Properties

Label 480.2.k.b.241.2
Level 480480
Weight 22
Character 480.241
Analytic conductor 3.8333.833
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,2,Mod(241,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.241");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 480=2535 480 = 2^{5} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 480.k (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.832819297023.83281929702
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x62x5+3x46x3+6x28x+8 x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 26 2^{6}
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 241.2
Root 0.264658+1.38923i0.264658 + 1.38923i of defining polynomial
Character χ\chi == 480.241
Dual form 480.2.k.b.241.5

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq3+1.00000iq50.941367q71.00000q94.49828iq115.55691iq13+1.00000q15+7.55691q171.05863iq19+0.941367iq21+1.05863q231.00000q25+1.00000iq272.00000iq293.55691q314.49828q330.941367iq357.43965iq375.55691q393.88273q41+1.88273iq431.00000iq45+10.0552q476.11383q497.55691iq51+2.00000iq53+4.49828q551.05863q57+8.49828iq59+8.99656iq61+0.941367q63+5.55691q65+4.00000iq671.05863iq69+12.9966q716.00000q73+1.00000iq75+4.23453iq7711.5569q79+1.00000q815.88273iq83+7.55691iq852.00000q874.11727q89+5.23109iq91+3.55691iq93+1.05863q95+17.1138q97+4.49828iq99+O(q100)q-1.00000i q^{3} +1.00000i q^{5} -0.941367 q^{7} -1.00000 q^{9} -4.49828i q^{11} -5.55691i q^{13} +1.00000 q^{15} +7.55691 q^{17} -1.05863i q^{19} +0.941367i q^{21} +1.05863 q^{23} -1.00000 q^{25} +1.00000i q^{27} -2.00000i q^{29} -3.55691 q^{31} -4.49828 q^{33} -0.941367i q^{35} -7.43965i q^{37} -5.55691 q^{39} -3.88273 q^{41} +1.88273i q^{43} -1.00000i q^{45} +10.0552 q^{47} -6.11383 q^{49} -7.55691i q^{51} +2.00000i q^{53} +4.49828 q^{55} -1.05863 q^{57} +8.49828i q^{59} +8.99656i q^{61} +0.941367 q^{63} +5.55691 q^{65} +4.00000i q^{67} -1.05863i q^{69} +12.9966 q^{71} -6.00000 q^{73} +1.00000i q^{75} +4.23453i q^{77} -11.5569 q^{79} +1.00000 q^{81} -5.88273i q^{83} +7.55691i q^{85} -2.00000 q^{87} -4.11727 q^{89} +5.23109i q^{91} +3.55691i q^{93} +1.05863 q^{95} +17.1138 q^{97} +4.49828i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q4q76q9+6q15+12q17+8q236q25+12q31+8q3320q418q47+30q498q558q57+4q63+8q7136q7336q79+6q81++36q97+O(q100) 6 q - 4 q^{7} - 6 q^{9} + 6 q^{15} + 12 q^{17} + 8 q^{23} - 6 q^{25} + 12 q^{31} + 8 q^{33} - 20 q^{41} - 8 q^{47} + 30 q^{49} - 8 q^{55} - 8 q^{57} + 4 q^{63} + 8 q^{71} - 36 q^{73} - 36 q^{79} + 6 q^{81}+ \cdots + 36 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/480Z)×\left(\mathbb{Z}/480\mathbb{Z}\right)^\times.

nn 3131 9797 161161 421421
χ(n)\chi(n) 11 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 1.00000i − 0.577350i
44 0 0
55 1.00000i 0.447214i
66 0 0
77 −0.941367 −0.355803 −0.177902 0.984048i 0.556931π-0.556931\pi
−0.177902 + 0.984048i 0.556931π0.556931\pi
88 0 0
99 −1.00000 −0.333333
1010 0 0
1111 − 4.49828i − 1.35628i −0.734931 0.678141i 0.762786π-0.762786\pi
0.734931 0.678141i 0.237214π-0.237214\pi
1212 0 0
1313 − 5.55691i − 1.54121i −0.637313 0.770605i 0.719954π-0.719954\pi
0.637313 0.770605i 0.280046π-0.280046\pi
1414 0 0
1515 1.00000 0.258199
1616 0 0
1717 7.55691 1.83282 0.916410 0.400240i 0.131073π-0.131073\pi
0.916410 + 0.400240i 0.131073π0.131073\pi
1818 0 0
1919 − 1.05863i − 0.242867i −0.992600 0.121434i 0.961251π-0.961251\pi
0.992600 0.121434i 0.0387491π-0.0387491\pi
2020 0 0
2121 0.941367i 0.205423i
2222 0 0
2323 1.05863 0.220740 0.110370 0.993891i 0.464796π-0.464796\pi
0.110370 + 0.993891i 0.464796π0.464796\pi
2424 0 0
2525 −1.00000 −0.200000
2626 0 0
2727 1.00000i 0.192450i
2828 0 0
2929 − 2.00000i − 0.371391i −0.982607 0.185695i 0.940546π-0.940546\pi
0.982607 0.185695i 0.0594537π-0.0594537\pi
3030 0 0
3131 −3.55691 −0.638841 −0.319420 0.947613i 0.603488π-0.603488\pi
−0.319420 + 0.947613i 0.603488π0.603488\pi
3232 0 0
3333 −4.49828 −0.783050
3434 0 0
3535 − 0.941367i − 0.159120i
3636 0 0
3737 − 7.43965i − 1.22307i −0.791217 0.611535i 0.790552π-0.790552\pi
0.791217 0.611535i 0.209448π-0.209448\pi
3838 0 0
3939 −5.55691 −0.889818
4040 0 0
4141 −3.88273 −0.606381 −0.303191 0.952930i 0.598052π-0.598052\pi
−0.303191 + 0.952930i 0.598052π0.598052\pi
4242 0 0
4343 1.88273i 0.287114i 0.989642 + 0.143557i 0.0458541π0.0458541\pi
−0.989642 + 0.143557i 0.954146π0.954146\pi
4444 0 0
4545 − 1.00000i − 0.149071i
4646 0 0
4747 10.0552 1.46670 0.733350 0.679851i 0.237955π-0.237955\pi
0.733350 + 0.679851i 0.237955π0.237955\pi
4848 0 0
4949 −6.11383 −0.873404
5050 0 0
5151 − 7.55691i − 1.05818i
5252 0 0
5353 2.00000i 0.274721i 0.990521 + 0.137361i 0.0438619π0.0438619\pi
−0.990521 + 0.137361i 0.956138π0.956138\pi
