Properties

Label 1800.2.k.p.901.4
Level $1800$
Weight $2$
Character 1800.901
Analytic conductor $14.373$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,2,Mod(901,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.901");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 901.4
Root \(0.264658 - 1.38923i\) of defining polynomial
Character \(\chi\) \(=\) 1800.901
Dual form 1800.2.k.p.901.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.264658 + 1.38923i) q^{2} +(-1.85991 + 0.735342i) q^{4} -0.941367 q^{7} +(-1.51380 - 2.38923i) q^{8} -4.49828i q^{11} +5.55691i q^{13} +(-0.249141 - 1.30777i) q^{14} +(2.91855 - 2.73534i) q^{16} +7.55691 q^{17} +1.05863i q^{19} +(6.24914 - 1.19051i) q^{22} -1.05863 q^{23} +(-7.71982 + 1.47068i) q^{26} +(1.75086 - 0.692226i) q^{28} +2.00000i q^{29} +3.55691 q^{31} +(4.57243 + 3.33060i) q^{32} +(2.00000 + 10.4983i) q^{34} +7.43965i q^{37} +(-1.47068 + 0.280176i) q^{38} +3.88273 q^{41} +1.88273i q^{43} +(3.30777 + 8.36641i) q^{44} +(-0.280176 - 1.47068i) q^{46} -10.0552 q^{47} -6.11383 q^{49} +(-4.08623 - 10.3354i) q^{52} +2.00000i q^{53} +(1.42504 + 2.24914i) q^{56} +(-2.77846 + 0.529317i) q^{58} +8.49828i q^{59} +8.99656i q^{61} +(0.941367 + 4.94137i) q^{62} +(-3.41683 + 7.23362i) q^{64} +4.00000i q^{67} +(-14.0552 + 5.55691i) q^{68} +12.9966 q^{71} +6.00000 q^{73} +(-10.3354 + 1.96896i) q^{74} +(-0.778457 - 1.96896i) q^{76} +4.23453i q^{77} +11.5569 q^{79} +(1.02760 + 5.39400i) q^{82} +5.88273i q^{83} +(-2.61555 + 0.498281i) q^{86} +(-10.7474 + 6.80949i) q^{88} +4.11727 q^{89} -5.23109i q^{91} +(1.96896 - 0.778457i) q^{92} +(-2.66119 - 13.9690i) q^{94} -17.1138 q^{97} +(-1.61808 - 8.49351i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 2 q^{4} - 4 q^{7} + 8 q^{8} + 16 q^{14} + 10 q^{16} + 12 q^{17} + 20 q^{22} - 8 q^{23} - 28 q^{26} + 28 q^{28} - 12 q^{31} + 12 q^{32} + 12 q^{34} - 8 q^{38} + 20 q^{41} + 4 q^{44} - 20 q^{46}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.264658 + 1.38923i 0.187142 + 0.982333i
\(3\) 0 0
\(4\) −1.85991 + 0.735342i −0.929956 + 0.367671i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.941367 −0.355803 −0.177902 0.984048i \(-0.556931\pi\)
−0.177902 + 0.984048i \(0.556931\pi\)
\(8\) −1.51380 2.38923i −0.535209 0.844720i
\(9\) 0 0
\(10\) 0 0
\(11\) 4.49828i 1.35628i −0.734931 0.678141i \(-0.762786\pi\)
0.734931 0.678141i \(-0.237214\pi\)
\(12\) 0 0
\(13\) 5.55691i 1.54121i 0.637313 + 0.770605i \(0.280046\pi\)
−0.637313 + 0.770605i \(0.719954\pi\)
\(14\) −0.249141 1.30777i −0.0665856 0.349517i
\(15\) 0 0
\(16\) 2.91855 2.73534i 0.729636 0.683835i
\(17\) 7.55691 1.83282 0.916410 0.400240i \(-0.131073\pi\)
0.916410 + 0.400240i \(0.131073\pi\)
\(18\) 0 0
\(19\) 1.05863i 0.242867i 0.992600 + 0.121434i \(0.0387491\pi\)
−0.992600 + 0.121434i \(0.961251\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 6.24914 1.19051i 1.33232 0.253817i
\(23\) −1.05863 −0.220740 −0.110370 0.993891i \(-0.535204\pi\)
−0.110370 + 0.993891i \(0.535204\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −7.71982 + 1.47068i −1.51398 + 0.288425i
\(27\) 0 0
\(28\) 1.75086 0.692226i 0.330881 0.130818i
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) 3.55691 0.638841 0.319420 0.947613i \(-0.396512\pi\)
0.319420 + 0.947613i \(0.396512\pi\)
\(32\) 4.57243 + 3.33060i 0.808299 + 0.588772i
\(33\) 0 0
\(34\) 2.00000 + 10.4983i 0.342997 + 1.80044i
\(35\) 0 0
\(36\) 0 0
\(37\) 7.43965i 1.22307i 0.791217 + 0.611535i \(0.209448\pi\)
−0.791217 + 0.611535i \(0.790552\pi\)
\(38\) −1.47068 + 0.280176i −0.238576 + 0.0454506i
\(39\) 0 0
\(40\) 0 0
\(41\) 3.88273 0.606381 0.303191 0.952930i \(-0.401948\pi\)
0.303191 + 0.952930i \(0.401948\pi\)
\(42\) 0 0
\(43\) 1.88273i 0.287114i 0.989642 + 0.143557i \(0.0458541\pi\)
−0.989642 + 0.143557i \(0.954146\pi\)
\(44\) 3.30777 + 8.36641i 0.498666 + 1.26128i
\(45\) 0 0
\(46\) −0.280176 1.47068i −0.0413097 0.216840i
\(47\) −10.0552 −1.46670 −0.733350 0.679851i \(-0.762045\pi\)
−0.733350 + 0.679851i \(0.762045\pi\)
\(48\) 0 0
\(49\) −6.11383 −0.873404
\(50\) 0 0
\(51\) 0 0
\(52\) −4.08623 10.3354i −0.566658 1.43326i
\(53\) 2.00000i 0.274721i 0.990521 + 0.137361i \(0.0438619\pi\)
−0.990521 + 0.137361i \(0.956138\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.42504 + 2.24914i 0.190429 + 0.300554i
\(57\) 0 0
\(58\) −2.77846 + 0.529317i −0.364829 + 0.0695027i
\(59\) 8.49828i 1.10638i 0.833054 + 0.553191i \(0.186590\pi\)
−0.833054 + 0.553191i \(0.813410\pi\)
\(60\) 0 0
\(61\) 8.99656i 1.15189i 0.817488 + 0.575946i \(0.195366\pi\)
−0.817488 + 0.575946i \(0.804634\pi\)
\(62\) 0.941367 + 4.94137i 0.119554 + 0.627554i
\(63\) 0 0
\(64\) −3.41683 + 7.23362i −0.427103 + 0.904203i
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) −14.0552 + 5.55691i −1.70444 + 0.673875i
\(69\) 0 0
\(70\) 0 0
\(71\) 12.9966 1.54241 0.771204 0.636588i \(-0.219655\pi\)
0.771204 + 0.636588i \(0.219655\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) −10.3354 + 1.96896i −1.20146 + 0.228887i
\(75\) 0 0
\(76\) −0.778457 1.96896i −0.0892952 0.225856i
\(77\) 4.23453i 0.482570i
\(78\) 0 0
\(79\) 11.5569 1.30025 0.650127 0.759825i \(-0.274716\pi\)
0.650127 + 0.759825i \(0.274716\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1.02760 + 5.39400i 0.113479 + 0.595668i
