 0 0
\(586\) − 8.48528i − 0.350524i
\(587\) 14.1421i 0.583708i 0.956463 + 0.291854i \(0.0942722\pi\)
−0.956463 + 0.291854i \(0.905728\pi\)
\(588\) 0 0
\(589\) − 33.9411i − 1.39852i
\(590\) 0 0
\(591\) 0 0
\(592\) 16.9706i 0.697486i
\(593\) 5.65685i 0.232299i 0.993232 + 0.116150i \(0.0370552\pi\)
−0.993232 + 0.116150i \(0.962945\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 36.0000 1.47462
\(597\) 0 0
\(598\) −36.0000 −1.47215
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 32.0000 1.30531 0.652654 0.757656i \(-0.273656\pi\)
0.652654 + 0.757656i \(0.273656\pi\)
\(602\) 48.0000 1.95633
\(603\) 0 0
\(604\) 33.9411i 1.38104i
\(605\) 0 0
\(606\) 0 0
\(607\) − 4.24264i − 0.172203i −0.996286 0.0861017i \(-0.972559\pi\)
0.996286 0.0861017i \(-0.0274410\pi\)
\(608\) 22.6274i 0.917663i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 12.7279i 0.514076i 0.966401 + 0.257038i \(0.0827465\pi\)
−0.966401 + 0.257038i \(0.917253\pi\)
\(614\) 11.3137i 0.456584i
\(615\) 0 0
\(616\) − 16.9706i − 0.683763i
\(617\) − 36.7696i − 1.48029i −0.672449 0.740143i \(-0.734758\pi\)
0.672449 0.740143i \(-0.265242\pi\)
\(618\) 0 0
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 16.9706i − 0.680458i
\(623\) 30.0000 1.20192
\(624\) 0 0
\(625\) 0 0
\(626\) − 14.1421i − 0.565233i
\(627\) 0 0
\(628\) 8.48528i 0.338600i
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) − 8.48528i − 0.337794i −0.985634 0.168897i \(-0.945980\pi\)
0.985634 0.168897i \(-0.0540205\pi\)
\(632\) −24.0000 −0.954669
\(633\) 0 0
\(634\) − 25.4558i − 1.01098i
\(635\) 0 0
\(636\) 0 0
\(637\) 46.6690i 1.84909i
\(638\) −12.0000 −0.475085
\(639\) 0 0
\(640\) 0 0
\(641\) 41.0122i 1.61988i 0.586510 + 0.809942i \(0.300502\pi\)
−0.586510 + 0.809942i \(0.699498\pi\)
\(642\) 0 0
\(643\) 40.0000 1.57745 0.788723 0.614749i \(-0.210743\pi\)
0.788723 + 0.614749i \(0.210743\pi\)
\(644\) 50.9117i 2.00620i
\(645\) 0 0
\(646\) 16.0000 0.629512
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −2.00000 −0.0785069
\(650\) 0 0
\(651\) 0 0
\(652\) 40.0000 1.56652
\(653\) 18.0000 0.704394 0.352197 0.935926i \(-0.385435\pi\)
0.352197 + 0.935926i \(0.385435\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 39.5980i − 1.54604i
\(657\) 0 0
\(658\) 0 0
\(659\) − 9.89949i − 0.385630i −0.981235 0.192815i \(-0.938238\pi\)
0.981235 0.192815i \(-0.0617617\pi\)
\(660\) 0 0
\(661\) − 25.4558i − 0.990118i −0.868859 0.495059i \(-0.835147\pi\)
0.868859 0.495059i \(-0.164853\pi\)
\(662\) 39.5980i 1.53902i
\(663\) 0 0
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) −36.0000 −1.39288
\(669\) 0 0
\(670\) 0 0
\(671\) −12.0000 −0.463255
\(672\) 0 0
\(673\) 10.0000 0.385472 0.192736 0.981251i \(-0.438264\pi\)
0.192736 + 0.981251i \(0.438264\pi\)
\(674\) 2.82843i 0.108947i