5454 0 0
5555 4.49828 0.606548
5656 0 0
5757 −1.05863 −0.140219
5858 0 0
5959 8.49828i 1.10638i 0.833054 + 0.553191i 0.186590π0.186590\pi
−0.833054 + 0.553191i 0.813410π0.813410\pi
6060 0 0
6161 8.99656i 1.15189i 0.817488 + 0.575946i 0.195366π0.195366\pi
−0.817488 + 0.575946i 0.804634π0.804634\pi
6262 0 0
6363 0.941367 0.118601
6464 0 0
6565 5.55691 0.689250
6666 0 0
6767 4.00000i 0.488678i 0.969690 + 0.244339i 0.0785709π0.0785709\pi
−0.969690 + 0.244339i 0.921429π0.921429\pi
6868 0 0
6969 − 1.05863i − 0.127444i
7070 0 0
7171 12.9966 1.54241 0.771204 0.636588i 0.219655π-0.219655\pi
0.771204 + 0.636588i 0.219655π0.219655\pi
7272 0 0
7373 −6.00000 −0.702247 −0.351123 0.936329i 0.614200π-0.614200\pi
−0.351123 + 0.936329i 0.614200π0.614200\pi
7474 0 0
7575 1.00000i 0.115470i
7676 0 0
7777 4.23453i 0.482570i
7878 0 0
7979 −11.5569 −1.30025 −0.650127 0.759825i 0.725284π-0.725284\pi
−0.650127 + 0.759825i 0.725284π0.725284\pi
8080 0 0
8181 1.00000 0.111111
8282 0 0
8383 − 5.88273i − 0.645714i −0.946448 0.322857i 0.895357π-0.895357\pi
0.946448 0.322857i 0.104643π-0.104643\pi
8484 0 0
8585 7.55691i 0.819662i
8686 0 0
8787 −2.00000 −0.214423
8888 0 0
8989 −4.11727 −0.436429 −0.218215 0.975901i 0.570023π-0.570023\pi
−0.218215 + 0.975901i 0.570023π0.570023\pi
9090 0 0
9191 5.23109i 0.548368i
9292 0 0
9393 3.55691i 0.368835i
9494 0 0
9595 1.05863 0.108613
9696 0 0
9797 17.1138 1.73765 0.868823 0.495123i 0.164877π-0.164877\pi
0.868823 + 0.495123i 0.164877π0.164877\pi
9898 0 0
9999 4.49828i 0.452094i
100100 0 0
101101 2.00000i 0.199007i 0.995037 + 0.0995037i 0.0317255π0.0317255\pi
−0.995037 + 0.0995037i 0.968274π0.968274\pi
102102 0 0
103103 −10.1725 −1.00232 −0.501161 0.865354i 0.667094π-0.667094\pi
−0.501161 + 0.865354i 0.667094π0.667094\pi
104104 0 0
105105 −0.941367 −0.0918680
106106 0 0
107107 17.2311i 1.66579i 0.553429 + 0.832896i 0.313319π0.313319\pi
−0.553429 + 0.832896i 0.686681π0.686681\pi
108108 0 0
109109 1.88273i 0.180333i 0.995927 + 0.0901666i 0.0287399π0.0287399\pi
−0.995927 + 0.0901666i 0.971260π0.971260\pi
110110 0 0
111111 −7.43965 −0.706140
112112 0 0
113113 15.3224 1.44141 0.720704 0.693243i 0.243819π-0.243819\pi
0.720704 + 0.693243i 0.243819π0.243819\pi
114114 0 0
115115 1.05863i 0.0987181i
116116 0 0
117117 5.55691i 0.513737i
118118 0 0
119119 −7.11383 −0.652124
120120 0 0
121121 −9.23453 −0.839503
122122 0 0
123123 3.88273i 0.350094i
124124 0 0
125125 − 1.00000i − 0.0894427i
126126 0 0
127127 18.1725 1.61255 0.806273 0.591544i 0.201481π-0.201481\pi
0.806273 + 0.591544i 0.201481π0.201481\pi
128128 0 0
129129 1.88273 0.165765
130130 0 0
131131 6.38101i 0.557512i 0.960362 + 0.278756i 0.0899220π0.0899220\pi
−0.960362 + 0.278756i 0.910078π0.910078\pi
132132 0 0
133133 0.996562i 0.0864129i
134134 0 0
135135 −1.00000 −0.0860663
136136 0 0
137137 −4.44309 −0.379598 −0.189799 0.981823i 0.560784π-0.560784\pi
−0.189799 + 0.981823i 0.560784π0.560784\pi
138138 0 0
139139 − 20.1725i − 1.71101i −0.517798 0.855503i 0.673248π-0.673248\pi
0.517798 0.855503i 0.326752π-0.326752\pi
140140 0 0
141141 − 10.0552i − 0.846800i
142142 0 0
143143 −24.9966 −2.09032
144144 0 0
145145 2.00000 0.166091
146146 0 0
147147 6.11383i 0.504260i
148148 0 0
149149 − 2.00000i − 0.163846i −0.996639 0.0819232i 0.973894π-0.973894\pi
0.996639 0.0819232i 0.0261062π-0.0261062\pi
150150 0 0
151151 −9.67418 −0.787274 −0.393637 0.919266i 0.628783π-0.628783\pi
−0.393637 + 0.919266i 0.628783π0.628783\pi
152152 0 0
153153 −7.55691 −0.610940
154154 0 0
155155 − 3.55691i − 0.285698i
156156 0 0
157157 4.32582i 0.345238i 0.984989 + 0.172619i 0.0552229π0.0552229\pi
−0.984989 + 0.172619i 0.944777π0.944777\pi
158158 0 0
159159 2.00000 0.158610
160160 0 0
161161 −0.996562 −0.0785401
162162 0 0
163163 6.11727i 0.479141i 0.970879 + 0.239571i 0.0770067π0.0770067\pi
−0.970879 + 0.239571i 0.922993π0.922993\pi
164164 0 0
165165 − 4.49828i − 0.350191i
166166 0 0
167167 6.05520 0.468565 0.234283 0.972169i 0.424726π-0.424726\pi
0.234283 + 0.972169i 0.424726π0.424726\pi
168168 0 0
169169 −17.8793 −1.37533
170170 0 0
171171 1.05863i 0.0809557i
172172 0 0
173173 16.8793i 1.28331i 0.766994 + 0.641655i 0.221752π0.221752\pi
−0.766994 + 0.641655i 0.778248π0.778248\pi
174174 0 0
175175 0.941367 0.0711606
176176 0 0
177177 8.49828 0.638770
178178 0 0
179179 − 10.6155i − 0.793443i −0.917939 0.396722i 0.870148π-0.870148\pi
0.917939 0.396722i 0.129852π-0.129852\pi
180180 0 0
181181 14.1173i 1.04933i 0.851309 + 0.524664i 0.175809π0.175809\pi
−0.851309 + 0.524664i 0.824191π0.824191\pi
182182 0 0
183183 8.99656 0.665045
184184 0 0
185185 7.43965 0.546974
186186 0 0
187187 − 33.9931i − 2.48582i
188188 0 0
189189 − 0.941367i − 0.0684744i
190190 0 0