\(83\) 5.88273i 0.645714i 0.946448 + 0.322857i \(0.104643\pi\)
−0.946448 + 0.322857i \(0.895357\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.61555 + 0.498281i −0.282042 + 0.0537310i
\(87\) 0 0
\(88\) −10.7474 + 6.80949i −1.14568 + 0.725894i
\(89\) 4.11727 0.436429 0.218215 0.975901i \(-0.429977\pi\)
0.218215 + 0.975901i \(0.429977\pi\)
\(90\) 0 0
\(91\) 5.23109i 0.548368i
\(92\) 1.96896 0.778457i 0.205279 0.0811598i
\(93\) 0 0
\(94\) −2.66119 13.9690i −0.274481 1.44079i
\(95\) 0 0
\(96\) 0 0
\(97\) −17.1138 −1.73765 −0.868823 0.495123i \(-0.835123\pi\)
−0.868823 + 0.495123i \(0.835123\pi\)
\(98\) −1.61808 8.49351i −0.163450 0.857974i
\(99\) 0 0
\(100\) 0 0
\(101\) 2.00000i 0.199007i −0.995037 0.0995037i \(-0.968274\pi\)
0.995037 0.0995037i \(-0.0317255\pi\)
\(102\) 0 0
\(103\) −10.1725 −1.00232 −0.501161 0.865354i \(-0.667094\pi\)
−0.501161 + 0.865354i \(0.667094\pi\)
\(104\) 13.2767 8.41205i 1.30189 0.824869i
\(105\) 0 0
\(106\) −2.77846 + 0.529317i −0.269868 + 0.0514118i
\(107\) 17.2311i 1.66579i −0.553429 0.832896i \(-0.686681\pi\)
0.553429 0.832896i \(-0.313319\pi\)
\(108\) 0 0
\(109\) 1.88273i 0.180333i 0.995927 + 0.0901666i \(0.0287399\pi\)
−0.995927 + 0.0901666i \(0.971260\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.74742 + 2.57496i −0.259607 + 0.243311i
\(113\) 15.3224 1.44141 0.720704 0.693243i \(-0.243819\pi\)
0.720704 + 0.693243i \(0.243819\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.47068 3.71982i −0.136550 0.345377i
\(117\) 0 0
\(118\) −11.8061 + 2.24914i −1.08684 + 0.207050i
\(119\) −7.11383 −0.652124
\(120\) 0 0
\(121\) −9.23453 −0.839503
\(122\) −12.4983 + 2.38101i −1.13154 + 0.215567i
\(123\) 0 0
\(124\) −6.61555 + 2.61555i −0.594094 + 0.234883i
\(125\) 0 0
\(126\) 0 0
\(127\) 18.1725 1.61255 0.806273 0.591544i \(-0.201481\pi\)
0.806273 + 0.591544i \(0.201481\pi\)
\(128\) −10.9534 2.83231i −0.968157 0.250344i
\(129\) 0 0
\(130\) 0 0
\(131\) 6.38101i 0.557512i 0.960362 + 0.278756i \(0.0899220\pi\)
−0.960362 + 0.278756i \(0.910078\pi\)
\(132\) 0 0
\(133\) 0.996562i 0.0864129i
\(134\) −5.55691 + 1.05863i −0.480044 + 0.0914520i
\(135\) 0 0
\(136\) −11.4396 18.0552i −0.980942 1.54822i
\(137\) −4.44309 −0.379598 −0.189799 0.981823i \(-0.560784\pi\)
−0.189799 + 0.981823i \(0.560784\pi\)
\(138\) 0 0
\(139\) 20.1725i 1.71101i 0.517798 + 0.855503i \(0.326752\pi\)
−0.517798 + 0.855503i \(0.673248\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3.43965 + 18.0552i 0.288649 + 1.51516i
\(143\) 24.9966 2.09032
\(144\) 0 0
\(145\) 0 0
\(146\) 1.58795 + 8.33537i 0.131420 + 0.689840i
\(147\) 0 0
\(148\) −5.47068 13.8371i −0.449687 1.13740i
\(149\) 2.00000i 0.163846i 0.996639 + 0.0819232i \(0.0261062\pi\)
−0.996639 + 0.0819232i \(0.973894\pi\)
\(150\) 0 0
\(151\) 9.67418 0.787274 0.393637 0.919266i \(-0.371217\pi\)
0.393637 + 0.919266i \(0.371217\pi\)
\(152\) 2.52932 1.60256i 0.205155 0.129985i
\(153\) 0 0
\(154\) −5.88273 + 1.12070i −0.474044 + 0.0903089i
\(155\) 0 0
\(156\) 0 0
\(157\) 4.32582i 0.345238i −0.984989 0.172619i \(-0.944777\pi\)
0.984989 0.172619i \(-0.0552229\pi\)
\(158\) 3.05863 + 16.0552i 0.243332 + 1.27728i
\(159\) 0 0
\(160\) 0 0
\(161\) 0.996562 0.0785401
\(162\) 0 0
\(163\) 6.11727i 0.479141i 0.970879 + 0.239571i \(0.0770067\pi\)
−0.970879 + 0.239571i \(0.922993\pi\)
\(164\) −7.22154 + 2.85514i −0.563908 + 0.222949i
\(165\) 0 0
\(166\) −8.17246 + 1.55691i −0.634306 + 0.120840i
\(167\) −6.05520 −0.468565 −0.234283 0.972169i \(-0.575274\pi\)
−0.234283 + 0.972169i \(0.575274\pi\)
\(168\) 0 0
\(169\) −17.8793 −1.37533
\(170\) 0 0
\(171\) 0 0
\(172\) −1.38445 3.50172i −0.105564 0.267004i
\(173\) 16.8793i 1.28331i 0.766994 + 0.641655i \(0.221752\pi\)
−0.766994 + 0.641655i \(0.778248\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −12.3043 13.1284i −0.927474 0.989593i
\(177\) 0 0
\(178\) 1.08967 + 5.71982i 0.0816741 + 0.428719i
\(179\) 10.6155i 0.793443i −0.917939 0.396722i \(-0.870148\pi\)
0.917939 0.396722i \(-0.129852\pi\)
\(180\) 0 0
\(181\) 14.1173i 1.04933i 0.851309 + 0.524664i \(0.175809\pi\)
−0.851309 + 0.524664i \(0.824191\pi\)
\(182\) 7.26719 1.38445i 0.538680 0.102622i
\(183\) 0 0
\(184\) 1.60256 + 2.52932i 0.118142 + 0.186464i
\(185\) 0 0
\(186\) 0 0
\(187\) 33.9931i 2.48582i
\(188\) 18.7018 7.39400i 1.36397 0.539263i
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 4.87930 0.351219 0.175610 0.984460i \(-0.443810\pi\)
0.175610 + 0.984460i \(0.443810\pi\)
\(194\) −4.52932 23.7750i −0.325186 1.70695i
\(195\) 0 0
\(196\) 11.3712 4.49575i 0.812227 0.321125i
\(197\) 2.88617i 0.205631i −0.994700 0.102816i \(-0.967215\pi\)
0.994700 0.102816i \(-0.0327852\pi\)
\(198\) 0 0
\(199\) −17.6742 −1.25289 −0.626445 0.779466i \(-0.715491\pi\)
−0.626445 + 0.779466i \(0.715491\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2.77846 0.529317i 0.195492 0.0372426i
\(203\) 1.88273i 0.132142i
\(204\) 0 0
\(205\) 0 0
\(206\) −2.69223 14.1319i −0.187576 0.984614i
\(207\) 0 0
\(208\) 15.2001 + 16.2181i 1.05393 + 1.12452i
\(209\) 4.76203 0.329396
\(210\) 0 0
\(211\) 23.9379i 1.64795i −0.566623 0.823977i \(-0.691750\pi\)
0.566623 0.823977i \(-0.308250\pi\)
\(212\) −1.47068 3.71982i −0.101007 0.255479i
\(213\) 0 0
\(214\) 23.9379 4.56035i 1.63636 0.311739i
\(215\) 0 0
\(216\) 0 0