\(675\) 0 0
\(676\) 10.0000 0.384615
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) − 42.4264i − 1.62818i
\(680\) 0 0
\(681\) 0 0
\(682\) − 16.9706i − 0.649836i
\(683\) 14.1421i 0.541134i 0.962701 + 0.270567i \(0.0872111\pi\)
−0.962701 + 0.270567i \(0.912789\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 24.0000 0.916324
\(687\) 0 0
\(688\) −32.0000 −1.21999
\(689\) 50.9117i 1.93958i
\(690\) 0 0
\(691\) 44.0000 1.67384 0.836919 0.547326i \(-0.184354\pi\)
0.836919 + 0.547326i \(0.184354\pi\)
\(692\) −48.0000 −1.82469
\(693\) 0 0
\(694\) 8.00000 0.303676
\(695\) 0 0
\(696\) 0 0
\(697\) −28.0000 −1.06058
\(698\) −12.0000 −0.454207
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) − 16.9706i − 0.640057i
\(704\) 11.3137i 0.426401i
\(705\) 0 0
\(706\) −4.00000 −0.150542
\(707\) − 25.4558i − 0.957366i
\(708\) 0 0
\(709\) − 50.9117i − 1.91203i −0.293320 0.956014i \(-0.594760\pi\)
0.293320 0.956014i \(-0.405240\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −20.0000 −0.749532
\(713\) 50.9117i 1.90666i
\(714\) 0 0
\(715\) 0 0
\(716\) − 14.1421i − 0.528516i
\(717\) 0 0
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 18.0000 0.670355
\(722\) 4.24264i 0.157895i
\(723\) 0 0
\(724\) − 16.9706i − 0.630706i
\(725\) 0 0
\(726\) 0 0
\(727\) − 4.24264i − 0.157351i −0.996900 0.0786754i \(-0.974931\pi\)
0.996900 0.0786754i \(-0.0250691\pi\)
\(728\) − 50.9117i − 1.88691i
\(729\) 0 0
\(730\) 0 0
\(731\) 22.6274i 0.836905i
\(732\) 0 0
\(733\) 12.7279i 0.470117i 0.971981 + 0.235058i \(0.0755281\pi\)
−0.971981 + 0.235058i \(0.924472\pi\)
\(734\) −42.0000 −1.55025
\(735\) 0 0
\(736\) − 33.9411i − 1.25109i
\(737\) 11.3137i 0.416746i
\(738\) 0 0
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 72.0000 2.64320
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −18.0000 −0.659027
\(747\) 0 0
\(748\) 8.00000 0.292509
\(749\) 60.0000 2.19235
\(750\) 0 0
\(751\) − 42.4264i − 1.54816i −0.633087 0.774081i \(-0.718212\pi\)
0.633087 0.774081i \(-0.281788\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −36.0000 −1.31104
\(755\) 0 0
\(756\) 0 0
\(757\) − 4.24264i − 0.154201i −0.997023 0.0771007i \(-0.975434\pi\)
0.997023 0.0771007i \(-0.0245663\pi\)
\(758\) − 36.7696i − 1.33553i
\(759\) 0 0
\(760\) 0 0
\(761\) − 26.8701i − 0.974039i −0.873391 0.487019i \(-0.838084\pi\)
0.873391 0.487019i \(-0.161916\pi\)
\(762\) 0 0
\(763\) −36.0000 −1.30329
\(764\) 24.0000 0.868290
\(765\) 0 0
\(766\) 33.9411i 1.22634i
\(767\) −6.00000 −0.216647
\(768\) 0 0
\(769\) −40.0000 −1.44244 −0.721218 0.692708i \(-0.756418\pi\)
−0.721218 + 0.692708i \(0.756418\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 4.00000 0.143963
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 28.2843i 1.01535i
\(777\) 0 0