191191 8.00000 0.578860 0.289430 0.957199i 0.406534π-0.406534\pi
0.289430 + 0.957199i 0.406534π0.406534\pi
192192 0 0
193193 −4.87930 −0.351219 −0.175610 0.984460i 0.556190π-0.556190\pi
−0.175610 + 0.984460i 0.556190π0.556190\pi
194194 0 0
195195 − 5.55691i − 0.397939i
196196 0 0
197197 − 2.88617i − 0.205631i −0.994700 0.102816i 0.967215π-0.967215\pi
0.994700 0.102816i 0.0327852π-0.0327852\pi
198198 0 0
199199 17.6742 1.25289 0.626445 0.779466i 0.284509π-0.284509\pi
0.626445 + 0.779466i 0.284509π0.284509\pi
200200 0 0
201201 4.00000 0.282138
202202 0 0
203203 1.88273i 0.132142i
204204 0 0
205205 − 3.88273i − 0.271182i
206206 0 0
207207 −1.05863 −0.0735801
208208 0 0
209209 −4.76203 −0.329396
210210 0 0
211211 23.9379i 1.64795i 0.566623 + 0.823977i 0.308250π0.308250\pi
−0.566623 + 0.823977i 0.691750π0.691750\pi
212212 0 0
213213 − 12.9966i − 0.890510i
214214 0 0
215215 −1.88273 −0.128401
216216 0 0
217217 3.34836 0.227302
218218 0 0
219219 6.00000i 0.405442i
220220 0 0
221221 − 41.9931i − 2.82476i
222222 0 0
223223 24.0552 1.61086 0.805428 0.592694i 0.201936π-0.201936\pi
0.805428 + 0.592694i 0.201936π0.201936\pi
224224 0 0
225225 1.00000 0.0666667
226226 0 0
227227 − 11.1138i − 0.737651i −0.929499 0.368825i 0.879760π-0.879760\pi
0.929499 0.368825i 0.120240π-0.120240\pi
228228 0 0
229229 − 17.2311i − 1.13866i −0.822108 0.569331i 0.807202π-0.807202\pi
0.822108 0.569331i 0.192798π-0.192798\pi
230230 0 0
231231 4.23453 0.278612
232232 0 0
233233 −8.44309 −0.553125 −0.276562 0.960996i 0.589195π-0.589195\pi
−0.276562 + 0.960996i 0.589195π0.589195\pi
234234 0 0
235235 10.0552i 0.655929i
236236 0 0
237237 11.5569i 0.750702i
238238 0 0
239239 −10.1173 −0.654432 −0.327216 0.944950i 0.606110π-0.606110\pi
−0.327216 + 0.944950i 0.606110π0.606110\pi
240240 0 0
241241 16.8793 1.08729 0.543646 0.839315i 0.317044π-0.317044\pi
0.543646 + 0.839315i 0.317044π0.317044\pi
242242 0 0
243243 − 1.00000i − 0.0641500i
244244 0 0
245245 − 6.11383i − 0.390598i
246246 0 0
247247 −5.88273 −0.374309
248248 0 0
249249 −5.88273 −0.372803
250250 0 0
251251 − 11.8466i − 0.747753i −0.927478 0.373877i 0.878028π-0.878028\pi
0.927478 0.373877i 0.121972π-0.121972\pi
252252 0 0
253253 − 4.76203i − 0.299386i
254254 0 0
255255 7.55691 0.473232
256256 0 0
257257 −10.6707 −0.665623 −0.332811 0.942993i 0.607997π-0.607997\pi
−0.332811 + 0.942993i 0.607997π0.607997\pi
258258 0 0
259259 7.00344i 0.435172i
260260 0 0
261261 2.00000i 0.123797i
262262 0 0
263263 1.94480 0.119922 0.0599609 0.998201i 0.480902π-0.480902\pi
0.0599609 + 0.998201i 0.480902π0.480902\pi
264264 0 0
265265 −2.00000 −0.122859
266266 0 0
267267 4.11727i 0.251973i
268268 0 0
269269 9.76547i 0.595411i 0.954658 + 0.297706i 0.0962214π0.0962214\pi
−0.954658 + 0.297706i 0.903779π0.903779\pi
270270 0 0
271271 −3.44652 −0.209361 −0.104681 0.994506i 0.533382π-0.533382\pi
−0.104681 + 0.994506i 0.533382π0.533382\pi
272272 0 0
273273 5.23109 0.316600
274274 0 0
275275 4.49828i 0.271257i
276276 0 0
277277 − 18.7880i − 1.12886i −0.825480 0.564431i 0.809096π-0.809096\pi
0.825480 0.564431i 0.190904π-0.190904\pi
278278 0 0
279279 3.55691 0.212947
280280 0 0
281281 −16.8793 −1.00693 −0.503467 0.864014i 0.667943π-0.667943\pi
−0.503467 + 0.864014i 0.667943π0.667943\pi
282282 0 0
283283 − 20.0000i − 1.18888i −0.804141 0.594438i 0.797374π-0.797374\pi
0.804141 0.594438i 0.202626π-0.202626\pi
284284 0 0
285285 − 1.05863i − 0.0627080i
286286 0 0
287287 3.65508 0.215752
288288 0 0
289289 40.1070 2.35923
290290 0 0
291291 − 17.1138i − 1.00323i
292292 0 0
293293 − 20.2277i − 1.18171i −0.806777 0.590856i 0.798790π-0.798790\pi
0.806777 0.590856i 0.201210π-0.201210\pi
294294 0 0
295295 −8.49828 −0.494789
296296 0 0
297297 4.49828 0.261017
298298 0 0
299299 − 5.88273i − 0.340207i
300300 0 0
301301 − 1.77234i − 0.102156i
302302 0 0
303303 2.00000 0.114897
304304 0 0
305305 −8.99656 −0.515142
306306 0 0
307307 − 8.11039i − 0.462884i −0.972849 0.231442i 0.925656π-0.925656\pi
0.972849 0.231442i 0.0743444π-0.0743444\pi
308308 0 0
309309 10.1725i 0.578691i
310310 0 0
311311 −31.8759 −1.80751 −0.903757 0.428046i 0.859202π-0.859202\pi
−0.903757 + 0.428046i 0.859202π0.859202\pi
312312 0 0
313313 −5.11383 −0.289051 −0.144525 0.989501i 0.546166π-0.546166\pi
−0.144525 + 0.989501i 0.546166π0.546166\pi
314314 0 0
315315 0.941367i 0.0530400i
316316 0 0
317317 24.6448i 1.38419i 0.721807 + 0.692094i 0.243312π0.243312\pi
−0.721807 + 0.692094i 0.756688π0.756688\pi
318318 0 0
319319 −8.99656 −0.503711
320320 0 0
321321 17.2311 0.961746
322322 0 0
323323 − 8.00000i − 0.445132i
324324 0 0
325325 5.55691i 0.308242i
326326 0 0
327327 1.88273 0.104115
328328 0 0
329329 −9.46563 −0.521857
330330 0 0
331331 11.0518i 0.607460i 0.952758 + 0.303730i 0.0982320π0.0982320\pi