\(217\) −3.34836 −0.227302
\(218\) −2.61555 + 0.498281i −0.177147 + 0.0337479i
\(219\) 0 0
\(220\) 0 0
\(221\) 41.9931i 2.82476i
\(222\) 0 0
\(223\) 24.0552 1.61086 0.805428 0.592694i \(-0.201936\pi\)
0.805428 + 0.592694i \(0.201936\pi\)
\(224\) −4.30434 3.13531i −0.287596 0.209487i
\(225\) 0 0
\(226\) 4.05520 + 21.2863i 0.269748 + 1.41594i
\(227\) 11.1138i 0.737651i 0.929499 + 0.368825i \(0.120240\pi\)
−0.929499 + 0.368825i \(0.879760\pi\)
\(228\) 0 0
\(229\) 17.2311i 1.13866i −0.822108 0.569331i \(-0.807202\pi\)
0.822108 0.569331i \(-0.192798\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.77846 3.02760i 0.313721 0.198772i
\(233\) −8.44309 −0.553125 −0.276562 0.960996i \(-0.589195\pi\)
−0.276562 + 0.960996i \(0.589195\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −6.24914 15.8061i −0.406784 1.02889i
\(237\) 0 0
\(238\) −1.88273 9.88273i −0.122039 0.640602i
\(239\) −10.1173 −0.654432 −0.327216 0.944950i \(-0.606110\pi\)
−0.327216 + 0.944950i \(0.606110\pi\)
\(240\) 0 0
\(241\) 16.8793 1.08729 0.543646 0.839315i \(-0.317044\pi\)
0.543646 + 0.839315i \(0.317044\pi\)
\(242\) −2.44400 12.8289i −0.157106 0.824671i
\(243\) 0 0
\(244\) −6.61555 16.7328i −0.423517 1.07121i
\(245\) 0 0
\(246\) 0 0
\(247\) −5.88273 −0.374309
\(248\) −5.38445 8.49828i −0.341913 0.539641i
\(249\) 0 0
\(250\) 0 0
\(251\) 11.8466i 0.747753i −0.927478 0.373877i \(-0.878028\pi\)
0.927478 0.373877i \(-0.121972\pi\)
\(252\) 0 0
\(253\) 4.76203i 0.299386i
\(254\) 4.80949 + 25.2457i 0.301774 + 1.58406i
\(255\) 0 0
\(256\) 1.03581 15.9664i 0.0647382 0.997902i
\(257\) −10.6707 −0.665623 −0.332811 0.942993i \(-0.607997\pi\)
−0.332811 + 0.942993i \(0.607997\pi\)
\(258\) 0 0
\(259\) 7.00344i 0.435172i
\(260\) 0 0
\(261\) 0 0
\(262\) −8.86469 + 1.68879i −0.547662 + 0.104334i
\(263\) −1.94480 −0.119922 −0.0599609 0.998201i \(-0.519098\pi\)
−0.0599609 + 0.998201i \(0.519098\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.38445 0.263748i 0.0848862 0.0161715i
\(267\) 0 0
\(268\) −2.94137 7.43965i −0.179673 0.454449i
\(269\) 9.76547i 0.595411i −0.954658 0.297706i \(-0.903779\pi\)
0.954658 0.297706i \(-0.0962214\pi\)
\(270\) 0 0
\(271\) 3.44652 0.209361 0.104681 0.994506i \(-0.466618\pi\)
0.104681 + 0.994506i \(0.466618\pi\)
\(272\) 22.0552 20.6707i 1.33729 1.25335i
\(273\) 0 0
\(274\) −1.17590 6.17246i −0.0710387 0.372892i
\(275\) 0 0
\(276\) 0 0
\(277\) 18.7880i 1.12886i 0.825480 + 0.564431i \(0.190904\pi\)
−0.825480 + 0.564431i \(0.809096\pi\)
\(278\) −28.0242 + 5.33881i −1.68078 + 0.320200i
\(279\) 0 0
\(280\) 0 0
\(281\) 16.8793 1.00693 0.503467 0.864014i \(-0.332057\pi\)
0.503467 + 0.864014i \(0.332057\pi\)
\(282\) 0 0
\(283\) 20.0000i 1.18888i −0.804141 0.594438i \(-0.797374\pi\)
0.804141 0.594438i \(-0.202626\pi\)
\(284\) −24.1725 + 9.55691i −1.43437 + 0.567099i
\(285\) 0 0
\(286\) 6.61555 + 34.7259i 0.391186 + 2.05339i
\(287\) −3.65508 −0.215752
\(288\) 0 0
\(289\) 40.1070 2.35923
\(290\) 0 0
\(291\) 0 0
\(292\) −11.1595 + 4.41205i −0.653059 + 0.258196i
\(293\) 20.2277i 1.18171i −0.806777 0.590856i \(-0.798790\pi\)
0.806777 0.590856i \(-0.201210\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 17.7750 11.2621i 1.03315 0.654598i
\(297\) 0 0
\(298\) −2.77846 + 0.529317i −0.160952 + 0.0306625i
\(299\) 5.88273i 0.340207i
\(300\) 0 0
\(301\) 1.77234i 0.102156i
\(302\) 2.56035 + 13.4396i 0.147332 + 0.773365i
\(303\) 0 0
\(304\) 2.89572 + 3.08967i 0.166081 + 0.177205i
\(305\) 0 0
\(306\) 0 0
\(307\) 8.11039i 0.462884i −0.972849 0.231442i \(-0.925656\pi\)
0.972849 0.231442i \(-0.0743444\pi\)
\(308\) −3.11383 7.87586i −0.177427 0.448769i
\(309\) 0 0
\(310\) 0 0
\(311\) −31.8759 −1.80751 −0.903757 0.428046i \(-0.859202\pi\)
−0.903757 + 0.428046i \(0.859202\pi\)
\(312\) 0 0
\(313\) 5.11383 0.289051 0.144525 0.989501i \(-0.453834\pi\)
0.144525 + 0.989501i \(0.453834\pi\)
\(314\) 6.00955 1.14486i 0.339139 0.0646084i
\(315\) 0 0
\(316\) −21.4948 + 8.49828i −1.20918 + 0.478066i
\(317\) 24.6448i 1.38419i 0.721807 + 0.692094i \(0.243312\pi\)
−0.721807 + 0.692094i \(0.756688\pi\)
\(318\) 0 0
\(319\) 8.99656 0.503711
\(320\) 0 0
\(321\) 0 0
\(322\) 0.263748 + 1.38445i 0.0146981 + 0.0771525i
\(323\) 8.00000i 0.445132i
\(324\) 0 0
\(325\) 0 0
\(326\) −8.49828 + 1.61899i −0.470676 + 0.0896673i
\(327\) 0 0
\(328\) −5.87768 9.27674i −0.324540 0.512222i
\(329\) 9.46563 0.521857
\(330\) 0 0
\(331\) 11.0518i 0.607460i −0.952758 0.303730i \(-0.901768\pi\)
0.952758 0.303730i \(-0.0982320\pi\)
\(332\) −4.32582 10.9414i −0.237410 0.600486i
\(333\) 0 0
\(334\) −1.60256 8.41205i −0.0876881 0.460287i
\(335\) 0 0
\(336\) 0 0
\(337\) 19.9931 1.08909 0.544547 0.838730i \(-0.316701\pi\)
0.544547 + 0.838730i \(0.316701\pi\)
\(338\) −4.73190 24.8384i −0.257382 1.35103i
\(339\) 0 0
\(340\) 0 0
\(341\) 16.0000i 0.866449i
\(342\) 0 0
\(343\) 12.3449 0.666563
\(344\) 4.49828 2.85008i 0.242531 0.153666i
\(345\) 0 0
\(346\) −23.4492 + 4.46725i −1.26064 + 0.240161i
\(347\) 6.87930i 0.369300i −0.982804 0.184650i \(-0.940885\pi\)
0.982804 0.184650i \(-0.0591151\pi\)
\(348\) 0 0
\(349\) 4.76203i 0.254906i −0.991845 0.127453i \(-0.959320\pi\)
0.991845 0.127453i \(-0.0406801\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 14.9820 20.5681i 0.798541 1.09628i
\(353\) −3.79145 −0.201798 −0.100899 0.994897i \(-0.532172\pi\)