\(778\) 42.4264i 1.52106i
\(779\) 39.5980i 1.41874i
\(780\) 0 0
\(781\) 0 0
\(782\) −24.0000 −0.858238
\(783\) 0 0
\(784\) −44.0000 −1.57143
\(785\) 0 0
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) −12.0000 −0.427482
\(789\) 0 0
\(790\) 0 0
\(791\) −48.0000 −1.70668
\(792\) 0 0
\(793\) −36.0000 −1.27840
\(794\) −18.0000 −0.638796
\(795\) 0 0
\(796\) 33.9411i 1.20301i
\(797\) −24.0000 −0.850124 −0.425062 0.905164i \(-0.639748\pi\)
−0.425062 + 0.905164i \(0.639748\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) −26.0000 −0.918092
\(803\) 19.7990i 0.698691i
\(804\) 0 0
\(805\) 0 0
\(806\) − 50.9117i − 1.79329i
\(807\) 0 0
\(808\) 16.9706i 0.597022i
\(809\) − 18.3848i − 0.646374i −0.946335 0.323187i \(-0.895246\pi\)
0.946335 0.323187i \(-0.104754\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 50.9117i 1.78665i
\(813\) 0 0
\(814\) − 8.48528i − 0.297409i
\(815\) 0 0
\(816\) 0 0
\(817\) 32.0000 1.11954
\(818\) 14.1421i 0.494468i
\(819\) 0 0
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) − 4.24264i − 0.147889i −0.997262 0.0739446i \(-0.976441\pi\)
0.997262 0.0739446i \(-0.0235588\pi\)
\(824\) −12.0000 −0.418040
\(825\) 0 0
\(826\) 8.48528i 0.295241i
\(827\) 5.65685i 0.196708i 0.995151 + 0.0983540i \(0.0313578\pi\)
−0.995151 + 0.0983540i \(0.968642\pi\)
\(828\) 0 0
\(829\) 8.48528i 0.294706i 0.989084 + 0.147353i \(0.0470753\pi\)
−0.989084 + 0.147353i \(0.952925\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 33.9411i 1.17670i
\(833\) 31.1127i 1.07799i
\(834\) 0 0
\(835\) 0 0
\(836\) − 11.3137i − 0.391293i
\(837\) 0 0
\(838\) −38.0000 −1.31269
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −48.0000 −1.65419
\(843\) 0 0
\(844\) 44.0000 1.51454
\(845\) 0 0
\(846\) 0 0
\(847\) − 38.1838i − 1.31201i
\(848\) −48.0000 −1.64833
\(849\) 0 0
\(850\) 0 0
\(851\) 25.4558i 0.872615i
\(852\) 0 0
\(853\) 29.6985i 1.01686i 0.861104 + 0.508428i \(0.169773\pi\)
−0.861104 + 0.508428i \(0.830227\pi\)
\(854\) 50.9117i 1.74216i
\(855\) 0 0
\(856\) −40.0000 −1.36717
\(857\) 48.0833i 1.64249i 0.570574 + 0.821246i \(0.306721\pi\)
−0.570574 + 0.821246i \(0.693279\pi\)
\(858\) 0 0
\(859\) −46.0000 −1.56950 −0.784750 0.619813i \(-0.787209\pi\)
−0.784750 + 0.619813i \(0.787209\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 50.9117i − 1.73406i
\(863\) −18.0000 −0.612727 −0.306364 0.951915i \(-0.599112\pi\)
−0.306364 + 0.951915i \(0.599112\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 14.1421i − 0.480569i
\(867\) 0 0
\(868\) −72.0000 −2.44384
\(869\) 12.0000 0.407072
\(870\) 0 0
\(871\) 33.9411i 1.15005i
\(872\) 24.0000 0.812743
\(873\) 0 0
\(874\) 33.9411i 1.14808i
\(875\) 0 0
\(876\) 0 0
\(877\) − 12.7279i − 0.429791i −0.976637 0.214896i \(-0.931059\pi\)
0.976637 0.214896i \(-0.0689412\pi\)