−0.952758 + 0.303730i 0.901768π0.901768\pi
332332 0 0
333333 7.43965i 0.407690i
334334 0 0
335335 −4.00000 −0.218543
336336 0 0
337337 −19.9931 −1.08909 −0.544547 0.838730i 0.683299π-0.683299\pi
−0.544547 + 0.838730i 0.683299π0.683299\pi
338338 0 0
339339 − 15.3224i − 0.832198i
340340 0 0
341341 16.0000i 0.866449i
342342 0 0
343343 12.3449 0.666563
344344 0 0
345345 1.05863 0.0569949
346346 0 0
347347 6.87930i 0.369300i 0.982804 + 0.184650i 0.0591151π0.0591151\pi
−0.982804 + 0.184650i 0.940885π0.940885\pi
348348 0 0
349349 − 4.76203i − 0.254906i −0.991845 0.127453i 0.959320π-0.959320\pi
0.991845 0.127453i 0.0406801π-0.0406801\pi
350350 0 0
351351 5.55691 0.296606
352352 0 0
353353 −3.79145 −0.201798 −0.100899 0.994897i 0.532172π-0.532172\pi
−0.100899 + 0.994897i 0.532172π0.532172\pi
354354 0 0
355355 12.9966i 0.689786i
356356 0 0
357357 7.11383i 0.376504i
358358 0 0
359359 12.9966 0.685932 0.342966 0.939348i 0.388568π-0.388568\pi
0.342966 + 0.939348i 0.388568π0.388568\pi
360360 0 0
361361 17.8793 0.941016
362362 0 0
363363 9.23453i 0.484687i
364364 0 0
365365 − 6.00000i − 0.314054i
366366 0 0
367367 −22.9345 −1.19717 −0.598585 0.801059i 0.704270π-0.704270\pi
−0.598585 + 0.801059i 0.704270π0.704270\pi
368368 0 0
369369 3.88273 0.202127
370370 0 0
371371 − 1.88273i − 0.0977467i
372372 0 0
373373 15.4396i 0.799435i 0.916638 + 0.399717i 0.130892π0.130892\pi
−0.916638 + 0.399717i 0.869108π0.869108\pi
374374 0 0
375375 −1.00000 −0.0516398
376376 0 0
377377 −11.1138 −0.572391
378378 0 0
379379 6.28973i 0.323082i 0.986866 + 0.161541i 0.0516463π0.0516463\pi
−0.986866 + 0.161541i 0.948354π0.948354\pi
380380 0 0
381381 − 18.1725i − 0.931003i
382382 0 0
383383 −2.94137 −0.150297 −0.0751484 0.997172i 0.523943π-0.523943\pi
−0.0751484 + 0.997172i 0.523943π0.523943\pi
384384 0 0
385385 −4.23453 −0.215812
386386 0 0
387387 − 1.88273i − 0.0957047i
388388 0 0
389389 12.2277i 0.619967i 0.950742 + 0.309983i 0.100324π0.100324\pi
−0.950742 + 0.309983i 0.899676π0.899676\pi
390390 0 0
391391 8.00000 0.404577
392392 0 0
393393 6.38101 0.321880
394394 0 0
395395 − 11.5569i − 0.581491i
396396 0 0
397397 − 5.32238i − 0.267123i −0.991041 0.133561i 0.957359π-0.957359\pi
0.991041 0.133561i 0.0426413π-0.0426413\pi
398398 0 0
399399 0.996562 0.0498905
400400 0 0
401401 6.99656 0.349392 0.174696 0.984622i 0.444106π-0.444106\pi
0.174696 + 0.984622i 0.444106π0.444106\pi
402402 0 0
403403 19.7655i 0.984588i
404404 0 0
405405 1.00000i 0.0496904i
406406 0 0
407407 −33.4656 −1.65883
408408 0 0
409409 16.2277 0.802406 0.401203 0.915989i 0.368592π-0.368592\pi
0.401203 + 0.915989i 0.368592π0.368592\pi
410410 0 0
411411 4.44309i 0.219161i
412412 0 0
413413 − 8.00000i − 0.393654i
414414 0 0
415415 5.88273 0.288772
416416 0 0
417417 −20.1725 −0.987850
418418 0 0
419419 15.6121i 0.762701i 0.924430 + 0.381351i 0.124541π0.124541\pi
−0.924430 + 0.381351i 0.875459π0.875459\pi
420420 0 0
421421 33.2311i 1.61958i 0.586717 + 0.809792i 0.300420π0.300420\pi
−0.586717 + 0.809792i 0.699580π0.699580\pi
422422 0 0
423423 −10.0552 −0.488900
424424 0 0
425425 −7.55691 −0.366564
426426 0 0
427427 − 8.46907i − 0.409847i
428428 0 0
429429 24.9966i 1.20685i
430430 0 0
431431 12.9966 0.626022 0.313011 0.949749i 0.398662π-0.398662\pi
0.313011 + 0.949749i 0.398662π0.398662\pi
432432 0 0
433433 20.2277 0.972079 0.486040 0.873937i 0.338441π-0.338441\pi
0.486040 + 0.873937i 0.338441π0.338441\pi
434434 0 0
435435 − 2.00000i − 0.0958927i
436436 0 0
437437 − 1.12070i − 0.0536106i
438438 0 0
439439 5.43965 0.259620 0.129810 0.991539i 0.458563π-0.458563\pi
0.129810 + 0.991539i 0.458563π0.458563\pi
440440 0 0
441441 6.11383 0.291135
442442 0 0
443443 15.3484i 0.729223i 0.931160 + 0.364611i 0.118798π0.118798\pi
−0.931160 + 0.364611i 0.881202π0.881202\pi
444444 0 0
445445 − 4.11727i − 0.195177i
446446 0 0
447447 −2.00000 −0.0945968
448448 0 0
449449 4.22766 0.199515 0.0997577 0.995012i 0.468193π-0.468193\pi
0.0997577 + 0.995012i 0.468193π0.468193\pi
450450 0 0
451451 17.4656i 0.822424i
452452 0 0
453453 9.67418i 0.454533i
454454 0 0
455455 −5.23109 −0.245238
456456 0 0
457457 2.65164 0.124038 0.0620192 0.998075i 0.480246π-0.480246\pi
0.0620192 + 0.998075i 0.480246π0.480246\pi
458458 0 0
459459 7.55691i 0.352727i
460460 0 0
461461 − 10.2345i − 0.476670i −0.971183 0.238335i 0.923398π-0.923398\pi
0.971183 0.238335i 0.0766016π-0.0766016\pi
462462 0 0
463463 −19.0586 −0.885730 −0.442865 0.896588i 0.646038π-0.646038\pi
−0.442865 + 0.896588i 0.646038π0.646038\pi
464464 0 0
465465 −3.55691 −0.164948
466466 0 0
467467 4.11039i 0.190206i 0.995467 + 0.0951031i 0.0303181π0.0303181\pi
−0.995467 + 0.0951031i 0.969682π0.969682\pi
468468 0 0
469469 − 3.76547i − 0.173873i
470470 0 0