−0.100899 + 0.994897i \(0.532172\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −7.65775 + 3.02760i −0.405860 + 0.160462i
\(357\) 0 0
\(358\) 14.7474 2.80949i 0.779425 0.148486i
\(359\) 12.9966 0.685932 0.342966 0.939348i \(-0.388568\pi\)
0.342966 + 0.939348i \(0.388568\pi\)
\(360\) 0 0
\(361\) 17.8793 0.941016
\(362\) −19.6121 + 3.73625i −1.03079 + 0.196373i
\(363\) 0 0
\(364\) 3.84664 + 9.72938i 0.201619 + 0.509958i
\(365\) 0 0
\(366\) 0 0
\(367\) −22.9345 −1.19717 −0.598585 0.801059i \(-0.704270\pi\)
−0.598585 + 0.801059i \(0.704270\pi\)
\(368\) −3.08967 + 2.89572i −0.161060 + 0.150950i
\(369\) 0 0
\(370\) 0 0
\(371\) 1.88273i 0.0977467i
\(372\) 0 0
\(373\) 15.4396i 0.799435i −0.916638 0.399717i \(-0.869108\pi\)
0.916638 0.399717i \(-0.130892\pi\)
\(374\) 47.2242 8.99656i 2.44191 0.465201i
\(375\) 0 0
\(376\) 15.2215 + 24.0242i 0.784991 + 1.23895i
\(377\) −11.1138 −0.572391
\(378\) 0 0
\(379\) 6.28973i 0.323082i −0.986866 0.161541i \(-0.948354\pi\)
0.986866 0.161541i \(-0.0516463\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2.11727 + 11.1138i 0.108329 + 0.568633i
\(383\) 2.94137 0.150297 0.0751484 0.997172i \(-0.476057\pi\)
0.0751484 + 0.997172i \(0.476057\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.29135 + 6.77846i 0.0657278 + 0.345014i
\(387\) 0 0
\(388\) 31.8302 12.5845i 1.61593 0.638882i
\(389\) 12.2277i 0.619967i −0.950742 0.309983i \(-0.899676\pi\)
0.950742 0.309983i \(-0.100324\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 9.25511 + 14.6073i 0.467453 + 0.737782i
\(393\) 0 0
\(394\) 4.00955 0.763849i 0.201998 0.0384822i
\(395\) 0 0
\(396\) 0 0
\(397\) 5.32238i 0.267123i 0.991041 + 0.133561i \(0.0426413\pi\)
−0.991041 + 0.133561i \(0.957359\pi\)
\(398\) −4.67762 24.5535i −0.234468 1.23075i
\(399\) 0 0
\(400\) 0 0
\(401\) −6.99656 −0.349392 −0.174696 0.984622i \(-0.555894\pi\)
−0.174696 + 0.984622i \(0.555894\pi\)
\(402\) 0 0
\(403\) 19.7655i 0.984588i
\(404\) 1.47068 + 3.71982i 0.0731692 + 0.185068i
\(405\) 0 0
\(406\) 2.61555 0.498281i 0.129807 0.0247293i
\(407\) 33.4656 1.65883
\(408\) 0 0
\(409\) 16.2277 0.802406 0.401203 0.915989i \(-0.368592\pi\)
0.401203 + 0.915989i \(0.368592\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 18.9199 7.48024i 0.932116 0.368525i
\(413\) 8.00000i 0.393654i
\(414\) 0 0
\(415\) 0 0
\(416\) −18.5078 + 25.4086i −0.907421 + 1.24576i
\(417\) 0 0
\(418\) 1.26031 + 6.61555i 0.0616438 + 0.323577i
\(419\) 15.6121i 0.762701i 0.924430 + 0.381351i \(0.124541\pi\)
−0.924430 + 0.381351i \(0.875459\pi\)
\(420\) 0 0
\(421\) 33.2311i 1.61958i 0.586717 + 0.809792i \(0.300420\pi\)
−0.586717 + 0.809792i \(0.699580\pi\)
\(422\) 33.2553 6.33537i 1.61884 0.308401i
\(423\) 0 0
\(424\) 4.77846 3.02760i 0.232062 0.147033i
\(425\) 0 0
\(426\) 0 0
\(427\) 8.46907i 0.409847i
\(428\) 12.6707 + 32.0483i 0.612463 + 1.54911i
\(429\) 0 0
\(430\) 0 0
\(431\) 12.9966 0.626022 0.313011 0.949749i \(-0.398662\pi\)
0.313011 + 0.949749i \(0.398662\pi\)
\(432\) 0 0
\(433\) −20.2277 −0.972079 −0.486040 0.873937i \(-0.661559\pi\)
−0.486040 + 0.873937i \(0.661559\pi\)
\(434\) −0.886172 4.65164i −0.0425376 0.223286i
\(435\) 0 0
\(436\) −1.38445 3.50172i −0.0663033 0.167702i
\(437\) 1.12070i 0.0536106i
\(438\) 0 0
\(439\) −5.43965 −0.259620 −0.129810 0.991539i \(-0.541437\pi\)
−0.129810 + 0.991539i \(0.541437\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −58.3380 + 11.1138i −2.77486 + 0.528631i
\(443\) 15.3484i 0.729223i −0.931160 0.364611i \(-0.881202\pi\)
0.931160 0.364611i \(-0.118798\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 6.36641 + 33.4182i 0.301458 + 1.58240i
\(447\) 0 0
\(448\) 3.21649 6.80949i 0.151965 0.321718i
\(449\) −4.22766 −0.199515 −0.0997577 0.995012i \(-0.531807\pi\)
−0.0997577 + 0.995012i \(0.531807\pi\)
\(450\) 0 0
\(451\) 17.4656i 0.822424i
\(452\) −28.4983 + 11.2672i −1.34045 + 0.529964i
\(453\) 0 0
\(454\) −15.4396 + 2.94137i −0.724619 + 0.138045i
\(455\) 0 0
\(456\) 0 0
\(457\) −2.65164 −0.124038 −0.0620192 0.998075i \(-0.519754\pi\)
−0.0620192 + 0.998075i \(0.519754\pi\)
\(458\) 23.9379 4.56035i 1.11855 0.213091i
\(459\) 0 0
\(460\) 0 0
\(461\) 10.2345i 0.476670i 0.971183 + 0.238335i \(0.0766016\pi\)
−0.971183 + 0.238335i \(0.923398\pi\)
\(462\) 0 0
\(463\) −19.0586 −0.885730 −0.442865 0.896588i \(-0.646038\pi\)
−0.442865 + 0.896588i \(0.646038\pi\)
\(464\) 5.47068 + 5.83709i 0.253970 + 0.270980i
\(465\) 0 0
\(466\) −2.23453 11.7294i −0.103513 0.543353i
\(467\) 4.11039i 0.190206i −0.995467 0.0951031i \(-0.969682\pi\)
0.995467 0.0951031i \(-0.0303181\pi\)
\(468\) 0 0
\(469\) 3.76547i 0.173873i
\(470\) 0 0
\(471\) 0 0
\(472\) 20.3043 12.8647i 0.934583 0.592145i
\(473\) 8.46907 0.389408
\(474\) 0 0
\(475\) 0 0
\(476\) 13.2311 5.23109i 0.606446 0.239767i
\(477\) 0 0
\(478\) −2.67762 14.0552i −0.122471 0.642870i
\(479\) 25.2311 1.15284 0.576419 0.817154i \(-0.304450\pi\)
0.576419 + 0.817154i \(0.304450\pi\)
\(480\) 0 0
\(481\) −41.3415 −1.88501
\(482\) 4.46725 + 23.4492i 0.203477 + 1.06808i
\(483\) 0 0
\(484\) 17.1754 6.79054i 0.780701 0.308661i
\(485\) 0 0
\(486\) 0 0
\(487\) 21.9379 0.994102 0.497051 0.867721i \(-0.334416\pi\)
0.497051 + 0.867721i \(0.334416\pi\)
\(488\) 21.4948 13.6190i 0.973026 0.616502i
\(489\) 0 0
\(490\) 0 0