\(878\) 24.0000 0.809961
\(879\) 0 0
\(880\) 0 0
\(881\) 32.5269i 1.09586i 0.836524 + 0.547930i \(0.184584\pi\)
−0.836524 + 0.547930i \(0.815416\pi\)
\(882\) 0 0
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) 24.0000 0.807207
\(885\) 0 0
\(886\) −16.0000 −0.537531
\(887\) 18.0000 0.604381 0.302190 0.953248i \(-0.402282\pi\)
0.302190 + 0.953248i \(0.402282\pi\)
\(888\) 0 0
\(889\) 18.0000 0.603701
\(890\) 0 0
\(891\) 0 0
\(892\) 42.4264i 1.42054i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 48.0000 1.60357
\(897\) 0 0
\(898\) −38.0000 −1.26808
\(899\) 50.9117i 1.69800i
\(900\) 0 0
\(901\) 33.9411i 1.13074i
\(902\) 19.7990i 0.659234i
\(903\) 0 0
\(904\) 32.0000 1.06430
\(905\) 0 0
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) − 45.2548i − 1.50183i
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) −4.00000 −0.132381
\(914\) 2.82843i 0.0935561i
\(915\) 0 0
\(916\) − 33.9411i − 1.12145i
\(917\) −6.00000 −0.198137
\(918\) 0 0
\(919\) − 25.4558i − 0.839711i −0.907591 0.419855i \(-0.862081\pi\)
0.907591 0.419855i \(-0.137919\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 25.4558i 0.838344i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 18.0000 0.591517
\(927\) 0 0
\(928\) − 33.9411i − 1.11417i
\(929\) 41.0122i 1.34557i 0.739840 + 0.672783i \(0.234901\pi\)
−0.739840 + 0.672783i \(0.765099\pi\)
\(930\) 0 0
\(931\) 44.0000 1.44204
\(932\) 39.5980i 1.29707i
\(933\) 0 0
\(934\) −28.0000 −0.916188
\(935\) 0 0
\(936\) 0 0
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) 48.0000 1.56726
\(939\) 0 0
\(940\) 0 0
\(941\) 42.0000 1.36916 0.684580 0.728937i \(-0.259985\pi\)
0.684580 + 0.728937i \(0.259985\pi\)
\(942\) 0 0
\(943\) − 59.3970i − 1.93423i
\(944\) − 5.65685i − 0.184115i
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) 22.6274i 0.735292i 0.929966 + 0.367646i \(0.119836\pi\)
−0.929966 + 0.367646i \(0.880164\pi\)
\(948\) 0 0
\(949\) 59.3970i 1.92811i
\(950\) 0 0
\(951\) 0 0
\(952\) − 33.9411i − 1.10004i
\(953\) − 28.2843i − 0.916217i −0.888896 0.458109i \(-0.848527\pi\)
0.888896 0.458109i \(-0.151473\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −48.0000 −1.55243
\(957\) 0 0
\(958\) 0 0
\(959\) 24.0000 0.775000
\(960\) 0 0
\(961\) −41.0000 −1.32258
\(962\) − 25.4558i − 0.820729i
\(963\) 0 0
\(964\) −40.0000 −1.28831
\(965\) 0 0
\(966\) 0 0
\(967\) 21.2132i 0.682171i 0.940032 + 0.341085i \(0.110795\pi\)
−0.940032 + 0.341085i \(0.889205\pi\)
\(968\) 25.4558i 0.818182i
\(969\) 0 0
\(970\) 0 0
\(971\) − 43.8406i − 1.40691i −0.710739 0.703456i \(-0.751639\pi\)
0.710739 0.703456i \(-0.248361\pi\)
\(972\) 0 0
\(973\) − 8.48528i − 0.272026i
\(974\) 30.0000 0.961262
\(975\) 0 0
\(976\) − 33.9411i − 1.08643i