471471 4.32582 0.199323
472472 0 0
473473 8.46907 0.389408
474474 0 0
475475 1.05863i 0.0485734i
476476 0 0
477477 − 2.00000i − 0.0915737i
478478 0 0
479479 25.2311 1.15284 0.576419 0.817154i 0.304450π-0.304450\pi
0.576419 + 0.817154i 0.304450π0.304450\pi
480480 0 0
481481 −41.3415 −1.88501
482482 0 0
483483 0.996562i 0.0453451i
484484 0 0
485485 17.1138i 0.777099i
486486 0 0
487487 21.9379 0.994102 0.497051 0.867721i 0.334416π-0.334416\pi
0.497051 + 0.867721i 0.334416π0.334416\pi
488488 0 0
489489 6.11727 0.276632
490490 0 0
491491 7.50172i 0.338548i 0.985569 + 0.169274i 0.0541423π0.0541423\pi
−0.985569 + 0.169274i 0.945858π0.945858\pi
492492 0 0
493493 − 15.1138i − 0.680693i
494494 0 0
495495 −4.49828 −0.202183
496496 0 0
497497 −12.2345 −0.548794
498498 0 0
499499 29.1690i 1.30578i 0.757451 + 0.652892i 0.226445π0.226445\pi
−0.757451 + 0.652892i 0.773555π0.773555\pi
500500 0 0
501501 − 6.05520i − 0.270526i
502502 0 0
503503 23.9379 1.06734 0.533670 0.845693i 0.320813π-0.320813\pi
0.533670 + 0.845693i 0.320813π0.320813\pi
504504 0 0
505505 −2.00000 −0.0889988
506506 0 0
507507 17.8793i 0.794047i
508508 0 0
509509 28.6967i 1.27196i 0.771706 + 0.635980i 0.219404π0.219404\pi
−0.771706 + 0.635980i 0.780596π0.780596\pi
510510 0 0
511511 5.64820 0.249862
512512 0 0
513513 1.05863 0.0467398
514514 0 0
515515 − 10.1725i − 0.448252i
516516 0 0
517517 − 45.2311i − 1.98926i
518518 0 0
519519 16.8793 0.740919
520520 0 0
521521 10.0000 0.438108 0.219054 0.975713i 0.429703π-0.429703\pi
0.219054 + 0.975713i 0.429703π0.429703\pi
522522 0 0
523523 − 25.7586i − 1.12634i −0.826340 0.563172i 0.809581π-0.809581\pi
0.826340 0.563172i 0.190419π-0.190419\pi
524524 0 0
525525 − 0.941367i − 0.0410846i
526526 0 0
527527 −26.8793 −1.17088
528528 0 0
529529 −21.8793 −0.951274
530530 0 0
531531 − 8.49828i − 0.368794i
532532 0 0
533533 21.5760i 0.934561i
534534 0 0
535535 −17.2311 −0.744965
536536 0 0
537537 −10.6155 −0.458095
538538 0 0
539539 27.5017i 1.18458i
540540 0 0
541541 12.3449i 0.530750i 0.964145 + 0.265375i 0.0854957π0.0854957\pi
−0.964145 + 0.265375i 0.914504π0.914504\pi
542542 0 0
543543 14.1173 0.605830
544544 0 0
545545 −1.88273 −0.0806475
546546 0 0
547547 19.8759i 0.849830i 0.905233 + 0.424915i 0.139696π0.139696\pi
−0.905233 + 0.424915i 0.860304π0.860304\pi
548548 0 0
549549 − 8.99656i − 0.383964i
550550 0 0
551551 −2.11727 −0.0901986
552552 0 0
553553 10.8793 0.462635
554554 0 0
555555 − 7.43965i − 0.315795i
556556 0 0
557557 3.12070i 0.132228i 0.997812 + 0.0661142i 0.0210602π0.0210602\pi
−0.997812 + 0.0661142i 0.978940π0.978940\pi
558558 0 0
559559 10.4622 0.442503
560560 0 0
561561 −33.9931 −1.43519
562562 0 0
563563 0.651639i 0.0274633i 0.999906 + 0.0137317i 0.00437106π0.00437106\pi
−0.999906 + 0.0137317i 0.995629π0.995629\pi
564564 0 0
565565 15.3224i 0.644617i
566566 0 0
567567 −0.941367 −0.0395337
568568 0 0
569569 26.9966 1.13175 0.565877 0.824489i 0.308538π-0.308538\pi
0.565877 + 0.824489i 0.308538π0.308538\pi
570570 0 0
571571 − 14.9414i − 0.625277i −0.949872 0.312638i 0.898787π-0.898787\pi
0.949872 0.312638i 0.101213π-0.101213\pi
572572 0 0
573573 − 8.00000i − 0.334205i
574574 0 0
575575 −1.05863 −0.0441481
576576 0 0
577577 −8.87930 −0.369650 −0.184825 0.982771i 0.559172π-0.559172\pi
−0.184825 + 0.982771i 0.559172π0.559172\pi
578578 0 0
579579 4.87930i 0.202777i
580580 0 0
581581 5.53781i 0.229747i
582582 0 0
583583 8.99656 0.372600
584584 0 0
585585 −5.55691 −0.229750
586586 0 0
587587 − 1.23109i − 0.0508127i −0.999677 0.0254064i 0.991912π-0.991912\pi
0.999677 0.0254064i 0.00808797π-0.00808797\pi
588588 0 0
589589 3.76547i 0.155153i
590590 0 0
591591 −2.88617 −0.118721
592592 0 0
593593 3.55691 0.146065 0.0730325 0.997330i 0.476732π-0.476732\pi
0.0730325 + 0.997330i 0.476732π0.476732\pi
594594 0 0
595595 − 7.11383i − 0.291639i
596596 0 0
597597 − 17.6742i − 0.723356i
598598 0 0
599599 19.2242 0.785480 0.392740 0.919649i 0.371527π-0.371527\pi
0.392740 + 0.919649i 0.371527π0.371527\pi
600600 0 0
601601 −27.7586 −1.13230 −0.566148 0.824303i 0.691567π-0.691567\pi
−0.566148 + 0.824303i 0.691567π0.691567\pi
602602 0 0
603603 − 4.00000i − 0.162893i
604604 0 0
605605 − 9.23453i − 0.375437i
606606 0 0
607607 −7.16902 −0.290982 −0.145491 0.989360i 0.546476π-0.546476\pi
−0.145491 + 0.989360i 0.546476π0.546476\pi
608608 0 0
609609 1.88273 0.0762922
610610 0 0
611611 − 55.8759i − 2.26050i
612612 0 0
613613 9.55691i 0.386000i 0.981199 + 0.193000i 0.0618218π0.0618218\pi
−0.981199 + 0.193000i 0.938178π0.938178\pi
614614 0 0
615615 −3.88273 −0.156567
616616 0 0
617617 1.32926 0.0535139 0.0267569 0.999642i 0.491482π-0.491482\pi
0.0267569 + 0.999642i 0.491482π0.491482\pi
618618 0 0
619619 − 28.1725i − 1.13235i −0.824286 0.566173i 0.808423π-0.808423\pi