\(491\) 7.50172i 0.338548i 0.985569 + 0.169274i \(0.0541423\pi\)
−0.985569 + 0.169274i \(0.945858\pi\)
\(492\) 0 0
\(493\) 15.1138i 0.680693i
\(494\) −1.55691 8.17246i −0.0700489 0.367696i
\(495\) 0 0
\(496\) 10.3810 9.72938i 0.466121 0.436862i
\(497\) −12.2345 −0.548794
\(498\) 0 0
\(499\) 29.1690i 1.30578i −0.757451 0.652892i \(-0.773555\pi\)
0.757451 0.652892i \(-0.226445\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 16.4577 3.13531i 0.734543 0.139936i
\(503\) −23.9379 −1.06734 −0.533670 0.845693i \(-0.679187\pi\)
−0.533670 + 0.845693i \(0.679187\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −6.61555 + 1.26031i −0.294097 + 0.0560276i
\(507\) 0 0
\(508\) −33.7992 + 13.3630i −1.49960 + 0.592886i
\(509\) 28.6967i 1.27196i −0.771706 0.635980i \(-0.780596\pi\)
0.771706 0.635980i \(-0.219404\pi\)
\(510\) 0 0
\(511\) −5.64820 −0.249862
\(512\) 22.4552 2.78667i 0.992387 0.123155i
\(513\) 0 0
\(514\) −2.82410 14.8241i −0.124566 0.653863i
\(515\) 0 0
\(516\) 0 0
\(517\) 45.2311i 1.98926i
\(518\) 9.72938 1.85352i 0.427484 0.0814389i
\(519\) 0 0
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 25.7586i 1.12634i −0.826340 0.563172i \(-0.809581\pi\)
0.826340 0.563172i \(-0.190419\pi\)
\(524\) −4.69223 11.8681i −0.204981 0.518461i
\(525\) 0 0
\(526\) −0.514709 2.70178i −0.0224424 0.117803i
\(527\) 26.8793 1.17088
\(528\) 0 0
\(529\) −21.8793 −0.951274
\(530\) 0 0
\(531\) 0 0
\(532\) 0.732814 + 1.85352i 0.0317715 + 0.0803602i
\(533\) 21.5760i 0.934561i
\(534\) 0 0
\(535\) 0 0
\(536\) 9.55691 6.05520i 0.412796 0.261545i
\(537\) 0 0
\(538\) 13.5665 2.58451i 0.584892 0.111426i
\(539\) 27.5017i 1.18458i
\(540\) 0 0
\(541\) 12.3449i 0.530750i 0.964145 + 0.265375i \(0.0854957\pi\)
−0.964145 + 0.265375i \(0.914504\pi\)
\(542\) 0.912151 + 4.78801i 0.0391802 + 0.205663i
\(543\) 0 0
\(544\) 34.5535 + 25.1690i 1.48147 + 1.07911i
\(545\) 0 0
\(546\) 0 0
\(547\) 19.8759i 0.849830i 0.905233 + 0.424915i \(0.139696\pi\)
−0.905233 + 0.424915i \(0.860304\pi\)
\(548\) 8.26375 3.26719i 0.353010 0.139567i
\(549\) 0 0
\(550\) 0 0
\(551\) −2.11727 −0.0901986
\(552\) 0 0
\(553\) −10.8793 −0.462635
\(554\) −26.1008 + 4.97240i −1.10892 + 0.211257i
\(555\) 0 0
\(556\) −14.8337 37.5190i −0.629087 1.59116i
\(557\) 3.12070i 0.132228i 0.997812 + 0.0661142i \(0.0210602\pi\)
−0.997812 + 0.0661142i \(0.978940\pi\)
\(558\) 0 0
\(559\) −10.4622 −0.442503
\(560\) 0 0
\(561\) 0 0
\(562\) 4.46725 + 23.4492i 0.188439 + 0.989145i
\(563\) 0.651639i 0.0274633i −0.999906 0.0137317i \(-0.995629\pi\)
0.999906 0.0137317i \(-0.00437106\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 27.7846 5.29317i 1.16787 0.222488i
\(567\) 0 0
\(568\) −19.6742 31.0518i −0.825510 1.30290i
\(569\) −26.9966 −1.13175 −0.565877 0.824489i \(-0.691462\pi\)
−0.565877 + 0.824489i \(0.691462\pi\)
\(570\) 0 0
\(571\) 14.9414i 0.625277i 0.949872 + 0.312638i \(0.101213\pi\)
−0.949872 + 0.312638i \(0.898787\pi\)
\(572\) −46.4914 + 18.3810i −1.94390 + 0.768549i
\(573\) 0 0
\(574\) −0.967346 5.07774i −0.0403763 0.211941i
\(575\) 0 0
\(576\) 0 0
\(577\) 8.87930 0.369650 0.184825 0.982771i \(-0.440828\pi\)
0.184825 + 0.982771i \(0.440828\pi\)
\(578\) 10.6146 + 55.7177i 0.441511 + 2.31755i
\(579\) 0 0
\(580\) 0 0
\(581\) 5.53781i 0.229747i
\(582\) 0 0
\(583\) 8.99656 0.372600
\(584\) −9.08279 14.3354i −0.375849 0.593202i
\(585\) 0 0
\(586\) 28.1008 5.35342i 1.16083 0.221148i
\(587\) 1.23109i 0.0508127i 0.999677 + 0.0254064i \(0.00808797\pi\)
−0.999677 + 0.0254064i \(0.991912\pi\)
\(588\) 0 0
\(589\) 3.76547i 0.155153i
\(590\) 0 0
\(591\) 0 0
\(592\) 20.3500 + 21.7129i 0.836379 + 0.892397i
\(593\) 3.55691 0.146065 0.0730325 0.997330i \(-0.476732\pi\)
0.0730325 + 0.997330i \(0.476732\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.47068 3.71982i −0.0602415 0.152370i
\(597\) 0 0
\(598\) 8.17246 1.55691i 0.334197 0.0636670i
\(599\) 19.2242 0.785480 0.392740 0.919649i \(-0.371527\pi\)
0.392740 + 0.919649i \(0.371527\pi\)
\(600\) 0 0
\(601\) −27.7586 −1.13230 −0.566148 0.824303i \(-0.691567\pi\)
−0.566148 + 0.824303i \(0.691567\pi\)
\(602\) 2.46219 0.469065i 0.100351 0.0191177i
\(603\) 0 0
\(604\) −17.9931 + 7.11383i −0.732130 + 0.289458i
\(605\) 0 0
\(606\) 0 0
\(607\) −7.16902 −0.290982 −0.145491 0.989360i \(-0.546476\pi\)
−0.145491 + 0.989360i \(0.546476\pi\)
\(608\) −3.52588 + 4.84053i −0.142993 + 0.196309i
\(609\) 0 0
\(610\) 0 0
\(611\) 55.8759i 2.26050i
\(612\) 0 0
\(613\) 9.55691i 0.386000i −0.981199 0.193000i \(-0.938178\pi\)
0.981199 0.193000i \(-0.0618218\pi\)
\(614\) 11.2672 2.14648i 0.454707 0.0866250i
\(615\) 0 0
\(616\) 10.1173 6.41023i 0.407636 0.258276i
\(617\) 1.32926 0.0535139 0.0267569 0.999642i \(-0.491482\pi\)
0.0267569 + 0.999642i \(0.491482\pi\)
\(618\) 0 0
\(619\) 28.1725i 1.13235i 0.824286 + 0.566173i \(0.191577\pi\)
−0.824286 + 0.566173i \(0.808423\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −8.43621 44.2829i −0.338261 1.77558i
\(623\) −3.87586 −0.155283
\(624\) 0 0
\(625\) 0 0
\(626\) 1.35342 + 7.10428i 0.0540934 + 0.283944i
\(627\) 0 0
\(628\) 3.18096 + 8.04564i 0.126934 + 0.321056i
\(629\) 56.2208i 2.24167i
\(630\) 0 0
\(631\) −23.3224 −0.928449 −0.464225 0.885717i \(-0.653667\pi\)
−0.464225 + 0.885717i \(0.653667\pi\)
\(632\) −17.4948 27.6121i −0.695907 1.09835i
\(633\) 0 0