\(977\) − 2.82843i − 0.0904894i −0.998976 0.0452447i \(-0.985593\pi\)
0.998976 0.0452447i \(-0.0144068\pi\)
\(978\) 0 0
\(979\) 10.0000 0.319601
\(980\) 0 0
\(981\) 0 0
\(982\) −2.00000 −0.0638226
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −24.0000 −0.764316
\(987\) 0 0
\(988\) − 33.9411i − 1.07981i
\(989\) −48.0000 −1.52631
\(990\) 0 0
\(991\) − 16.9706i − 0.539088i −0.962988 0.269544i \(-0.913127\pi\)
0.962988 0.269544i \(-0.0868729\pi\)
\(992\) 48.0000 1.52400
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 21.2132i 0.671829i 0.941893 + 0.335914i \(0.109045\pi\)
−0.941893 + 0.335914i \(0.890955\pi\)
\(998\) 5.65685i 0.179065i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.2.b.a.251.1 2
3.2 odd 2 1800.2.b.b.251.2 2
4.3 odd 2 7200.2.b.a.4751.2 2
5.2 odd 4 1800.2.m.b.899.3 4
5.3 odd 4 1800.2.m.b.899.1 4
5.4 even 2 360.2.b.b.251.2 yes 2
8.3 odd 2 1800.2.b.b.251.1 2
8.5 even 2 7200.2.b.b.4751.1 2
12.11 even 2 7200.2.b.b.4751.2 2
15.2 even 4 1800.2.m.a.899.2 4
15.8 even 4 1800.2.m.a.899.4 4
15.14 odd 2 360.2.b.a.251.1 2
20.3 even 4 7200.2.m.a.3599.4 4
20.7 even 4 7200.2.m.a.3599.2 4
20.19 odd 2 1440.2.b.b.431.1 2
24.5 odd 2 7200.2.b.a.4751.1 2
24.11 even 2 inner 1800.2.b.a.251.2 2
40.3 even 4 1800.2.m.a.899.1 4
40.13 odd 4 7200.2.m.b.3599.2 4
40.19 odd 2 360.2.b.a.251.2 yes 2
40.27 even 4 1800.2.m.a.899.3 4
40.29 even 2 1440.2.b.a.431.2 2
40.37 odd 4 7200.2.m.b.3599.4 4
60.23 odd 4 7200.2.m.b.3599.3 4
60.47 odd 4 7200.2.m.b.3599.1 4
60.59 even 2 1440.2.b.a.431.1 2
120.29 odd 2 1440.2.b.b.431.2 2
120.53 even 4 7200.2.m.a.3599.1 4
120.59 even 2 360.2.b.b.251.1 yes 2
120.77 even 4 7200.2.m.a.3599.3 4
120.83 odd 4 1800.2.m.b.899.4 4
120.107 odd 4 1800.2.m.b.899.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.b.a.251.1 2 15.14 odd 2
360.2.b.a.251.2 yes 2 40.19 odd 2
360.2.b.b.251.1 yes 2 120.59 even 2
360.2.b.b.251.2 yes 2 5.4 even 2
1440.2.b.a.431.1 2 60.59 even 2
1440.2.b.a.431.2 2 40.29 even 2
1440.2.b.b.431.1 2 20.19 odd 2
1440.2.b.b.431.2 2 120.29 odd 2
1800.2.b.a.251.1 2 1.1 even 1 trivial
1800.2.b.a.251.2 2 24.11 even 2 inner
1800.2.b.b.251.1 2 8.3 odd 2
1800.2.b.b.251.2 2 3.2 odd 2
1800.2.m.a.899.1 4 40.3 even 4
1800.2.m.a.899.2 4 15.2 even 4
1800.2.m.a.899.3 4 40.27 even 4
1800.2.m.a.899.4 4 15.8 even 4
1800.2.m.b.899.1 4 5.3 odd 4
1800.2.m.b.899.2 4 120.107 odd 4
1800.2.m.b.899.3 4 5.2 odd 4
1800.2.m.b.899.4 4 120.83 odd 4
7200.2.b.a.4751.1 2 24.5 odd 2
7200.2.b.a.4751.2 2 4.3 odd 2
7200.2.b.b.4751.1 2 8.5 even 2
7200.2.b.b.4751.2 2 12.11 even 2
7200.2.m.a.3599.1 4 120.53 even 4
7200.2.m.a.3599.2 4 20.7 even 4
7200.2.m.a.3599.3 4 120.77 even 4
7200.2.m.a.3599.4 4 20.3 even 4
7200.2.m.b.3599.1 4 60.47 odd 4
7200.2.m.b.3599.2 4 40.13 odd 4
7200.2.m.b.3599.3 4 60.23 odd 4
7200.2.m.b.3599.4 4 40.37 odd 4