0.824286 0.566173i 0.191577π-0.191577\pi
620620 0 0
621621 1.05863i 0.0424815i
622622 0 0
623623 3.87586 0.155283
624624 0 0
625625 1.00000 0.0400000
626626 0 0
627627 4.76203i 0.190177i
628628 0 0
629629 − 56.2208i − 2.24167i
630630 0 0
631631 23.3224 0.928449 0.464225 0.885717i 0.346333π-0.346333\pi
0.464225 + 0.885717i 0.346333π0.346333\pi
632632 0 0
633633 23.9379 0.951447
634634 0 0
635635 18.1725i 0.721152i
636636 0 0
637637 33.9740i 1.34610i
638638 0 0
639639 −12.9966 −0.514136
640640 0 0
641641 27.1070 1.07066 0.535330 0.844643i 0.320187π-0.320187\pi
0.535330 + 0.844643i 0.320187π0.320187\pi
642642 0 0
643643 − 20.3449i − 0.802325i −0.916007 0.401163i 0.868606π-0.868606\pi
0.916007 0.401163i 0.131394π-0.131394\pi
644644 0 0
645645 1.88273i 0.0741326i
646646 0 0
647647 −37.6965 −1.48200 −0.741002 0.671503i 0.765649π-0.765649\pi
−0.741002 + 0.671503i 0.765649π0.765649\pi
648648 0 0
649649 38.2277 1.50057
650650 0 0
651651 − 3.34836i − 0.131233i
652652 0 0
653653 − 8.64476i − 0.338296i −0.985591 0.169148i 0.945898π-0.945898\pi
0.985591 0.169148i 0.0541015π-0.0541015\pi
654654 0 0
655655 −6.38101 −0.249327
656656 0 0
657657 6.00000 0.234082
658658 0 0
659659 − 29.2603i − 1.13982i −0.821707 0.569910i 0.806978π-0.806978\pi
0.821707 0.569910i 0.193022π-0.193022\pi
660660 0 0
661661 28.7620i 1.11871i 0.828927 + 0.559357i 0.188952π0.188952\pi
−0.828927 + 0.559357i 0.811048π0.811048\pi
662662 0 0
663663 −41.9931 −1.63088
664664 0 0
665665 −0.996562 −0.0386450
666666 0 0
667667 − 2.11727i − 0.0819809i
668668 0 0
669669 − 24.0552i − 0.930028i
670670 0 0
671671 40.4691 1.56229
672672 0 0
673673 −18.0000 −0.693849 −0.346925 0.937893i 0.612774π-0.612774\pi
−0.346925 + 0.937893i 0.612774π0.612774\pi
674674 0 0
675675 − 1.00000i − 0.0384900i
676676 0 0
677677 − 42.8724i − 1.64772i −0.566793 0.823860i 0.691816π-0.691816\pi
0.566793 0.823860i 0.308184π-0.308184\pi
678678 0 0
679679 −16.1104 −0.618260
680680 0 0
681681 −11.1138 −0.425883
682682 0 0
683683 26.1173i 0.999349i 0.866213 + 0.499675i 0.166547π0.166547\pi
−0.866213 + 0.499675i 0.833453π0.833453\pi
684684 0 0
685685 − 4.44309i − 0.169762i
686686 0 0
687687 −17.2311 −0.657407
688688 0 0
689689 11.1138 0.423403
690690 0 0
691691 5.29317i 0.201362i 0.994919 + 0.100681i 0.0321021π0.0321021\pi
−0.994919 + 0.100681i 0.967898π0.967898\pi
692692 0 0
693693 − 4.23453i − 0.160857i
694694 0 0
695695 20.1725 0.765185
696696 0 0
697697 −29.3415 −1.11139
698698 0 0
699699 8.44309i 0.319347i
700700 0 0
701701 7.99312i 0.301896i 0.988542 + 0.150948i 0.0482326π0.0482326\pi
−0.988542 + 0.150948i 0.951767π0.951767\pi
702702 0 0
703703 −7.87586 −0.297044
704704 0 0
705705 10.0552 0.378701
706706 0 0
707707 − 1.88273i − 0.0708075i
708708 0 0
709709 − 28.9966i − 1.08899i −0.838764 0.544494i 0.816722π-0.816722\pi
0.838764 0.544494i 0.183278π-0.183278\pi
710710 0 0
711711 11.5569 0.433418
712712 0 0
713713 −3.76547 −0.141018
714714 0 0
715715 − 24.9966i − 0.934818i
716716 0 0
717717 10.1173i 0.377836i
718718 0 0
719719 −26.8793 −1.00243 −0.501214 0.865323i 0.667113π-0.667113\pi
−0.501214 + 0.865323i 0.667113π0.667113\pi
720720 0 0
721721 9.57602 0.356630
722722 0 0
723723 − 16.8793i − 0.627748i
724724 0 0
725725 2.00000i 0.0742781i
726726 0 0
727727 −41.8138 −1.55079 −0.775394 0.631478i 0.782449π-0.782449\pi
−0.775394 + 0.631478i 0.782449π0.782449\pi
728728 0 0
729729 −1.00000 −0.0370370
730730 0 0
731731 14.2277i 0.526229i
732732 0 0
733733 30.0844i 1.11119i 0.831452 + 0.555597i 0.187510π0.187510\pi
−0.831452 + 0.555597i 0.812490π0.812490\pi
734734 0 0
735735 −6.11383 −0.225512
736736 0 0
737737 17.9931 0.662785
738738 0 0
739739 − 29.0449i − 1.06843i −0.845348 0.534217i 0.820607π-0.820607\pi
0.845348 0.534217i 0.179393π-0.179393\pi
740740 0 0
741741 5.88273i 0.216108i
742742 0 0
743743 43.2863 1.58802 0.794010 0.607905i 0.207990π-0.207990\pi
0.794010 + 0.607905i 0.207990π0.207990\pi
744744 0 0
745745 2.00000 0.0732743
746746 0 0
747747 5.88273i 0.215238i
748748 0 0
749749 − 16.2208i − 0.592694i
750750 0 0
751751 −41.7846 −1.52474 −0.762370 0.647141i 0.775964π-0.775964\pi
−0.762370 + 0.647141i 0.775964π0.775964\pi
752752 0 0
753753 −11.8466 −0.431716
754754 0 0
755755 − 9.67418i − 0.352079i
756756 0 0
757757 − 16.3258i − 0.593372i −0.954975 0.296686i 0.904119π-0.904119\pi
0.954975 0.296686i 0.0958815π-0.0958815\pi
758758 0 0
759759 −4.76203 −0.172851
760760 0 0
761761 50.2208 1.82050 0.910251 0.414057i 0.135889π-0.135889\pi
0.910251 + 0.414057i 0.135889π0.135889\pi
762762 0 0
763763 − 1.77234i − 0.0641631i
764764 0 0
765765 − 7.55691i − 0.273221i
766766 0 0
767767 47.2242 1.70517
768768 0 0
769769 −31.3415 −1.13020 −0.565101 0.825021i 0.691163π-0.691163\pi