\(634\) −34.2372 + 6.52244i −1.35973 + 0.259039i
\(635\) 0 0
\(636\) 0 0
\(637\) 33.9740i 1.34610i
\(638\) 2.38101 + 12.4983i 0.0942653 + 0.494812i
\(639\) 0 0
\(640\) 0 0
\(641\) −27.1070 −1.07066 −0.535330 0.844643i \(-0.679813\pi\)
−0.535330 + 0.844643i \(0.679813\pi\)
\(642\) 0 0
\(643\) 20.3449i 0.802325i −0.916007 0.401163i \(-0.868606\pi\)
0.916007 0.401163i \(-0.131394\pi\)
\(644\) −1.85352 + 0.732814i −0.0730388 + 0.0288769i
\(645\) 0 0
\(646\) −11.1138 + 2.11727i −0.437268 + 0.0833027i
\(647\) 37.6965 1.48200 0.741002 0.671503i \(-0.234351\pi\)
0.741002 + 0.671503i \(0.234351\pi\)
\(648\) 0 0
\(649\) 38.2277 1.50057
\(650\) 0 0
\(651\) 0 0
\(652\) −4.49828 11.3776i −0.176166 0.445580i
\(653\) 8.64476i 0.338296i −0.985591 0.169148i \(-0.945898\pi\)
0.985591 0.169148i \(-0.0541015\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 11.3319 10.6206i 0.442438 0.414665i
\(657\) 0 0
\(658\) 2.50516 + 13.1499i 0.0976612 + 0.512637i
\(659\) 29.2603i 1.13982i −0.821707 0.569910i \(-0.806978\pi\)
0.821707 0.569910i \(-0.193022\pi\)
\(660\) 0 0
\(661\) 28.7620i 1.11871i 0.828927 + 0.559357i \(0.188952\pi\)
−0.828927 + 0.559357i \(0.811048\pi\)
\(662\) 15.3534 2.92494i 0.596728 0.113681i
\(663\) 0 0
\(664\) 14.0552 8.90528i 0.545447 0.345592i
\(665\) 0 0
\(666\) 0 0
\(667\) 2.11727i 0.0819809i
\(668\) 11.2621 4.45264i 0.435745 0.172278i
\(669\) 0 0
\(670\) 0 0
\(671\) 40.4691 1.56229
\(672\) 0 0
\(673\) 18.0000 0.693849 0.346925 0.937893i \(-0.387226\pi\)
0.346925 + 0.937893i \(0.387226\pi\)
\(674\) 5.29135 + 27.7750i 0.203815 + 1.06985i
\(675\) 0 0
\(676\) 33.2539 13.1474i 1.27900 0.505669i
\(677\) 42.8724i 1.64772i −0.566793 0.823860i \(-0.691816\pi\)
0.566793 0.823860i \(-0.308184\pi\)
\(678\) 0 0
\(679\) 16.1104 0.618260
\(680\) 0 0
\(681\) 0 0
\(682\) 22.2277 4.23453i 0.851141 0.162149i
\(683\) 26.1173i 0.999349i −0.866213 0.499675i \(-0.833453\pi\)
0.866213 0.499675i \(-0.166547\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 3.26719 + 17.1499i 0.124742 + 0.654787i
\(687\) 0 0
\(688\) 5.14992 + 5.49484i 0.196339 + 0.209489i
\(689\) −11.1138 −0.423403
\(690\) 0 0
\(691\) 5.29317i 0.201362i −0.994919 0.100681i \(-0.967898\pi\)
0.994919 0.100681i \(-0.0321021\pi\)
\(692\) −12.4121 31.3940i −0.471835 1.19342i
\(693\) 0 0
\(694\) 9.55691 1.82066i 0.362776 0.0691114i
\(695\) 0 0
\(696\) 0 0
\(697\) 29.3415 1.11139
\(698\) 6.61555 1.26031i 0.250402 0.0477035i
\(699\) 0 0
\(700\) 0 0
\(701\) 7.99312i 0.301896i −0.988542 0.150948i \(-0.951767\pi\)
0.988542 0.150948i \(-0.0482326\pi\)
\(702\) 0 0
\(703\) −7.87586 −0.297044
\(704\) 32.5389 + 15.3698i 1.22635 + 0.579273i
\(705\) 0 0
\(706\) −1.00344 5.26719i −0.0377649 0.198233i
\(707\) 1.88273i 0.0708075i
\(708\) 0 0
\(709\) 28.9966i 1.08899i −0.838764 0.544494i \(-0.816722\pi\)
0.838764 0.544494i \(-0.183278\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.23271 9.83709i −0.233581 0.368661i
\(713\) −3.76547 −0.141018
\(714\) 0 0
\(715\) 0 0
\(716\) 7.80605 + 19.7440i 0.291726 + 0.737867i
\(717\) 0 0
\(718\) 3.43965 + 18.0552i 0.128367 + 0.673814i
\(719\) −26.8793 −1.00243 −0.501214 0.865323i \(-0.667113\pi\)
−0.501214 + 0.865323i \(0.667113\pi\)
\(720\) 0 0
\(721\) 9.57602 0.356630
\(722\) 4.73190 + 24.8384i 0.176103 + 0.924391i
\(723\) 0 0
\(724\) −10.3810 26.2569i −0.385807 0.975829i
\(725\) 0 0
\(726\) 0 0
\(727\) −41.8138 −1.55079 −0.775394 0.631478i \(-0.782449\pi\)
−0.775394 + 0.631478i \(0.782449\pi\)
\(728\) −12.4983 + 7.91883i −0.463217 + 0.293491i
\(729\) 0 0
\(730\) 0 0
\(731\) 14.2277i 0.526229i
\(732\) 0 0
\(733\) 30.0844i 1.11119i −0.831452 0.555597i \(-0.812490\pi\)
0.831452 0.555597i \(-0.187510\pi\)
\(734\) −6.06980 31.8613i −0.224041 1.17602i
\(735\) 0 0
\(736\) −4.84053 3.52588i −0.178424 0.129966i
\(737\) 17.9931 0.662785
\(738\) 0 0
\(739\) 29.0449i 1.06843i 0.845348 + 0.534217i \(0.179393\pi\)
−0.845348 + 0.534217i \(0.820607\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 2.61555 0.498281i 0.0960198 0.0182925i
\(743\) −43.2863 −1.58802 −0.794010 0.607905i \(-0.792010\pi\)
−0.794010 + 0.607905i \(0.792010\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 21.4492 4.08623i 0.785311 0.149608i
\(747\) 0 0
\(748\) 24.9966 + 63.2242i 0.913965 + 2.31171i
\(749\) 16.2208i 0.592694i
\(750\) 0 0
\(751\) 41.7846 1.52474 0.762370 0.647141i \(-0.224036\pi\)
0.762370 + 0.647141i \(0.224036\pi\)
\(752\) −29.3465 + 27.5044i −1.07016 + 1.00298i
\(753\) 0 0
\(754\) −2.94137 15.4396i −0.107118 0.562279i
\(755\) 0 0
\(756\) 0 0
\(757\) 16.3258i 0.593372i 0.954975 + 0.296686i \(0.0958815\pi\)
−0.954975 + 0.296686i \(0.904119\pi\)
\(758\) 8.73787 1.66463i 0.317374 0.0604620i
\(759\) 0 0
\(760\) 0 0
\(761\) −50.2208 −1.82050 −0.910251 0.414057i \(-0.864111\pi\)
−0.910251 + 0.414057i \(0.864111\pi\)
\(762\) 0 0
\(763\) 1.77234i 0.0641631i
\(764\) −14.8793 + 5.88273i −0.538314 + 0.212830i
\(765\) 0 0
\(766\) 0.778457 + 4.08623i 0.0281268 + 0.147642i
\(767\) −47.2242 −1.70517
\(768\) 0 0
\(769\) −31.3415 −1.13020 −0.565101 0.825021i \(-0.691163\pi\)
−0.565101 + 0.825021i \(0.691163\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −9.07506 + 3.58795i −0.326619 + 0.129133i
\(773\) 9.11383i 0.327802i −0.986477 0.163901i \(-0.947592\pi\)
0.986477 0.163901i \(-0.0524077\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 25.9069 + 40.8888i 0.930003 + 1.46782i
\(777\) 0 0
\(778\) 16.9870 3.23615i 0.609014 0.116022i
\(779\) 4.11039i 0.147270i
\(780\) 0 0
\(781\) 58.4622i 2.09194i
\(782\) −2.11727 11.1138i −0.0757133 0.397430i
\(783\) 0 0
\(784\) −17.8435 + 16.7234i −0.637267 + 0.597265i
\(785\) 0 0
\(786\) 0 0
\(787\) 36.2208i 1.29113i −0.763705 0.645566i \(-0.776622\pi\)
0.763705 0.645566i \(-0.223378\pi\)
\(788\) 2.12232 + 5.36802i 0.0756046 + 0.191228i
\(789\) 0 0
\(790\) 0 0
\(791\) −14.4240 −0.512858
\(792\) 0 0
\(793\) −49.9931 −1.77531
\(794\) −7.39400 + 1.40861i −0.262403 + 0.0499898i
\(795\) 0 0
\(796\) 32.8724 12.9966i 1.16513 0.460651i
\(797\) 10.0000i 0.354218i 0.984191 + 0.177109i \(0.0566745\pi\)
−0.984191 + 0.177109i \(0.943325\pi\)
\(798\) 0 0
\(799\) −75.9862 −2.68820
\(800\) 0 0
\(801\) 0 0
\(802\) −1.85170 9.71982i −0.0653857 0.343219i
\(803\) 26.9897i 0.952445i
\(804\) 0 0
\(805\) 0 0
\(806\) −27.4588 + 5.23109i −0.967193 + 0.184257i
\(807\) 0 0
\(808\) −4.77846 + 3.02760i −0.168106 + 0.106511i
\(809\) −47.5760 −1.67268 −0.836342 0.548208i \(-0.815310\pi\)
−0.836342 + 0.548208i \(0.815310\pi\)
\(810\) 0 0
\(811\) 20.5174i 0.720463i 0.932863 + 0.360231i \(0.117302\pi\)
−0.932863 + 0.360231i \(0.882698\pi\)
\(812\) 1.38445 + 3.50172i 0.0485848 + 0.122886i
\(813\) 0 0
\(814\) 8.85696 + 46.4914i 0.310436 + 1.62952i
\(815\) 0 0
\(816\) 0 0
\(817\) −1.99312 −0.0697306
\(818\) 4.29478 + 22.5439i 0.150164 + 0.788230i
\(819\) 0 0
\(820\) 0 0
\(821\) 44.4622i 1.55174i −0.630892 0.775871i \(-0.717311\pi\)
0.630892 0.775871i \(-0.282689\pi\)
\(822\) 0 0
\(823\) −32.1656 −1.12122 −0.560611 0.828079i \(-0.689434\pi\)
−0.560611 + 0.828079i \(0.689434\pi\)
\(824\) 15.3991 + 24.3043i 0.536452 + 0.846682i
\(825\) 0 0
\(826\) 11.1138 2.11727i 0.386700 0.0736691i
\(827\) 20.0000i 0.695468i −0.937593 0.347734i \(-0.886951\pi\)
0.937593 0.347734i \(-0.113049\pi\)
\(828\) 0 0
\(829\) 33.8827i 1.17680i 0.808571 + 0.588398i \(0.200241\pi\)
−0.808571 + 0.588398i \(0.799759\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −40.1966 18.9870i −1.39357 0.658256i
\(833\) −46.2017 −1.60079
\(834\) 0 0
\(835\) 0 0
\(836\) −8.85696 + 3.50172i −0.306324 + 0.121109i
\(837\) 0 0
\(838\) −21.6888 + 4.13187i −0.749227 + 0.142733i
\(839\) −4.52750 −0.156307 −0.0781533 0.996941i \(-0.524902\pi\)
−0.0781533 + 0.996941i \(0.524902\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) −46.1656 + 8.79488i −1.59097 + 0.303092i
\(843\) 0 0
\(844\) 17.6026 + 44.5224i 0.605905 + 1.53253i
\(845\) 0 0
\(846\) 0 0
\(847\) 8.69308 0.298698
\(848\) 5.47068 + 5.83709i 0.187864 + 0.200447i
\(849\) 0 0
\(850\) 0 0
\(851\) 7.87586i 0.269981i
\(852\) 0 0
\(853\) 50.4293i 1.72667i 0.504633 + 0.863334i \(0.331628\pi\)
−0.504633 + 0.863334i \(0.668372\pi\)
\(854\) 11.7655 2.24141i 0.402606 0.0766994i
\(855\) 0 0
\(856\) −41.1690 + 26.0844i −1.40713 + 0.891547i
\(857\) 26.4362 0.903044 0.451522 0.892260i \(-0.350881\pi\)
0.451522 + 0.892260i \(0.350881\pi\)
\(858\) 0 0
\(859\) 0.406994i 0.0138865i 0.999976 + 0.00694323i \(0.00221012\pi\)
−0.999976 + 0.00694323i \(0.997790\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 3.43965 + 18.0552i 0.117155 + 0.614962i
\(863\) −29.9311 −1.01886 −0.509432 0.860511i \(-0.670145\pi\)
−0.509432 + 0.860511i \(0.670145\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −5.35342 28.1008i −0.181917 0.954905i
\(867\) 0 0
\(868\) 6.22766 2.46219i 0.211380 0.0835722i
\(869\) 51.9862i 1.76351i
\(870\) 0 0
\(871\) −22.2277 −0.753155
\(872\) 4.49828 2.85008i 0.152331 0.0965159i
\(873\) 0 0
\(874\) 1.55691 0.296604i 0.0526634 0.0100328i
\(875\) 0 0
\(876\) 0 0
\(877\) 11.2051i 0.378370i 0.981941 + 0.189185i \(0.0605846\pi\)
−0.981941 + 0.189185i \(0.939415\pi\)
\(878\) −1.43965 7.55691i −0.0485858 0.255034i
\(879\) 0 0
\(880\) 0 0
\(881\) 48.3380 1.62855 0.814275 0.580479i \(-0.197135\pi\)
0.814275 + 0.580479i \(0.197135\pi\)
\(882\) 0 0
\(883\) 50.5726i 1.70190i 0.525244 + 0.850951i \(0.323974\pi\)
−0.525244 + 0.850951i \(0.676026\pi\)
\(884\) −30.8793 78.1035i −1.03858 2.62691i
\(885\) 0 0
\(886\) 21.3224 4.06207i 0.716339 0.136468i
\(887\) −48.0483 −1.61330 −0.806652 0.591026i \(-0.798723\pi\)
−0.806652 + 0.591026i \(0.798723\pi\)
\(888\) 0 0
\(889\) −17.1070 −0.573749
\(890\) 0 0
\(891\) 0 0
\(892\) −44.7405 + 17.6888i −1.49802 + 0.592264i
\(893\) 10.6448i 0.356213i
\(894\) 0 0
\(895\) 0 0
\(896\) 10.3112 + 2.66625i 0.344473 + 0.0890731i
\(897\) 0 0
\(898\) −1.11888 5.87318i −0.0373377 0.195991i
\(899\) 7.11383i 0.237259i
\(900\) 0 0
\(901\) 15.1138i 0.503515i
\(902\) 24.2637 4.62242i 0.807894 0.153910i
\(903\) 0 0
\(904\) −23.1950 36.6087i −0.771454 1.21759i
\(905\) 0 0
\(906\) 0 0
\(907\) 6.46219i 0.214573i 0.994228 + 0.107287i \(0.0342163\pi\)
−0.994228 + 0.107287i \(0.965784\pi\)
\(908\) −8.17246 20.6707i −0.271213 0.685983i
\(909\) 0 0
\(910\) 0 0
\(911\) −50.3380 −1.66777 −0.833887 0.551935i \(-0.813890\pi\)
−0.833887 + 0.551935i \(0.813890\pi\)
\(912\) 0 0
\(913\) 26.4622 0.875771
\(914\) −0.701778 3.68373i −0.0232128 0.121847i
\(915\) 0 0
\(916\) 12.6707 + 32.0483i 0.418653 + 1.05891i
\(917\) 6.00688i 0.198365i
\(918\) 0 0
\(919\) 46.4362 1.53179 0.765895 0.642966i \(-0.222296\pi\)