−0.565101 + 0.825021i 0.691163π0.691163\pi
770770 0 0
771771 10.6707i 0.384297i
772772 0 0
773773 − 9.11383i − 0.327802i −0.986477 0.163901i 0.947592π-0.947592\pi
0.986477 0.163901i 0.0524077π-0.0524077\pi
774774 0 0
775775 3.55691 0.127768
776776 0 0
777777 7.00344 0.251247
778778 0 0
779779 4.11039i 0.147270i
780780 0 0
781781 − 58.4622i − 2.09194i
782782 0 0
783783 2.00000 0.0714742
784784 0 0
785785 −4.32582 −0.154395
786786 0 0
787787 − 36.2208i − 1.29113i −0.763705 0.645566i 0.776622π-0.776622\pi
0.763705 0.645566i 0.223378π-0.223378\pi
788788 0 0
789789 − 1.94480i − 0.0692369i
790790 0 0
791791 −14.4240 −0.512858
792792 0 0
793793 49.9931 1.77531
794794 0 0
795795 2.00000i 0.0709327i
796796 0 0
797797 10.0000i 0.354218i 0.984191 + 0.177109i 0.0566745π0.0566745\pi
−0.984191 + 0.177109i 0.943325π0.943325\pi
798798 0 0
799799 75.9862 2.68820
800800 0 0
801801 4.11727 0.145476
802802 0 0
803803 26.9897i 0.952445i
804804 0 0
805805 − 0.996562i − 0.0351242i
806806 0 0
807807 9.76547 0.343761
808808 0 0
809809 47.5760 1.67268 0.836342 0.548208i 0.184690π-0.184690\pi
0.836342 + 0.548208i 0.184690π0.184690\pi
810810 0 0
811811 − 20.5174i − 0.720463i −0.932863 0.360231i 0.882698π-0.882698\pi
0.932863 0.360231i 0.117302π-0.117302\pi
812812 0 0
813813 3.44652i 0.120875i
814814 0 0
815815 −6.11727 −0.214278
816816 0 0
817817 1.99312 0.0697306
818818 0 0
819819 − 5.23109i − 0.182789i
820820 0 0
821821 44.4622i 1.55174i 0.630892 + 0.775871i 0.282689π0.282689\pi
−0.630892 + 0.775871i 0.717311π0.717311\pi
822822 0 0
823823 −32.1656 −1.12122 −0.560611 0.828079i 0.689434π-0.689434\pi
−0.560611 + 0.828079i 0.689434π0.689434\pi
824824 0 0
825825 4.49828 0.156610
826826 0 0
827827 20.0000i 0.695468i 0.937593 + 0.347734i 0.113049π0.113049\pi
−0.937593 + 0.347734i 0.886951π0.886951\pi
828828 0 0
829829 33.8827i 1.17680i 0.808571 + 0.588398i 0.200241π0.200241\pi
−0.808571 + 0.588398i 0.799759π0.799759\pi
830830 0 0
831831 −18.7880 −0.651749
832832 0 0
833833 −46.2017 −1.60079
834834 0 0
835835 6.05520i 0.209549i
836836 0 0
837837 − 3.55691i − 0.122945i
838838 0 0
839839 −4.52750 −0.156307 −0.0781533 0.996941i 0.524902π-0.524902\pi
−0.0781533 + 0.996941i 0.524902π0.524902\pi
840840 0 0
841841 25.0000 0.862069
842842 0 0
843843 16.8793i 0.581354i
844844 0 0
845845 − 17.8793i − 0.615066i
846846 0 0
847847 8.69308 0.298698
848848 0 0
849849 −20.0000 −0.686398
850850 0 0
851851 − 7.87586i − 0.269981i
852852 0 0
853853 − 50.4293i − 1.72667i −0.504633 0.863334i 0.668372π-0.668372\pi
0.504633 0.863334i 0.331628π-0.331628\pi
854854 0 0
855855 −1.05863 −0.0362045
856856 0 0
857857 26.4362 0.903044 0.451522 0.892260i 0.350881π-0.350881\pi
0.451522 + 0.892260i 0.350881π0.350881\pi
858858 0 0
859859 − 0.406994i − 0.0138865i −0.999976 0.00694323i 0.997790π-0.997790\pi
0.999976 0.00694323i 0.00221012π-0.00221012\pi
860860 0 0
861861 − 3.65508i − 0.124565i
862862 0 0
863863 29.9311 1.01886 0.509432 0.860511i 0.329855π-0.329855\pi
0.509432 + 0.860511i 0.329855π0.329855\pi
864864 0 0
865865 −16.8793 −0.573913
866866 0 0
867867 − 40.1070i − 1.36210i
868868 0 0
869869 51.9862i 1.76351i
870870 0 0
871871 22.2277 0.753155
872872 0 0
873873 −17.1138 −0.579215
874874 0 0
875875 0.941367i 0.0318240i
876876 0 0
877877 − 11.2051i − 0.378370i −0.981941 0.189185i 0.939415π-0.939415\pi
0.981941 0.189185i 0.0605846π-0.0605846\pi
878878 0 0
879879 −20.2277 −0.682262
880880 0 0
881881 −48.3380 −1.62855 −0.814275 0.580479i 0.802865π-0.802865\pi
−0.814275 + 0.580479i 0.802865π0.802865\pi
882882 0 0
883883 50.5726i 1.70190i 0.525244 + 0.850951i 0.323974π0.323974\pi
−0.525244 + 0.850951i 0.676026π0.676026\pi
884884 0 0
885885 8.49828i 0.285667i
886886 0 0
887887 48.0483 1.61330 0.806652 0.591026i 0.201277π-0.201277\pi
0.806652 + 0.591026i 0.201277π0.201277\pi
888888 0 0
889889 −17.1070 −0.573749
890890 0 0
891891 − 4.49828i − 0.150698i
892892 0 0
893893 − 10.6448i − 0.356213i
894894 0 0
895895 10.6155 0.354839
896896 0 0
897897 −5.88273 −0.196419
898898 0 0
899899 7.11383i 0.237259i
900900 0 0
901901 15.1138i 0.503515i
902902 0 0
903903 −1.77234 −0.0589799
904904 0 0
905905 −14.1173 −0.469274
906906 0 0
907907 6.46219i 0.214573i 0.994228 + 0.107287i 0.0342163π0.0342163\pi
−0.994228 + 0.107287i 0.965784π0.965784\pi
908908 0 0
909909 − 2.00000i − 0.0663358i
910910 0 0
911911 −50.3380 −1.66777 −0.833887 0.551935i 0.813890π-0.813890\pi
−0.833887 + 0.551935i 0.813890π0.813890\pi
912912 0 0
913913 −26.4622 −0.875771
914914 0 0
915915 8.99656i 0.297417i
916916 0 0
917917 − 6.00688i − 0.198365i
918918 0 0
919919 −46.4362 −1.53179 −0.765895 0.642966i 0.777704π-0.777704\pi
−0.765895 + 0.642966i 0.777704π0.777704\pi
920920 0 0
921921 −8.11039 −0.267246