0.765895 + 0.642966i \(0.222296\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −14.2181 + 2.70865i −0.468248 + 0.0892048i
\(923\) 72.2208i 2.37718i
\(924\) 0 0
\(925\) 0 0
\(926\) −5.04403 26.4768i −0.165757 0.870082i
\(927\) 0 0
\(928\) −6.66119 + 9.14486i −0.218664 + 0.300195i
\(929\) 35.9931 1.18090 0.590448 0.807076i \(-0.298951\pi\)
0.590448 + 0.807076i \(0.298951\pi\)
\(930\) 0 0
\(931\) 6.47230i 0.212121i
\(932\) 15.7034 6.20855i 0.514382 0.203368i
\(933\) 0 0
\(934\) 5.71027 1.08785i 0.186846 0.0355955i
\(935\) 0 0
\(936\) 0 0
\(937\) −2.70360 −0.0883227 −0.0441613 0.999024i \(-0.514062\pi\)
−0.0441613 + 0.999024i \(0.514062\pi\)
\(938\) 5.23109 0.996562i 0.170801 0.0325389i
\(939\) 0 0
\(940\) 0 0
\(941\) 17.7655i 0.579138i 0.957157 + 0.289569i \(0.0935119\pi\)
−0.957157 + 0.289569i \(0.906488\pi\)
\(942\) 0 0
\(943\) −4.11039 −0.133853
\(944\) 23.2457 + 24.8026i 0.756583 + 0.807256i
\(945\) 0 0
\(946\) 2.24141 + 11.7655i 0.0728745 + 0.382528i
\(947\) 26.2277i 0.852284i −0.904656 0.426142i \(-0.859872\pi\)
0.904656 0.426142i \(-0.140128\pi\)
\(948\) 0 0
\(949\) 33.3415i 1.08231i
\(950\) 0 0
\(951\) 0 0
\(952\) 10.7689 + 16.9966i 0.349022 + 0.550862i
\(953\) 9.09472 0.294607 0.147304 0.989091i \(-0.452941\pi\)
0.147304 + 0.989091i \(0.452941\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 18.8172 7.43965i 0.608593 0.240615i
\(957\) 0 0
\(958\) 6.67762 + 35.0518i 0.215744 + 1.13247i
\(959\) 4.18257 0.135062
\(960\) 0 0
\(961\) −18.3484 −0.591883
\(962\) −10.9414 57.4328i −0.352764 1.85171i
\(963\) 0 0
\(964\) −31.3940 + 12.4121i −1.01113 + 0.399765i
\(965\) 0 0
\(966\) 0 0
\(967\) 7.47574 0.240404 0.120202 0.992749i \(-0.461646\pi\)
0.120202 + 0.992749i \(0.461646\pi\)
\(968\) 13.9792 + 22.0634i 0.449309 + 0.709145i
\(969\) 0 0
\(970\) 0 0
\(971\) 41.0777i 1.31825i 0.752035 + 0.659124i \(0.229073\pi\)
−0.752035 + 0.659124i \(0.770927\pi\)
\(972\) 0 0
\(973\) 18.9897i 0.608781i
\(974\) 5.80605 + 30.4768i 0.186038 + 0.976540i
\(975\) 0 0
\(976\) 24.6087 + 26.2569i 0.787704 + 0.840462i
\(977\) −4.20855 −0.134644 −0.0673218 0.997731i \(-0.521445\pi\)
−0.0673218 + 0.997731i \(0.521445\pi\)
\(978\) 0 0
\(979\) 18.5206i 0.591922i
\(980\) 0 0
\(981\) 0 0
\(982\) −10.4216 + 1.98539i −0.332567 + 0.0633564i
\(983\) −8.35504 −0.266484 −0.133242 0.991084i \(-0.542539\pi\)
−0.133242 + 0.991084i \(0.542539\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −20.9966 + 4.00000i −0.668667 + 0.127386i
\(987\) 0 0
\(988\) 10.9414 4.32582i 0.348091 0.137623i
\(989\) 1.99312i 0.0633777i
\(990\) 0 0
\(991\) −13.9087 −0.441825 −0.220912 0.975294i \(-0.570903\pi\)
−0.220912 + 0.975294i \(0.570903\pi\)
\(992\) 16.2637 + 11.8466i 0.516375 + 0.376131i
\(993\) 0 0
\(994\) −3.23797 16.9966i −0.102702 0.539098i
\(995\) 0 0
\(996\) 0 0
\(997\) 34.8984i 1.10524i −0.833432 0.552622i \(-0.813627\pi\)
0.833432 0.552622i \(-0.186373\pi\)
\(998\) 40.5224 7.71982i 1.28272 0.244367i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.2.k.p.901.4 6
3.2 odd 2 600.2.k.c.301.3 6
4.3 odd 2 7200.2.k.p.3601.4 6
5.2 odd 4 1800.2.d.q.1549.2 6
5.3 odd 4 1800.2.d.r.1549.5 6
5.4 even 2 360.2.k.f.181.3 6
8.3 odd 2 7200.2.k.p.3601.3 6
8.5 even 2 inner 1800.2.k.p.901.3 6
12.11 even 2 2400.2.k.c.1201.5 6
15.2 even 4 600.2.d.e.349.5 6
15.8 even 4 600.2.d.f.349.2 6
15.14 odd 2 120.2.k.b.61.4 yes 6
20.3 even 4 7200.2.d.r.2449.3 6
20.7 even 4 7200.2.d.q.2449.4 6
20.19 odd 2 1440.2.k.f.721.2 6
24.5 odd 2 600.2.k.c.301.4 6
24.11 even 2 2400.2.k.c.1201.2 6
40.3 even 4 7200.2.d.q.2449.3 6
40.13 odd 4 1800.2.d.q.1549.1 6
40.19 odd 2 1440.2.k.f.721.5 6
40.27 even 4 7200.2.d.r.2449.4 6
40.29 even 2 360.2.k.f.181.4 6
40.37 odd 4 1800.2.d.r.1549.6 6
60.23 odd 4 2400.2.d.e.49.3 6
60.47 odd 4 2400.2.d.f.49.4 6
60.59 even 2 480.2.k.b.241.2 6
120.29 odd 2 120.2.k.b.61.3 6
120.53 even 4 600.2.d.e.349.6 6
120.59 even 2 480.2.k.b.241.5 6
120.77 even 4 600.2.d.f.349.1 6
120.83 odd 4 2400.2.d.f.49.3 6
120.107 odd 4 2400.2.d.e.49.4 6
240.29 odd 4 3840.2.a.bp.1.2 3
240.59 even 4 3840.2.a.bo.1.2 3
240.149 odd 4 3840.2.a.bq.1.2 3
240.179 even 4 3840.2.a.br.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.k.b.61.3 6 120.29 odd 2
120.2.k.b.61.4 yes 6 15.14 odd 2
360.2.k.f.181.3 6 5.4 even 2
360.2.k.f.181.4 6 40.29 even 2
480.2.k.b.241.2 6 60.59 even 2
480.2.k.b.241.5 6 120.59 even 2
600.2.d.e.349.5 6 15.2 even 4
600.2.d.e.349.6 6 120.53 even 4
600.2.d.f.349.1 6 120.77 even 4
600.2.d.f.349.2 6 15.8 even 4
600.2.k.c.301.3 6 3.2 odd 2
600.2.k.c.301.4 6 24.5 odd 2
1440.2.k.f.721.2 6 20.19 odd 2
1440.2.k.f.721.5 6 40.19 odd 2
1800.2.d.q.1549.1 6 40.13 odd 4
1800.2.d.q.1549.2 6 5.2 odd 4
1800.2.d.r.1549.5 6 5.3 odd 4
1800.2.d.r.1549.6 6 40.37 odd 4
1800.2.k.p.901.3 6 8.5 even 2 inner
1800.2.k.p.901.4 6 1.1 even 1 trivial
2400.2.d.e.49.3 6 60.23 odd 4
2400.2.d.e.49.4 6 120.107 odd 4
2400.2.d.f.49.3 6 120.83 odd 4
2400.2.d.f.49.4 6 60.47 odd 4
2400.2.k.c.1201.2 6 24.11 even 2
2400.2.k.c.1201.5 6 12.11 even 2
3840.2.a.bo.1.2 3 240.59 even 4
3840.2.a.bp.1.2 3 240.29 odd 4
3840.2.a.bq.1.2 3 240.149 odd 4
3840.2.a.br.1.2 3 240.179 even 4
7200.2.d.q.2449.3 6 40.3 even 4
7200.2.d.q.2449.4 6 20.7 even 4
7200.2.d.r.2449.3 6 20.3 even 4
7200.2.d.r.2449.4 6 40.27 even 4
7200.2.k.p.3601.3 6 8.3 odd 2
7200.2.k.p.3601.4 6 4.3 odd 2