922922 0 0
923923 − 72.2208i − 2.37718i
924924 0 0
925925 7.43965i 0.244614i
926926 0 0
927927 10.1725 0.334107
928928 0 0
929929 −35.9931 −1.18090 −0.590448 0.807076i 0.701049π-0.701049\pi
−0.590448 + 0.807076i 0.701049π0.701049\pi
930930 0 0
931931 6.47230i 0.212121i
932932 0 0
933933 31.8759i 1.04357i
934934 0 0
935935 33.9931 1.11169
936936 0 0
937937 2.70360 0.0883227 0.0441613 0.999024i 0.485938π-0.485938\pi
0.0441613 + 0.999024i 0.485938π0.485938\pi
938938 0 0
939939 5.11383i 0.166883i
940940 0 0
941941 − 17.7655i − 0.579138i −0.957157 0.289569i 0.906488π-0.906488\pi
0.957157 0.289569i 0.0935119π-0.0935119\pi
942942 0 0
943943 −4.11039 −0.133853
944944 0 0
945945 0.941367 0.0306227
946946 0 0
947947 26.2277i 0.852284i 0.904656 + 0.426142i 0.140128π0.140128\pi
−0.904656 + 0.426142i 0.859872π0.859872\pi
948948 0 0
949949 33.3415i 1.08231i
950950 0 0
951951 24.6448 0.799161
952952 0 0
953953 9.09472 0.294607 0.147304 0.989091i 0.452941π-0.452941\pi
0.147304 + 0.989091i 0.452941π0.452941\pi
954954 0 0
955955 8.00000i 0.258874i
956956 0 0
957957 8.99656i 0.290818i
958958 0 0
959959 4.18257 0.135062
960960 0 0
961961 −18.3484 −0.591883
962962 0 0
963963 − 17.2311i − 0.555264i
964964 0 0
965965 − 4.87930i − 0.157070i
966966 0 0
967967 7.47574 0.240404 0.120202 0.992749i 0.461646π-0.461646\pi
0.120202 + 0.992749i 0.461646π0.461646\pi
968968 0 0
969969 −8.00000 −0.256997
970970 0 0
971971 41.0777i 1.31825i 0.752035 + 0.659124i 0.229073π0.229073\pi
−0.752035 + 0.659124i 0.770927π0.770927\pi
972972 0 0
973973 18.9897i 0.608781i
974974 0 0
975975 5.55691 0.177964
976976 0 0
977977 −4.20855 −0.134644 −0.0673218 0.997731i 0.521445π-0.521445\pi
−0.0673218 + 0.997731i 0.521445π0.521445\pi
978978 0 0
979979 18.5206i 0.591922i
980980 0 0
981981 − 1.88273i − 0.0601111i
982982 0 0
983983 8.35504 0.266484 0.133242 0.991084i 0.457461π-0.457461\pi
0.133242 + 0.991084i 0.457461π0.457461\pi
984984 0 0
985985 2.88617 0.0919611
986986 0 0
987987 9.46563i 0.301294i
988988 0 0
989989 1.99312i 0.0633777i
990990 0 0
991991 13.9087 0.441825 0.220912 0.975294i 0.429097π-0.429097\pi
0.220912 + 0.975294i 0.429097π0.429097\pi
992992 0 0
993993 11.0518 0.350717
994994 0 0
995995 17.6742i 0.560309i
996996 0 0
997997 34.8984i 1.10524i 0.833432 + 0.552622i 0.186373π0.186373\pi
−0.833432 + 0.552622i 0.813627π0.813627\pi
998998 0 0
999999 7.43965 0.235380
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.2.k.b.241.2 6
3.2 odd 2 1440.2.k.f.721.2 6
4.3 odd 2 120.2.k.b.61.4 yes 6
5.2 odd 4 2400.2.d.e.49.3 6
5.3 odd 4 2400.2.d.f.49.4 6
5.4 even 2 2400.2.k.c.1201.5 6
8.3 odd 2 120.2.k.b.61.3 6
8.5 even 2 inner 480.2.k.b.241.5 6
12.11 even 2 360.2.k.f.181.3 6
15.2 even 4 7200.2.d.r.2449.3 6
15.8 even 4 7200.2.d.q.2449.4 6
15.14 odd 2 7200.2.k.p.3601.4 6
16.3 odd 4 3840.2.a.bp.1.2 3
16.5 even 4 3840.2.a.bo.1.2 3
16.11 odd 4 3840.2.a.bq.1.2 3
16.13 even 4 3840.2.a.br.1.2 3
20.3 even 4 600.2.d.e.349.5 6
20.7 even 4 600.2.d.f.349.2 6
20.19 odd 2 600.2.k.c.301.3 6
24.5 odd 2 1440.2.k.f.721.5 6
24.11 even 2 360.2.k.f.181.4 6
40.3 even 4 600.2.d.f.349.1 6
40.13 odd 4 2400.2.d.e.49.4 6
40.19 odd 2 600.2.k.c.301.4 6
40.27 even 4 600.2.d.e.349.6 6
40.29 even 2 2400.2.k.c.1201.2 6
40.37 odd 4 2400.2.d.f.49.3 6
60.23 odd 4 1800.2.d.q.1549.2 6
60.47 odd 4 1800.2.d.r.1549.5 6
60.59 even 2 1800.2.k.p.901.4 6
120.29 odd 2 7200.2.k.p.3601.3 6
120.53 even 4 7200.2.d.r.2449.4 6
120.59 even 2 1800.2.k.p.901.3 6
120.77 even 4 7200.2.d.q.2449.3 6
120.83 odd 4 1800.2.d.r.1549.6 6
120.107 odd 4 1800.2.d.q.1549.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.k.b.61.3 6 8.3 odd 2
120.2.k.b.61.4 yes 6 4.3 odd 2
360.2.k.f.181.3 6 12.11 even 2
360.2.k.f.181.4 6 24.11 even 2
480.2.k.b.241.2 6 1.1 even 1 trivial
480.2.k.b.241.5 6 8.5 even 2 inner
600.2.d.e.349.5 6 20.3 even 4
600.2.d.e.349.6 6 40.27 even 4
600.2.d.f.349.1 6 40.3 even 4
600.2.d.f.349.2 6 20.7 even 4
600.2.k.c.301.3 6 20.19 odd 2
600.2.k.c.301.4 6 40.19 odd 2
1440.2.k.f.721.2 6 3.2 odd 2
1440.2.k.f.721.5 6 24.5 odd 2
1800.2.d.q.1549.1 6 120.107 odd 4
1800.2.d.q.1549.2 6 60.23 odd 4
1800.2.d.r.1549.5 6 60.47 odd 4
1800.2.d.r.1549.6 6 120.83 odd 4
1800.2.k.p.901.3 6 120.59 even 2
1800.2.k.p.901.4 6 60.59 even 2
2400.2.d.e.49.3 6 5.2 odd 4
2400.2.d.e.49.4 6 40.13 odd 4
2400.2.d.f.49.3 6 40.37 odd 4
2400.2.d.f.49.4 6 5.3 odd 4
2400.2.k.c.1201.2 6 40.29 even 2
2400.2.k.c.1201.5 6 5.4 even 2
3840.2.a.bo.1.2 3 16.5 even 4
3840.2.a.bp.1.2 3 16.3 odd 4
3840.2.a.bq.1.2 3 16.11 odd 4
3840.2.a.br.1.2 3 16.13 even 4
7200.2.d.q.2449.3 6 120.77 even 4
7200.2.d.q.2449.4 6 15.8 even 4
7200.2.d.r.2449.3 6 15.2 even 4
7200.2.d.r.2449.4 6 120.53 even 4
7200.2.k.p.3601.3 6 120.29 odd 2
7200.2.k.p.3601.4 6 15.14 odd 2